Import scheduled call reports from CoMagic to BigQuery on a schedule using Google Cloud Functions

For what


With the complex structure of advertising campaigns and a large number of calls, additional tools for storing, processing and analyzing information about incoming calls become necessary. Often you need quick access to data over a long period of time. Sometimes you need complex data processing, correlating calls to a specific channel or campaign.

One of the options for speeding up work, which also provides additional benefits, is importing calls from CoMagic to Google BigQuery. Much has been written about the benefits of BigQuery, so let's move on to creation.

To create an automatic import you will need:

  1. Google account (if not already) with the created project
  2. Python knowledge
  3. Introducing Google Cloud Documentation

How to create a project is described here . After the project is created, you need to create a dataset in BigQuery. BQ documentation and instructions for creating a dataset .

Retrieving data from CoMagic


Turning to the CoMagic documentation . To get a list of calls or calls, we need the reports section.

We create a simple class for working with the CoMagic API. All necessary requirements will be indicated at the end in the link to GitHub.

import json import requests import random import pandas as pd class ComagicClient: """     CoMagic""" def __init__(self, login, password): """     CoMagic""" self.login = login self.password = password self.base_url = 'https://dataapi.comagic.ru/v2.0' self.payload_ = {"jsonrpc":"2.0", "id":1, "method":None, "params": None} self.token = self.get_token(self.login, self.password) def base_request(self, method, params): """     CoMagic.      API   .    JSON-like . : https://www.comagic.ru/support/api/data-api/""" id_ = random.randrange(10**7) #  payload = self.payload_.copy() payload["method"] = method payload["params"] = params payload["id"] = id_ self.r = requests.post(self.base_url, data=json.dumps(payload)) self.last_response = json.loads(self.r.text) return self.last_response def get_token(self, login, password): """   .       .  .""" method = "login.user" params = {"login":self.login, "password":self.password} response = self.base_request(method, params) token = response['result']['data']['access_token'] return token def get_report_per_page(self, method, params): """  .      10000 .    .     110000 .     JSON-like .""" response = self.base_request(method, params) print(f"""  c {params["date_from"]}  {params["date_till"]}.  = {params["offset"]}""") result = response['result']['data'] if len(result) < 10000: return result else: params['offset'] += 10000 add_result = self.get_report_per_page(method, params) return result + add_result def get_basic_report(self, method, fields, date_from, date_till, filter=None, offset=0): """   .       method  fields.       .       ,   ,       . method -- <string>   date_from -- <string>  .  "YYYY-MM-DD hh:mm:ss" date_till -- <string>  .  "YYYY-MM-DD hh:mm:ss" fields -- <list>,    filter [] - <dict>  offset [] -- <int>  return -- <list>  """ params = {"access_token":self.token, "limit":10000, "date_from":date_from, "date_till":date_till, "fields": fields, "offset": offset} if filter: params['filter'] = filter report = self.get_report_per_page(method, params) return report 

Now you need to determine what kind of data is needed. The data needs to be processed and made visible so that it can be loaded into BigQuery.

Create an auxiliary class and define the data received from CoMagic.

 class ComagicHandler(ComagicClient): """    ,   CoMagic""" time_partition_field = 'PARTITION_DATE' def __init__(self, login, password, first_call_date): self.day_before_first_call = pd.to_datetime(first_call_date) - pd.Timedelta(days=1) super().__init__(login, password) def get_calls_report(self, date_from, date_till): """        .           .    Pandas DataFrame.      .      Connector    .    .    .  Pnadas.DataFrame""" method = "get.calls_report" fields = ['id', 'visitor_id', 'person_id', 'start_time', 'finish_reason', 'is_lost', 'tags', 'campaign_name','communication_number', 'contact_phone_number', 'talk_duration', 'clean_talk_duration', 'virtual_phone_number', 'ua_client_id', 'ym_client_id', 'entrance_page', 'gclid', 'yclid', 'visitor_type', 'visits_count', 'visitor_first_campaign_name', 'visitor_device', 'site_domain_name','utm_source', 'utm_medium', 'utm_campaign', 'utm_content', 'eq_utm_source', 'eq_utm_medium', 'eq_utm_campaign', 'attributes'] #   CoMagic calls_data = self.get_basic_report(method, fields, date_from, date_till) # DataFrame df = pd.DataFrame(calls_data) #    .    . df[self.time_partition_field] = pd.to_datetime(df.start_time).apply(lambda x: x.date()) #  tags,   BigQuery       ,  # CoMagic.    . df['tags'] = df.tags.apply(lambda x: x if x == None else [i['tag_name'] for i in x]) return df 

Sending data to BigQuery


After the data from CoMagic is received and converted, you need to send it to BigQuery.

 from google.cloud import bigquery from google.cloud.exceptions import NotFound import pandas as pd class BQTableHanler: """     BigQuery""" time_partition_field = 'PARTITION_DATE' def __init__(self, full_table_id, service_account_file_key_path = None): """       `myproject.mydataset.mytable`.  ,   Application Default Credentials,           .""" self.full_table_id = full_table_id project_id, dataset_id, table_id = full_table_id.split(".") self.project_id = project_id self.dataset_id = dataset_id self.table_id = table_id if service_account_file_key_path: #      from google.oauth2 import service_account self.credentials = service_account.Credentials.from_service_account_file( service_account_file_key_path, scopes=["https://www.googleapis.com/auth/cloud-platform"],) self.bq_client = bigquery.Client(credentials = self.credentials, project = self.project_id) else: self.bq_client = bigquery.Client() self.dataset = self.bq_client.get_dataset(self.dataset_id) self.location = self.dataset.location self.table_ref = self.dataset.table(self.table_id) def get_last_update(self): """        Pandas datetime.      False.""" try: self.bq_client.get_table(self.full_table_id) except NotFound as error: return False query = f"""SELECT MAX({self.time_partition_field}) as last_call FROM `{self.full_table_id}`""" result = self.bq_client.query(query,location=self.location).to_dataframe() date = pd.to_datetime(result.iloc[0,0]).date() return date def insert_dataframe(self, dataframe): """      BigQuery.     Pandas DataFrame.    ,       .""" job_config = bigquery.LoadJobConfig() #     job_config._properties['load']['timePartitioning'] = {'type': 'DAY', 'field': self.time_partition_field} result = self.bq_client.load_table_from_dataframe(dataframe, self.table_ref, job_config=job_config).result() return result 

Determine the logic for updating data


Since there is a limit on the number of data rows received from CoMagic, it is necessary to limit the amount of requested data. We will limit the request period. To do this, you need an auxiliary function that will split a large period of time into segments of a specified length.

 def interval_split(array, interval): """      .   ,      2,    -   ,     -    . : get_intervals([1,2,3,4,5,6,7], 3) => [[1,3], [4,6], [7]] get_intervals([1,2,3], 4) => [[1,3]]""" intervals = [] iw, i = 0, 0 l = len(array) for v in array: if i==0 or (i)%interval==0: intervals.append([v]) if (i+1)%interval == 0 or (i+1) == l: intervals[iw].append(v) iw+=1 i+=1 return intervals 

This is necessary when loading data for the first time, when you need to download data for a long period of time. The period is divided into several small periods. By the way, it’s better to do this without using Cloud Function, since they have a time limit. Well, or, as an option, you can run the function many, many times.

We create a connector class to link the BigQuery table where we want to store the data and the data from CoMagic.

 from helpfunctions import interval_split import pandas as pd class Connector: """      """ time_partition_field = 'PARTITION_DATE' #  -.       def __init__ (self, source, dest): """          """ self.source = source self.dest = dest self.source.time_partition_field = self.time_partition_field self.dest.time_partition_field = self.time_partition_field def insert_data_in_dest(self, start_date, end_date): """      .          ,     .""" dates = pd.date_range(start_date, end_date) week_intervals = interval_split(dates, 7) #     7  for week_interval in week_intervals: date_from = week_interval[0].strftime("%Y-%m-%d") + " 00:00:00" date_till = week_interval[1].strftime("%Y-%m-%d") + " 23:59:59" calls_df = self.source.get_calls_report(date_from, date_till) self.dest.insert_dataframe(calls_df) print (f"  {date_from}  {date_till}   ") return True def update_dest_data(self): #     BigQuery last_date = self.dest.get_last_update() if not last_date: #    last_date = self.source.day_before_first_call yesterday = pd.Timestamp.today(tz='Europe/Moscow').date() - pd.Timedelta(days=1) if last_date == yesterday: print("  ") else: last_date = last_date + pd.Timedelta(days=1) self.insert_data_in_dest(last_date, yesterday) return True 

Next, we prescribe the main function for updating the data, which will be launched on a schedule.

 from connector import Connector from bqhandler import BQTableHanler from comagichandler import ComagicHandler from credfile import * def main(event, context): """    event, context  : https://cloud.google.com/functions/docs/writing/background#functions-writing-background-hello-pubsub-python""" #import base64 #pubsub_message = base64.b64decode(event['data']).decode('utf-8') # c      comagic_handler = ComagicHandler(COMAGIC_LOGIN, COMAGIC_PASSWORD, FIRST_CALL_DATE) bq_handelr = BQTableHanler(full_table_id, google_credintials_key_path) #  connector = Connector(comagic_handler, bq_handelr) #     connector.update_dest_data() 

Configure Google Cloud Platform


We collect all the files in a ZIP archive. In the credfile.py file, we enter the CoMagic username and password to receive the token, as well as the full name of the table in BigQuery and the path to the service account file if the script is run from the local machine.

Create a Cloud Function





Configuring Scheduler and PUB / SUB


In the last step, we created the `update_calls` trigger. This automatic topic has appeared in the list of topics .

Now, using Cloud Scheduler, you need to configure the trigger. when it will fire and GCF will start.




Now the script will be launched daily at 01:00 and call data will be updated at the end of the previous day.

Link to GitHub to run from the local computer
GitHub Link to ZIP File

Source: https://habr.com/ru/post/475804/


All Articles