ãã®èšäºã«ã¯ãã¹ãã¬ãªããžã§ã³ã§äœ¿çšãããæ°åŠçè£
眮ã«é¢ããåºæ¬æ
å ±ãå«ãŸããŠããŸãã ãããæžããšããã¢ã€ãã¢ã¯ãç¹ã«
OpenCVã§å®è£
ãããã¢ã«ãŽãªãºã ã䜿çšããŠãã¹ãã¬ãªããžã§ã³ã¡ãœããã§äœæ¥ãå§ããåŸã«çãŸããŸããã ãããã®ã¢ã«ãŽãªãºã ã¯ãå€ãã®å Žåããåºæ¬è¡åããããšãããŒã©å¹Ÿäœãããäžè§æž¬éããªã©ã®ããŸããŸãªæŠå¿µãæããŸãã ã³ã³ãã¥ãŒã¿ãŒããžã§ã³ã«é¢ããéåžžã«åªããæžç±ããããŸããããã«ã¯ãã¹ãã¬ãªããžã§ã³ãå¿
èŠãªãã¹ãŠã®æŠå¿µãèšèŒãããŠããŸãããå€ãã®å Žåãåå¿è
ã«ã¯æ
å ±ãå€ãããŸãã ããã§ã¯ãçã圢åŒã§ãã¹ãã¬ãªããžã§ã³ãã©ã®ããã«æ©èœãããã«é¢ããåºæ¬çãªæ
å ±ãšããã«é¢é£ããåºæ¬çãªå¿
èŠãªæŠå¿µã瀺ããŸãã
- å°åœ±å¹Ÿäœãšåäžåº§æš
- ã«ã¡ã©ã¢ãã«
- ãšãããŒã©ãžãªã¡ããªïŒãšããã©ã«ãžãªã¡ããªïŒãåºæ¬ããã³å¿
é ãããªãã¯ã¹ïŒåºæ¬ãããªãã¯ã¹ãå¿
é ãããªãã¯ã¹ïŒ
- ã¹ãã¬ãªãã€ã³ãã®äžè§åœ¢åå²
- 深床ããããèŠå·®ããããããã³ãã®èšç®ã®èåŸã«ããèãæ¹
ãã®èšäºã®ã»ãšãã©ãã¹ãŠã®è³æã¯
ãRãHartleyããã³A. Zissermanã«ãããã³ã³ãã¥ãŒã¿ãŒããžã§ã³ã®è€æ°ãã¥ãŒãžãªã¡ããªãã«åºã¥ããŠãããæ·±åºŠãããã®æ§ç¯ã«é¢ããã»ã¯ã·ã§ã³ã¯
ãGary BradskiãAdrian Kaehlerã«ããLearning OpenCVã®è³æã«åºã¥ããŠèª¬æãããŠããŸãã
èšäºã®å
容ãçè§£ããã«ã¯ãåæå¹ŸäœåŠãšç·åœ¢ä»£æ°ã®äžè¬çãªæŠå¿µãæã£ãŠããã ãã§ååã§ããè¡åããã¯ãã«ãã¹ã«ã©ãŒããã¯ãã«ç©ãäœã§ããããç¥ãããšã§ãã
1å°åœ±å¹Ÿäœãšå次座æš
å°åœ±å¹ŸäœåŠã¯ãç«äœèŠ
幟äœåŠã«ãããŠéèŠãªåœ¹å²ãæãããŸãã å°åœ±å¹ŸäœåŠã«ã¯ããã€ãã®ã¢ãããŒãããããŸãïŒå¹ŸäœåŠïŒãŠãŒã¯ãªãã幟äœåŠãå
¬çã®ãããªå¹ŸäœåŠãªããžã§ã¯ãã®æŠå¿µãå°å
¥ããããããå°åœ±ç©ºéã®ãã¹ãŠã®ããããã£ãå°ãåºãïŒãåæçïŒãŠãŒã¯ãªãã幟äœåŠãžã®åæçã¢ãããŒãã®ããã«åº§æšã§ãã¹ãŠãèæ
®ããïŒã代æ°çã§ãã
ãããªãè°è«ã®ããã«ãå°åœ±å¹ŸäœåŠãžã®åæçã¢ãããŒãã®çè§£ãäž»ã«å¿
èŠã§ããã以äžã«æç€ºãããã®ã¯åœŒã§ãã
å°åœ±å¹³é¢ã®ãã€ã³ãã 2次å
ã®å°åœ±ç©ºéïŒå°åœ±å¹³é¢ãšãåŒã°ããŸãïŒãèããŸãã éåžžã®ãŠãŒã¯ãªããå¹³é¢ã§ã¯ãç¹ã¯å°åœ±å¹³é¢äžã®åº§æšã®ãã¢ïŒ
x ã
y ïŒ
Tã§èšè¿°ãããŸãããç¹ã¯3èŠçŽ ãã¯ãã«ïŒ
x ã
y ã
w ïŒ
Tã§èšè¿°ãããŸã
ã ããã«ããŒã以å€ã®æ°å€
aã®å Žåããã¯ãã«ïŒ
x ã
y ã
w ïŒ
TãšïŒ
ax ã
ay ã
aw ïŒ
Tã¯åãç¹ã«å¯Ÿå¿ããŸãã ãŸãããŒããã¯ãã«ïŒ0,0,0ïŒ
Tã¯ã©ã®ç¹ã«ã察å¿ãããèæ
®ã®å¯Ÿè±¡å€ãšãªããŸãã ãã®ãããªå¹³é¢ç¹ã®èšè¿°ã¯ã忬¡åº§æšãšåŒã°ããŸãã
å°åœ±å¹³é¢ã®ç¹ã¯ãéåžžã®ãŠãŒã¯ãªããå¹³é¢ã®ç¹ã«é¢é£ä»ããããšãã§ããŸãã
w â 0ã®åº§æšãã¯ãã«ïŒ
x ã
y ã
w ïŒ
Tã«ã€ããŠããŠãŒã¯ãªããå¹³é¢ã®ç¹ã座æšïŒ
x /
w ã
y /
w ïŒ
Tã«é¢é£ä»ããŸã
ã w = 0ã®å Žåãã€ãŸã 座æšãã¯ãã«ã®åœ¢åŒã¯ïŒ
x ã
y ã0
T ïŒã§ããããã®ç¹ã¯ç¡é倧ã«ãããšèšããŸãã ãããã£ãŠãå°åœ±å¹³é¢ã¯ãç¡éé ããã®ç¹ã§è£ããããŠãŒã¯ãªããå¹³é¢ãšèŠãªãããšãã§ããŸãã
座æšãã¯ãã«ãæåŸã®æåã§é€ç®ããŠããïŒ
x ã
y ã
w ïŒ
T âïŒ
x /
w ã
y /
w ïŒ
Tãç Žæ£ããããšã«ããã忬¡åº§æšïŒ
x ã
y ã
w ïŒ
Tããéåžžã®ãŠãŒã¯ãªãã座æšã«ç§»åã§ããŸã ãããŠããŠãŒã¯ãªãã座æšïŒ
x ã
y ïŒ
Tããã座æšãã¯ãã«ã«1ã远å ããããšã«ããã忬¡åº§æšã«é²ãããšãã§ããŸãïŒïŒ
x ã
y ïŒ
T âïŒ
x ã
y ã1ïŒ
Tå°åœ±å¹³é¢äžã®ç·ã å°åœ±å¹³é¢äžã®ç·ã¯ãç¹ã®ããã«ã3èŠçŽ ãã¯ãã«
l =ïŒ
a ã
b ã
c ïŒ
Tã«ãã£ãŠèšè¿°ãããŸã
ã ç¹°ãè¿ããŸãããç·ãèšè¿°ãããã¯ãã«ã¯ãŒã以å€ã®ä¿æ°ãŸã§æ±ºå®ãããŸãã ãã®å Žåãç·ã®æ¹çšåŒã¯æ¬¡ã®åœ¢åŒã«ãªããŸãïŒ
l T x = 0ã
a 2 +
b 2 â 0ã®å Žåãéåžžã®çŽç·
ax +
by +
c = 0ã®ã¢ããã°ããããŸãããããŠããã¯ãã«ïŒ0,0ã
w ïŒã¯ç¡éã«ããçŽç·ã«å¯Ÿå¿ããŸãã
äžæ¬¡å
å°åœ±ç©ºéã å°åœ±å¹³é¢ãšã®é¡æšã«ããã3次å
å°åœ±ç©ºéã®ç¹ã¯ã忬¡åº§æšïŒ
x ã
y ã
z ã
w ïŒ
Tã®4æåãã¯ãã«ã«ãã£ãŠæ±ºå®ãããŸã
ã ç¹°ãè¿ããŸããããŒã以å€ã®æ°å€
aã®å Žåã座æšãã¯ãã«ïŒ
x ã
y ã
z ã
w ïŒ
TãšïŒ
ax ã
ay ã
az ã
aw ïŒ
Tã¯åãç¹ã«å¯Ÿå¿ããŸãã
å°åœ±å¹³é¢ã®å Žåãšåæ§ã«ã3次å
ãŠãŒã¯ãªãã空éãš3次å
å°åœ±ç©ºéã®ç¹ã®éã§å¯Ÿå¿ã確ç«ã§ããŸãã
w â 0ã®å次座æšïŒ
x ã
y ã
z ã
w ïŒ
Tã®ãã¯ãã«ã¯ã座æšïŒ
x /
w ã
y /
w ã
z /
w ïŒ
Tã®ãŠãŒã¯ãªãã空éã®ç¹ã«å¯Ÿå¿ããŸã
ã ãããŠããã©ãŒã ïŒ
x ã
y ã
z ã0ïŒ
Tã®å次座æšã®ãã¯ãã«ãæã€ç¹ã«ã€ããŠã圌ãã¯ãããç¡éé ã«ãããšèšããŸãã
å°åœ±å€æã ãããªããã¬ãŒã³ããŒã·ã§ã³ã«å¿
èŠãšãªããã1ã€ã®ããšã¯ãå°åœ±å€æïŒãã¢ã°ã©ãã£ãå°åœ±å€æ-è±èªæåŠïŒã§ãã 幟äœåŠçãªèгç¹ããèŠããšãå°åœ±å€æã¯ãçŽç·ãçŽç·ã«å€æããå°åœ±å¹³é¢ïŒãŸãã¯ç©ºéïŒã®å¯é倿ã§ãã 座æšã§ã¯ãå°åœ±å€æã¯éçž®éæ£æ¹è¡å
HãšããŠè¡šãããŸããã座æšãã¯ãã«
xã¯æ¬¡ã®åŒã«åŸã£ãŠåº§æšãã¯ãã«
x 'ã«ãªããŸãïŒ
x ' =
H x ã
2æåœ±ã«ã¡ã©ã¢ãã«

å³1ïŒ ã«ã¡ã©ã¢ãã«ã Cã¯ã«ã¡ã©ã®äžå¿ã Cpã¯ã«ã¡ã©ã®äž»è»žã§ãã 3次å
空éã®ç¹X㯠ãç»åå¹³é¢äžã®ç¹xã«æåœ±ãããŸãã
çŸä»£ã®CCDã«ã¡ã©ã¯ãæåœ±ã«ã¡ã©ããã³ããŒã«ã«ã¡ã©ãšåŒã°ããæ¬¡ã®ã¢ãã«ã䜿çšããŠãã説æãããŠããŸãã å°åœ±ã«ã¡ã©ã¯
ãã«ã¡ã©ã®
äžå¿ã 䞻軞 -ã«ã¡ã©ã®äžå¿ããéå§ããŠã«ã¡ã©ãèŠãŠããå Žæã«åããããããŒã
ãç»åå¹³é¢-ç¹ãæåœ±ãããå¹³é¢ãããã³ãã®å¹³é¢äžã®åº§æšç³»ã«ãã£ãŠå®çŸ©ãããŸãã ãã®ãããªã¢ãã«ã§ã¯ã空é
Xã®ä»»æã®ç¹ããã«ã¡ã©
Cã®äžå¿ãéå§ç¹
Xã«æ¥ç¶ããã»ã°ã¡ã³ã
CXäžã®ç¹
xã§ç»åå¹³é¢ã«æåœ±ãããŸãïŒå³1ãåç
§ïŒã
æåœ±åŒã«ã¯ã忬¡åº§æšã§ã®ç°¡åãªæ°åŠè¡šèšããããŸãã
ããã§ã
Xã¯ç©ºéå
ã®ç¹ã®å次座æšã
xã¯å¹³é¢å
ã®ç¹ã®å次座æšã
Pã¯3Ã4ã«ã¡ã©è¡åã§ãã
è¡å
Pã¯æ¬¡ã®ããã«è¡šãããŸã
ãP =
KR [
I |
-c ] =
K [
R |
t ]ãããã§
Kã¯3Ã3ã«ã¡ã©ã®å
éšãã©ã¡ãŒã¿ãŒã®äžäžè§è¡åã§ãïŒç¹å®ã®ãã¥ãŒã以äžã«ç€ºããŸãïŒã
Rã¯ã°ããŒãã«åº§æšç³»ã«å¯Ÿããã«ã¡ã©ã®åè»¢ãæ±ºå®ãã3Ã3çŽäº€è¡åã
Iã¯åäžã®3Ã3è¡åããã¯ãã«
c-ã«ã¡ã©ã®äžå¿ã®åº§æšãããã³
t =
-R cã«ã¡ã©è¡åã¯ã宿°
x =
P Xã䜿çšããŠæåœ±ç¹ã®çµæã倿Žããªãäžå®ã®éãŒãä¿æ°ãŸã§æ±ºå®ãããããšã«æ³šæããŠãã ãã
ã ãã ãããã®å®æ°ä¿æ°ã¯éåžžãã«ã¡ã©ãããªãã¯ã¹ãäžèšã®åœ¢åŒã«ãªãããã«éžæãããŸãã
æãåçŽãªå Žåãã«ã¡ã©ã®äžå¿ãåç¹ã«ãããšããã«ã¡ã©ã®äž»è»žã¯
Cz軞ãšäžèŽããã«ã¡ã©å¹³é¢äžã®åº§æšè»žã¯åãã¹ã±ãŒã«ïŒæ£æ¹åœ¢ãã¯ã»ã«ã«çžåœïŒãæã¡ãç»åã®äžå¿ã¯ãŒã座æšãæã¡ãã«ã¡ã©è¡åã¯
P =
K [
ç§ |
0 ]ãããã§

å®éã®CCDã«ã¡ã©ã§ã¯ããã¯ã»ã«ã¯éåžžæ£æ¹åœ¢ã®ãã®ãšãããã«ç°ãªããç»åã®äžå¿ã¯ãŒã以å€ã®åº§æšãæã¡ãŸãã ãã®å Žåãå
éšãã©ã¡ãŒã¿ãŒã®ãããªãã¯ã¹ã¯æ¬¡ã®åœ¢åŒãåããŸãã

ä¿æ°
f ãαxãαy-ã¯ãã«ã¡ã©ã®çŠç¹è·é¢ãšåŒã°ããŸãïŒãããããå
±éããã³
x軞ãš
yè»žã«æ²¿ã£ãŠïŒã
ããã«ãå
åŠç³»ã®äžå®å
šãªæ§è³ªã«ãããã«ã¡ã©ããååŸããç»åã«ã¯æªã¿æªã¿ãå«ãŸããŠããŸãã ãããã®æªã¿ã«ã¯ãéç·åœ¢ã®æ°åŠçãªèšé²ããããŸãã

ããã§ã
k 1 ã
k 2 ã
p 1 ã
p 2 ã
k 3ã¯æªã¿ä¿æ°ã§ãããå
åŠç³»ã®ãã©ã¡ãŒã¿ã§ãã
r 2 =
x '
2 +
y '
2 ; ïŒ
x 'ã
y 'ïŒ-æ£æ¹åœ¢ãã¯ã»ã«ã§æªã¿ã®ãªãç»åã®äžå¿ã«çžå¯Ÿçãªç¹ã®æåœ±ã®åº§æš; ïŒ
x â³ã
y â³ïŒ-æ£æ¹åœ¢ãã¯ã»ã«ã®ç»åã®äžå¿ã«å¯Ÿããç¹ã®æªãã 座æšã
æªã¿ã¯ãªããžã§ã¯ããŸã§ã®è·é¢ã«äŸåããããªããžã§ã¯ãã®ãã¯ã»ã«ãæåœ±ããããã€ã³ãã®åº§æšã®ã¿ã«äŸåããŸãã ãããã£ãŠãæªã¿ãè£æ£ããããã«ãã«ã¡ã©ããååŸããå
ã®ç»åã¯éåžžå€æãããŸãã ãã®å€æã¯ãçŠç¹è·é¢ãäžå®ïŒæ°åŠçã«ã¯ãå
éšãã©ã¡ãŒã¿ãŒã®åããããªãã¯ã¹ïŒã§ããã°ãã«ã¡ã©ããåä¿¡ãããã¹ãŠã®ç»åã§åãã«ãªããŸãã
ã«ã¡ã©ã®å
éšãã©ã¡ãŒã¿ãŒãæ¢ç¥ã§ãããæªã¿ä¿æ°ãã«ã¡ã©ãèŒæ£ãããŠãããšèšãç¶æ³ã§ã
3çµã®ã«ã¡ã©
å°ãªããšã2å°ã®ã«ã¡ã©ãããå Žåã«ã芳枬ãã€ã³ãã®3次å
座æšã決å®ããããšã«ã€ããŠè©±ãããšãã§ããŸãã
äžå¯Ÿã®ã«ã¡ã©ã®è¡åããã£ãªãã¬ãŒã·ã§ã³ã ãã座æšç³»ã§è¡å
Pãš
P 'ã«ãã£ãŠå®çŸ©ããã2ã€ã®ã«ã¡ã©ããããšããŸãã ãã®å Žåã圌ãã¯ãã£ãªãã¬ãŒã·ã§ã³ãããã«ã¡ã©ã®ãã¢ããããšèšããŸãã ã«ã¡ã©ã®äžå¿ãäžèŽããªãå Žåããã®ã«ã¡ã©ã®ãã¢ã䜿çšããŠã芳枬ãã€ã³ãã®3次å
座æšã決å®ã§ããŸãã
å€ãã®å Žåã座æšç³»ã¯ã«ã¡ã©è¡åã
P =
K [
I | 0]ã
P '=
K ' [
R '|
t ']ã ããã¯ãæåã®ã«ã¡ã©ã®äžå¿ãšäžèŽããåç¹ãéžæãã
Z軞ããã®å
è»žã«æ²¿ã£ãŠåãããšããã€ã§ãå®è¡ã§ããŸãã
ã«ã¡ã©ã®ãã£ãªãã¬ãŒã·ã§ã³ã¯éåžžå®è¡ãããŸãããã£ãªãã¬ãŒã·ã§ã³ãã³ãã¬ãŒããè€æ°åæ®åœ±ããããã空éå
ã§ã®çžå¯Ÿçãªäœçœ®ãããã£ãŠããç»åå
ã®ããŒãã€ã³ããç°¡åã«ç¹å®ã§ããŸãã æ¬¡ã«ãå°åœ±ã®åº§æšãã«ã¡ã©ãããªãã¯ã¹ãããã³ç©ºéå
ã®ãã³ãã¬ãŒãã®ãã€ã³ãã®äœçœ®ããªã³ã¯ããŠãæ¹çšåŒã®ã·ã¹ãã ãã³ã³ãã€ã«ããã解決ãããŸãïŒãããïŒã
Matlabãã£ãªãã¬ãŒã·ã§ã³ããŒã«ããã¯ã¹ãªã©ããã£ãªãã¬ãŒã·ã§ã³ã¢ã«ãŽãªãºã ã®äžè¬çã«å©çšå¯èœãªå®è£
ããããŸãã
OpenCVã©ã€ãã©ãªã«ã¯ãã«ã¡ã©ã®ãã£ãªãã¬ãŒã·ã§ã³ãšç»åå
ã®ãã£ãªãã¬ãŒã·ã§ã³ãã³ãã¬ãŒãã®æ€çŽ¢ã®ããã®ã¢ã«ãŽãªãºã
ãå«ãŸããŠããŸãã
ãšãããŒã©ãžãªã¡ããªã ç¹ã®3次å
座æšãèšç®ããå®éã®æ¹æ³ã®èª¬æã«é²ãåã«ãäž¡æ¹ã®ã«ã¡ã©ããã®ç»åäžã®3次å
空éã®ç¹ã®æåœ±ã®äœçœ®ã«é¢é£ããããã€ãã®éèŠãªå¹ŸäœåŠçç¹æ§ã«ã€ããŠèª¬æããŸãã

å³2ïŒãšãããŒã©ãžãªã¡ããª
å³2ã«ç€ºãããã«ã2ã€ã®ã«ã¡ã©ããããšããŸã
ãCã¯æåã®ã«ã¡ã©ã®äžå¿ã
C 'ã¯2çªç®ã®ã«ã¡ã©ã®äžå¿ã§ãã 空éç¹
X㯠ãå·Šã«ã¡ã©ã®ç»åå¹³é¢ã®
xãšãå³ã«ã¡ã©ã®ç»åå¹³é¢ã®
x 'ã«æåœ±ãããŸãã å·Šã«ã¡ã©ã®ç»åã®ç¹
xã®ãããã¿ã€ãã¯ãå
ç·
xXã§ãã ãã®ããŒã ã¯ããšãããŒã©ç·ãšåŒã°ããçŽç·
l 'ã§ç¬¬2ãã£ã³ãã®å¹³é¢ã«æåœ±ãããŸãã 2çªç®ã®ã«ã¡ã©ã®ç»åå¹³é¢äžã®ç¹
Xã®ç»åã¯ãå¿
ç¶çã«ãšãããŒã©ç·
l 'äžã«ãããŸãã
ãããã£ãŠãå·Šã«ã¡ã©ã®ç»åã®åç¹
xã¯ãå³ã«ã¡ã©ã®ç»åã®ãšãããŒã©ç·
l 'ã«å¯Ÿå¿ããŸãã ãã®å Žåãå³ã®ã«ã¡ã©ã®ç»åã®
xã®ãã¢ã¯ã察å¿ãããšãããŒã©ç·äžã«ã®ã¿ååšã§ããŸãã åæ§ã«ãå³ã®ç»åã®åç¹
x 'ã¯ãå·Šã®ãšãããŒã©ç·
lã«å¯Ÿå¿ããŸãã
ãšãããŒã©ãžãªã¡ããªã¯ãã¹ãã¬ãªãã¢ãæ€çŽ¢ãããã€ã³ãã®ãã¢ãã¹ãã¬ãªãã¢ïŒã€ãŸãã空éå
ã®ãããã€ã³ãã®æåœ±ïŒã«ãªãåŸãããšã確èªããããã«äœ¿çšãããŸãã
ãšãããŒã©ãžãªã¡ããªã®åº§æšè¡šèšã¯éåžžã«åçŽã§ãã ãã£ãªãã¬ãŒã·ã§ã³ãããã«ã¡ã©ã®ãã¢ãããã
xã1ã€ã®ã«ã¡ã©ã®ç»åã®ç¹ã®åäžåº§æšãšãã
x 'ã2çªç®ã®ã«ã¡ã©ã®ç»åã«ããŸãã æ¬¡ã®å Žåã«ã®ã¿ããã€ã³ãã®ãã¢
x ã
x 'ãã¹ãã¬ãªãã¢ã§ãããããª3Ã3è¡å
FãååšããŸãã
è¡å
Fã¯åºæ¬è¡åãšåŒã°ããŸãã ãã®ã©ã³ã¯ã¯2ã§ããŒã以å€ã®ä¿æ°ãŸã§æ±ºå®ããããœãŒã¹ã«ã¡ã©
Pããã³
P 'ã®è¡åã®ã¿ã«äŸåããŸãã
ã«ã¡ã©é
åã®åœ¢åŒã
P =
K [
I | 0]ã®å Žåã
P '=
K ' [
R |
t ]åºæ¬è¡åã¯æ¬¡ã®åŒã§èšç®ã§ããŸãã

ããã§ããã¯ãã«
eã®è¡šèš[
e ]
Xã¯æ¬¡ã®ããã«èšç®ãããŸãã

åºæ¬è¡åã䜿çšããŠããšãããŒã©ç·ã®æ¹çšåŒãèšç®ãããŸãã ç¹
xã®å ŽåããšãããŒã©ç·ãå®çŸ©ãããã¯ãã«ã®åœ¢åŒã¯
l '=
F xã«ãªãããšãããŒã©ç·èªäœã®æ¹çšåŒã¯
l '
T x '= 0ã«ãªããŸããåæ§ã«ç¹
x 'ã®å ŽåããšãããŒã©ç·ãå®çŸ©ãããã¯ãã«ã®åœ¢åŒã¯
l =
F T x 'ã
åºæ¬çãªãããªãã¯ã¹ã«å ããŠã
E =
K '
T F Kãšããå¿
é ãããªãã¯ã¹ããããŸã
ã å
éšãã©ã¡ãŒã¿ã®è¡åãåäžã§ããå Žåãåºæ¬è¡åã¯åºæ¬è¡åãšäžèŽããŸãã ãšãã»ã³ã·ã£ã«ãããªãã¯ã¹ã䜿çšãããšãæåã®ã«ã¡ã©ã«å¯Ÿãã2çªç®ã®ã«ã¡ã©ã®äœçœ®ãšå転ã埩å
ã§ãããããã«ã¡ã©ã®åãã倿ããå¿
èŠãããã¿ã¹ã¯ã§äœ¿çšãããŸãã
ãã€ã³ãã®äžè§åœ¢åå²ïŒäžè§åœ¢åå²ïŒã 次ã«ãæåœ±ã®åº§æšãããã€ã³ãã®3次å
座æšã決å®ããæ¹æ³ã«é²ã¿ãŸãããã ãã®ããã»ã¹ã¯ãæç®ã§ã¯äžè§æž¬éãšåŒã°ããŸãã
ãããªãã¯ã¹
P 1ããã³
P 2ãåãã2ã€ã®ãã£ãªãã¬ãŒã·ã§ã³ãããã«ã¡ã©ããããšããŸãã
x 1ãš
x 2ã¯ã空é
Xã®ç¹ã®å次æåœ±åº§æšã§ã
ã ãã®åŸãæ¬¡ã®æ¹çšåŒç³»ãäœæã§ããŸãã

å®éã«ã¯ããã®ã·ã¹ãã ã解決ããããã«æ¬¡ã®ã¢ãããŒããé©çšãããŸãã æåã®æ¹çšåŒã«
x 1ã2çªç®ã«
x 2ããã¯ãã«ä¹ç®ããç·åœ¢åŸå±æ¹çšåŒãåãé€ããã·ã¹ãã ã
A X = 0ã®åœ¢åŒã«ããŸããããã§ã
Aã¯4Ã4ã®ãµã€ãºãæã¡ãŸãããã®æåŸã®ã³ã³ããŒãã³ãã¯1ã«çããã3ã€ã®æªç¥æ°ãæã€3ã€ã®æ¹çšåŒã®çµæã®ã·ã¹ãã ãè§£ããŸãã å¥ã®æ¹æ³ã¯ãã·ã¹ãã
A X = 0ã®ãŒã以å€ã®è§£ãååŸããããšã§ããããšãã°ãè¡å
Aã®æå°ã®ç¹ç°æ°ã«å¯Ÿå¿ããç¹ç°ãã¯ãã«ãšããŠèšç®ãããŸã
ã4深床ãããã®æ§ç¯
深床ãããã¯ãè²ã§ã¯ãªããã¯ã»ã«ããšã«ã«ã¡ã©ãŸã§ã®è·é¢ãä¿åãããç»åã§ãã æ·±åºŠãããã¯ãç¹å¥ãªæ·±åºŠã«ã¡ã©ã䜿çšããŠååŸã§ããŸãïŒããšãã°ãKinectã»ã³ãµãŒã¯ãã®ãããªã«ã¡ã©ã®äžçš®ã§ãïŒããŸããã¹ãã¬ãªç»åãã¢ã䜿çšããŠæ§ç¯ããããšãã§ããŸãã
ã¹ãã¬ãªãã¢ã䜿çšããŠæ·±åºŠããããäœæããèåŸã«ããèãæ¹ã¯éåžžã«ç°¡åã§ãã 1ã€ã®ç»åã®åãã€ã³ãã«å¯ŸããŠãå¥ã®ç»åã®ãã€ã³ãã®ãã¢ãæ€çŽ¢ããŸãã ãŸãã察å¿ããç¹ã®ãã¢ã«ãããäžè§æž¬éãå®è¡ãã3次å
空éã§ã®éåã®åº§æšã決å®ã§ããŸãã ãããã¿ã€ãã®3次å
座æšãããã£ãŠããå Žåãæ·±åºŠã¯ã«ã¡ã©ã®å¹³é¢ãŸã§ã®è·é¢ãšããŠèšç®ãããŸãã
察ã«ãªã£ãç¹ã¯ããšãããŒã©ç·äžã§æ¢ãå¿
èŠããããŸãã ãããã£ãŠãæ€çŽ¢ãç°¡çŽ åããããã«ããã¹ãŠã®ãšãããŒã©ç·ãç»åã®åŽé¢ã«å¹³è¡ã«ãªãããã«ïŒéåžžã¯æ°Žå¹³ã«ïŒç»åãäœçœ®åãããããŸãã ããã«ã座æšïŒ
x 0 ã
y 0 ïŒãæã€ç¹ã«å¯ŸããŠã察å¿ãããšãããŒã©ç·ãæ¹çšåŒ
x =
x 0ã§äžããããããã«ç»åãæŽåãã
ãŸã ãæ¬¡ã«ãåç¹ã«ã€ããŠã察å¿ãããã¢ç¹ã2çªç®ã®ç»åãšåãç·ã§æ€çŽ¢ããå¿
èŠããããŸãã«ã¡ã©ã ãã®ç»å調æŽããã»ã¹ã¯ãä¿®æ£ãšåŒã°ããŸãã éåžžãä¿®æ£ã¯ç»åã®åã€ã¡ãŒãžã³ã°ã«ãã£ãŠå®è¡ãããæªã¿ãåãé€ãããšãšçµã¿åããããŸãã ä¿®æ£ãããç»åã®äŸãå³3ã«ç€ºããŸããç»åã¯ã深床ããã
http://vision.middlebury.edu/stereoãæ§ç¯ããããã®ããŸããŸãªæ¹æ³ãæ¯èŒããç»åã®ããŒã¿ããŒã¹ããååŸãããŸãã



å³3ïŒä¿®æ£ãããç»åãšå¯Ÿå¿ããèŠå·®ãããã®äŸ
ç»åãä¿®æ£ããåŸã察å¿ãããã€ã³ãã®ãã¢ãæ€çŽ¢ããŸãã æãç°¡åãªæ¹æ³ã¯å³4ã«ç€ºãããŠããã以äžããæ§æãããŠããŸãã 座æšïŒ
x 0 ã
y 0 ïŒãæã€å·Šç»åã®åãã¯ã»ã«ã«ã€ããŠãå³ç»åã§ãã¯ã»ã«æ€çŽ¢ãå®è¡ãããŸãã å³ã®ç»åã®ãã¯ã»ã«ã¯åº§æšïŒ
x 0 -
d ã
y 0 ïŒãæã€å¿
èŠããããšæ³å®ãããŸããããã§ã
dã¯èŠå·®ãšåŒã°ããå€ã§ãã 察å¿ãããã¯ã»ã«ã®æ€çŽ¢ã¯ãå¿ç颿°ã®æå€§å€ãèšç®ããããšã§å®è¡ãããŸããå¿ç颿°ã¯ãããšãã°ããã¯ã»ã«è¿åã®çžé¢ã§ãã ãã®çµæãèŠå·®ããããäœæãããŸãããã®äŸãå³ã«ç€ºããŸãã 3ã

å³4ïŒæ·±åºŠãããã®èšç®ã
å®éã®æ·±åºŠå€ã¯ããã¯ã»ã«å€äœã®å€§ããã«åæ¯äŸããŸãã å³4ã®å·Šååã®è¡šèšã䜿çšãããšãèŠå·®ãšæ·±åºŠã®é¢ä¿ã¯æ¬¡ã®ããã«è¡šçŸã§ããŸãã

æ·±ããšå€äœã®éã®é¢ä¿ã«ããããã®æ¹æ³ã«åºã¥ããŠæ©èœããã¹ãã¬ãªããžã§ã³ã·ã¹ãã ã®è§£å床ã¯ãè¿è·é¢ã§ã¯ããè¯ããé è·é¢ã§ã¯ããæªããªããŸãã