ããã«ã¡ã¯ãæããhabravchaneïŒ ããã¯ç§ã®2çªç®ã®èšäºã§ãããèšç®å¹ŸäœåŠã«ã€ããŠã話ããããšæããŸãã
ã¡ãã£ãšããæŽå²
ç§ã¯ãã§ã«æ°åŠåŠéšã®4幎çã§ããããã°ã©ãã³ã°ãå§ããåã¯ãèªåã¯100ïŒ
æ°åŠè
ã ãšæã£ãŠããŸããã
æåã®å¹Žã®çµããã«ãolympiadããã°ã©ãã³ã°ã«æºãã£ãŠããã³ã³ãã¥ãŒã¿ãŒãµã€ãšã³ã¹ã®å
çãç§ã«æ³šç®ãéããŸããã ããŒã ããšã«1äººã®æ°åŠè
ãäžè¶³ããŠããŸããã ã ããã圌ãã¯ç§ã«ãªãªã³ãã¢ãŒãã®ããã°ã©ãã³ã°ã«æ
£ãå§ããŸããã ççŽã«èšã£ãŠãç§ã«ãšã£ãŠã¯éåžžã«å°é£ã§ãããæåã®å¹Žã«DelphiãšããèšèãåŠãã 人ã«ãšã£ãŠã ããããç§ã®å
çã¯éåžžã«æèœãªå°éå®¶ã§ããããšã倿ããç§ã«è¯ãã¢ãããŒããèŠã€ããŸããã 圌ã¯ç§ã«æ°åŠçãªåé¡ãäžãå§ããŸãããç§ã¯æåã«çŽç²ã«æ°åŠçã«è§£æ±ºããããããã³ãŒããæžããŸããïŒååã®çœªã§ïŒã
ç§ã¯å
çã®ã¢ãããŒããæ¬åœã«å¥œãã§ããããã®ãããã¯ã«å¯ŸåŠããŠãããæããŠãã ãããããããã°ãã¿ããªãçè§£ã§ããããã«ã
ãããã£ãŠãç§ãæ
åœããæåã®æ¬åœã«éèŠãªã¿ã¹ã¯ã¯ãæ£ç¢ºãªèšç®å¹ŸäœåŠã§ãããã³ã³ãã¥ãŒã¿ãŒãµã€ãšã³ã¹ã®ãã®ã»ã¯ã·ã§ã³ã®å
žåçãªã¿ã¹ã¯ãçè§£ããå¿
èŠããããŸããã ãããŠãç§ã¯ãã¹ãŠã®è²¬ä»»ãæã£ãŠãã®ã¿ã¹ã¯ã«åãçµãããšã«ããŸããã
informatics.mccme Webãµã€ãã®ãã¹ãŠã®ãã¹ãã«åæ Œããããã«ããããã®ã¿ã¹ã¯ã§ã©ãã ãèŠåŽããããèŠããŠããŸãã ãããä»ãç§ã¯ãã¹ãŠã®ãã¹ããééããããšãéåžžã«å¬ããæããèšç®å¹ŸäœåŠã®åé¡ãäœã§ããããç¥ã£ãŠããŸãã
ãšã³ããªãŒ
ãèšç®å¹ŸäœåŠã¯ã幟äœåŠåé¡ã解決ããããã®ã¢ã«ãŽãªãºã ãç ç©¶ããã³ã³ãã¥ãŒã¿ãŒãµã€ãšã³ã¹ã®äžåéã§ãã ãã®ãããªåé¡ã¯ãã³ã³ãã¥ãŒã¿ãŒã°ã©ãã£ãã¯ã¹ãéç©åè·¯ã®èšèšãæè¡çãªããã€ã¹ãªã©ã§çºçããŸãããã®ãããªåé¡ã®åæããŒã¿ã¯ãå€ãã®ãã€ã³ããã»ã°ã¡ã³ãã®ã»ãããããªãŽã³ãªã©ã§ãã çµæã¯ãäœããã®è³ªåã«å¯ŸããçãããŸãã¯äœããã®å¹ŸäœåŠçãªãªããžã§ã¯ãã®ããããã§ããã
ãã®èšäºã¯ååã«å€§ããã®ã§ã2ã€ã®éšåã«åå²ããããšã«ããŸãããæåã®éšåã¯ããªãŽã³ã2çªç®ã®éšåã¯ããŸããŸãªå¹ŸäœåŠçãªããžã§ã¯ãã®çžå¯Ÿäœçœ®ã«åœãŠãããŸãã
ãã¯ãã«ã«é¢ããå°ãã®çè«
ã©ã®ç«¯ãéå§ãšèŠãªãããã©ã®ç«¯ãçµäºã§ãããã瀺ãããŠããã»ã°ã¡ã³ãã¯ããã¯ãã«ãšåŒã°ããŸãã 空éå
ã®ä»»æã®ç¹ããã¯ãã«ãšèŠãªãããšãã§ããŸãã ãã®ãããªãã¯ãã«ã¯ãŒããšåŒã°ããŸãã ãŒããã¯ãã«ã®éå§ãšçµäºã¯äžèŽããç¹å®ã®æ¹åã¯ãããŸããã

éãŒããã¯ãã«ABã®é·ãã¯ãã»ã°ã¡ã³ãABã®é·ãã§ãã ãŒããã¯ãã«ã®é·ãã¯ãŒãã«çãããšèŠãªãããŸãã
2ã€ã®éãŒããã¯ãã«ã¯ãåäžç·äžãŸãã¯å¹³è¡ç·äžã«ããå Žåãå
±ç·æ§ãšåŒã°ããŸãã 2ã€ã®éãŒããã¯ãã«ABãšCDãåäžçŽç·äžã«ãããå
ç·ABãšCDãåæ¹åã®å Žåããã¯ãã«ABãšCDã¯åæ¹åãšåŒã°ãããããã®å
ç·ãåæ¹åã§ãªãå Žåããã¯ãã«ABãšCDã¯å察æ¹åãšåŒã°ããŸãã ãŒããã¯ãã«ã¯ãä»»æã®ãã¯ãã«ãšæŽåããŠãããšèŠãªãããŸãã
ãã¯ãã«ã®ã¹ã«ã©ãŒç©
ãã¯ãã«ã®ã¹ã«ã©ãŒç©ã¯ããããã®ãã¯ãã«ã®é·ããšãã¯ãã«éã®è§åºŠã®äœåŒŠã®ç©ã«çããæ°ã§ãã
ïŒaãbïŒ= | a || b |cosâ ïŒaãbïŒ

ãã¯ãã«ã座æšaïŒx
1 ãy
1 ïŒãbïŒx
2 ãy
2 ïŒã§äžããããå Žåãã¹ã«ã©ãŒç©ïŒaãbïŒ= x
1 x
2 + y
1 y
2 ã
ãã¯ãã«ã®æç©
å¹³é¢å
ã®ãã¯ãã«ã®æ¬äŒŒã¹ã«ã©ãŒãŸãã¯æãã®ç©ã¯æ°ãšåŒã°ããŸã
[aãb] = | a || b |sinΞ
ã©ãã§

-aããbãŸã§ã®å転è§åºŠïŒåæèšåãïŒ ãã¯ãã«aãšbã®å°ãªããšã1ã€ããŒãã®å Žåã[aãb] = 0ã眮ããŸãã
ãã¯ãã«ã®åº§æšãaïŒx
1 ãy
1 ïŒãbïŒx
2 ãy
2 ïŒã®å Žåãã¹ãã¥ãŒç©[aãb] = x
1 y
2 -x
2 y
1 ã
ãã¯ãã«ã®å¹ŸäœåŠçã«æãã®ç©ã¯ããããã®ãã¯ãã«ããŸãããå¹³è¡åèŸºåœ¢ã®æ¹åä»ããããé åã§ãã

èšç®å¹ŸäœåŠã®åé¡ã«ããããã¯ãã«ã®ã¹ãã¥ãŒç©ã¯ãçµã¿åããè«ã®ååž°ãšåãå Žæã«ãããŸãã ããã¯äžçš®ã®èšç®å¹ŸäœåŠã®çç ã§ãã èšç®å¹ŸäœåŠã®ã»ãšãã©ãã¹ãŠã®åé¡ã«ã¯ãæ£é¢ã®è§£æ±ºçã®ä»£ããã«ã¹ãã¥ãŒç©ã䜿çšããç°¡åãªè§£æ±ºçããããŸãã
ç·Žç¿ããŸããã
äžè§åœ¢ããå§ããŸããã

ã¿ã¹ã¯çªå·1
ã¿ã¹ã¯ã¯éåžžã«åçŽã§ããã€ãŸããå
¥åããã3ã€ã®æ°åaãbãcã䜿çšããŠããã®ãããªèŸºãæã€äžè§åœ¢ãååšãããã©ããã倿ããŸãã
解決çããã§ãäžè§åœ¢ã®äžçåŒã®ã¿ããã§ãã¯ããå¿
èŠãããããšã¯æããã§ããa+ b> cãa + c> bãb + c> aã è峿·±ãããšã«ãäžè§åœ¢ã®äžçåŒãç ç©¶ãããšããç§ã ãã«è³ªåããããŸããïŒè² ã®æ°ããããã®3ã€ã®äžçåŒãæºãããŸããïŒ ãããå€æïŒ åäžçåŒãåèšãããšãa> 0ãb> 0ãc> 0ã«ãªããŸãããããã£ãŠãäžè§åœ¢ã®äžçåŒã¯ãäžè§åœ¢ãååšããããã®å¿
èŠå忡件ã§ãã
ã¿ã¹ã¯çªå·2
ã¿ã¹ã¯ã¯åã®ã¿ã¹ã¯ãšéåžžã«äŒŒãŠããŸãããäžè§åœ¢ã¯èŸºã§ã¯ãªããé ç¹ã®åº§æšã«ãã£ãŠå®çŸ©ããããšããéãããããŸãã
解決çäžèŠãããšããã解決çã¯æçœã«æããŸããäžè§åœ¢ã®èŸºãèšç®ããåé¡ãåã®èŸºã«æžãããŸãã ãã ãã2ç¹AïŒx
1 ãy
1 ïŒãBïŒx
2 ãy
2 ïŒã®éã®è·é¢ã¯ãåŒâïŒx
1 -x
2 ïŒ
2 +ïŒy
1 -y
2 ïŒ
2ã«ãã£ãŠèšç®ããããããã«ãŒãã®æå€±ãçºçããå¯èœæ§ããããŸãããã¯ãäžè§åœ¢ã®äžçåŒããã§ãã¯ããã®ã«æªãã§ãã äžè§åœ¢ããã®é ç¹ã®åº§æšã«ãã£ãŠå®çŸ©ãããŠããå Žåããã®èŸºã®é·ããèšç®ããŠäžè§åœ¢ã®äžçåŒããã§ãã¯ããå¿
èŠã¯ãªãããšãããããŸãã ãã®å Žåããããã®3ã€ã®ç¹ã1ã€ã®çŽç·äžã«ããå Žåã«ã®ã¿ãäžè§åœ¢ã¯ååšããŸããã ãããŠãããã¯ãã¯ãã«ã®æãã®ç©ã«ãã£ãŠç°¡åã«æ€èšŒãããŸãã ãŒãã«çããå Žåããã¯ãã«ã¯åäžçŽç·äžã«ãããŸããã€ãŸãã3ã€ã®ãã€ã³ãã¯ãã¹ãŠ1ã€ã®çŽç·äžã«ãããŸãã
次ã®ãã¹ãŠã®åé¡ã§ã¯ãäžè§åœ¢ã®ååšããã§ãã¯ããæé ã調ã¹ãã ããªã®ã§ãäžè§åœ¢ãååšãããšä»®å®ããŸããã¿ã¹ã¯çªå·3
äžè§åœ¢ã¯èŸºã§èšå®ãããŸãã äžè§åœ¢ã®ã¿ã€ããæ±ºå®ããŸãïŒéè§ãé·æ¹åœ¢ãŸãã¯éè§ã
解決çäžè§åœ¢ã®åçš®é¡ãæãåºããŠãã ããã

幟äœåŠã®ã³ãŒã¹ãããå察åŽã§ã¯ãã倧ããªè§åºŠãããããšãããã£ãŠããŸãïŒå¿
èŠã§ãïŒã ãããã£ãŠã倧ããªè§åºŠãäœã§ããããç¥ããšãäžè§åœ¢ã®ã¿ã€ããçè§£ã§ããŸãã
- 90°ãã倧ããè§åºŠ-éè§äžè§åœ¢
- 90Â°æªæºã®è§åºŠ-éè§äžè§åœ¢
- è§åºŠã¯90°-äžè§åœ¢ã¯é·æ¹åœ¢
ã³ãµã€ã³å®çã䜿çšããŸãã

æããã«ãè§åºŠã®äœåŒŠããŒããã倧ããå Žåãè§åºŠã¯90Â°æªæºããŒãã®å Žåãè§åºŠã¯90°ããŒãæªæºã®å Žåãè§åºŠã¯90°ãè¶
ããŸãã ãã ããå°ãèããŠã¿ããšãè§åºŠã®äœåŒŠãèšç®ããå¿
èŠã¯ãªãããã®ç¬Šå·ã®ã¿ãèæ
®ããå¿
èŠãããããšãçè§£ã§ããŸãã
- cosα> 0ã®å Žåãa 2 <b 2 + c 2ã¯éè§äžè§åœ¢
- cosα= 0ã®å Žåãa 2 = b 2 + c 2ã¯çŽè§äžè§åœ¢ã§ã
- cosα<0ã®å Žåãa 2 > b 2 + c 2ã¯éè§äžè§åœ¢
aã¯å€§ããªåŽé¢ã§ãã
ã¿ã¹ã¯çªå·4
ã¿ã¹ã¯ã¯åã®ã¿ã¹ã¯ã«äŒŒãŠããŸãããäžè§åœ¢ã®ã¿ããã®èŸºã§ã¯ãªããé ç¹ã®åº§æšã«ãã£ãŠèšå®ãããŸãã
解決çåé¡2ãšåæ§ã«ããã®ã¿ã¹ã¯ã¯åã®ã¿ã¹ã¯ã«å®å
šã«åæžãããŠãããšèšããŸãïŒãã®ãŸãŸïŒã ãã ãã2çªç®ã®åé¡ãšåæ§ã«ã解決çã¯åçŽåã§ããŸãã äžè¬ã«ãäžè§åœ¢ããã®é ç¹ã®åº§æšã«ãã£ãŠå®çŸ©ãããŠããå Žåã蟺ãèšç®ããããããã¯ãã«ã䜿çšããŠäœæ¥ããæ¹ãåžžã«ç°¡åã§ãã åã®ã¿ã¹ã¯ãšåæ§ã«ãäžè§åœ¢ã®ã©ã®è§åºŠãæã倧ãããã倿ããå¿
èŠããããŸãã è§åºŠã®ã¿ã€ãã¯ãããã圢æãããã¯ãã«ã®ã¹ã«ã©ãŒç©ã®ç¬Šå·ã«ãã£ãŠç°¡åã«æ±ºå®ãããŸããéè§ã®å Žåã¯æ£ãçŽè§ã®å Žåã¯ãŒããéè§ã®å Žåã¯è² ã§ãã ãããã£ãŠã3ã€ãã¹ãŠã®ã¹ã«ã©ãŒç©ãã«ãŠã³ãããŠä¹ç®ããå¿
èŠãããããã®æ°ã®ç¬Šå·ã§äžè§åœ¢ã®ã¿ã€ãã倿ã§ããŸãã
ã¿ã¹ã¯çªå·5
æå®ããã蟺ã§äžè§åœ¢ã®é¢ç©ãèŠã€ããŸãã
解決çæãããªè§£æ±ºçã¯ãããã³ã®åŒãé©çšããããšã§ãã

ãšããã§ã誰ããã®åŒã®èšŒæã«èå³ããããŸããã§ãããïŒ
蚌æ
以äžã§ãïŒ
ã¿ã¹ã¯çªå·6
é ç¹ã®åº§æšã«ãã£ãŠäžããããäžè§åœ¢ã®é¢ç©ãèšç®ããŸãã
解決çåã®åé¡ã«éå
ããã解決çã«ã€ããŠã¯èª¬æããŸããããç·šçµè£œåã®å¹ŸäœåŠçãªæå³ã䜿çšããããã«ããŸãã 2ã€ã®ãã¯ãã«ã®å¹ŸäœåŠçã«æãã®ç©ã¯ããããã®ãã¯ãã«äžã«åŒã䌞ã°ãããå¹³è¡åèŸºåœ¢ã®æ¹åä»ããããé åãå®çŸ©ããŸãã å¹³è¡å蟺圢ã®å¯Ÿè§ç·ã¯2ã€ã®çããäžè§åœ¢ã«åå²ãããããäžè§åœ¢ã®é¢ç©ã¯å¹³è¡å蟺圢ã®é¢ç©ã®ååã§ããããšãããããŸãã
ãã¯ãã«aïŒx
1 ãy
1 ïŒãbïŒx
2 ãy
2 ïŒ

S =ïŒx
1 y
2 -x
2 y
1 ïŒ/ 2-äžè§åœ¢ã®åãã®é å
ã¿ã¹ã¯çªå·7
é ç¹ã®åº§æšã§äžããããç¹ãšäžè§åœ¢ãäžããããŸãã ãã€ã³ãããã®äžè§åœ¢ã®å
åŽãå¢çç·ããŸãã¯å€åŽã«ãããã©ããã倿ããŸãã
解決çãã®ã¿ã¹ã¯ã«ã¯ãæ ¹æ¬çã«ç°ãªã2ã€ã®ãœãªã¥ãŒã·ã§ã³ããããŸãã æãé
åçãªãã®ããå§ããŸãããã
ãšãªã¢æ³

äžè§åœ¢AKBãAKCãBKCã®é¢ç©ã®åèšïŒæ¹åä»ããããŠããªãããéåžžãïŒãäžè§åœ¢ABCã®ââé¢ç©ãã倧ããå Žåããã€ã³ãã¯äžè§åœ¢ã®å€åŽã«ãããŸãã æåã®3ã€ã®ãšãªã¢ã®åèšã4çªç®ã®ãšãªã¢ã«çããå Žåã3ã€ã®ãšãªã¢ã®1ã€ããŒãã«çãããã©ããã確èªããå¿
èŠããããŸãã çããå Žåããã€ã³ãã¯äžè§åœ¢ã®å¢çäžã«ãããããã§ãªãå Žåã¯å
åŽã«ãããŸãã
åœç¶ããã¯ãã«ã®æç©ã«ãã£ãŠäžè§åœ¢ã®é¢ç©ãèšç®ããå¿
èŠããããŸãã ãã®æ¹æ³ã¯ããŸãè¯ããããŸããã ããã§ã¯æµ®åå°æ°ç¹æ¯èŒã䜿çšããããããæ¯èŒæã«èª€ã£ã決å®ãè¡ãããå¯èœæ§ããããŸãã åã³ã2çªç®ã®æ¹æ³ã¯ãã¯ãã«ã«åºã¥ããŠãããããããç¹ã§ã¯ããã«å¹æçã§ãã
ããŒããã¬ãŒã³ãã§ãã¯
äžè§åœ¢ã®èŸºã®å°ãªããšã1ã€ãããã®å察åŽã®é ç¹ãšç°ãªãåå¹³é¢ã«æ²¿ã£ããã€ã³ãããåºãããŠããå Žåããã€ã³ãã¯äžè§åœ¢ã®å€åŽã«ãããŸãã ãã以å€ã®å Žåããã€ã³ããäžè§åœ¢ã®èŸºãå«ãå°ãªããšã1ã€ã®ç·ã«å±ããå Žåãäžè§åœ¢ã®å¢çäžã«ãããŸãã ãã以å€ã®å Žåããã€ã³ãã¯äžè§åœ¢ã®å
åŽã«ãããŸãã

æåã®äŸã§ã¯ã蟺ABã¯é ç¹Cãšç¹Kãç°ãªãåå¹³é¢ã«åå²ãããããç¹ã¯å€åŽã«ãããŸãã
ã¿ã¹ã¯çªå·8
é ç¹ã®åº§æšã«ãã£ãŠäžããããããªãŽã³ã®é¢ç©ã®èšç®ã
解決çããªãŽã³ãšã¯ãåçŽãªããªãŽã³ãã€ãŸãèªå·±äº€å·®ã®ãªãããªãŽã³ãæå³ããŸãã ããã«ãåžåãŸãã¯éåžåã®ã©ã¡ãã§ãããŸããŸããã
ãã®åé¡ã¯2ã€ã®æ¹æ³ã§è§£æ±ºã§ããŸããå°åœ¢ãšäžè§åœ¢ã®æ¹åä»ããããé¢ç©ãèšç®ããããšã§ãã
å°åœ¢æ³

å€è§åœ¢ã®é¢ç©ãèšç®ããã«ã¯ãå³ã«ç€ºãããã«å°åœ¢ã«åå²ããçµæã®å°åœ¢ã®æ¹åä»ããããé åã远å ããå¿
èŠããããŸãããããå
ã®å€è§åœ¢ã®æ¹åä»ããããé åã«ãªããŸãã
S = S
A 1 A 2 B 2 B 1 + S
A 2 A 3 B 3 B 2 + S
A 3 A 4 B 5 B 3 + S
A 4 A 5 B 6 B 5 + S
A 5 A 6 B 4 B 6 + S
A 6 A 1 B 1 B 4ããç¥ãããŠããå
¬åŒã«åŸã£ãŠãå°åœ¢ã®é¢ç©ãèæ
®ããŸãïŒé«ãã«å¯Ÿããå¡©åºã®åèšã®åå
S
A 1 A 2 B 2 B 1 = 0.5 *ïŒA
1 B
1 + A
2 B
2 ïŒ*ïŒB
2 -B
1 ïŒ
çµæã®é åã¯æ¹åä»ããããŠããããããã®ã¢ãžã¥ã©ã¹ãèšç®ããå¿
èŠããããŸãã
äžè§åœ¢ã®æ¹æ³

åã®æ¹æ³ãšåæ§ã«ãå³ã«ç€ºãããã«ãå€è§åœ¢ãå°åœ¢ã§ã¯ãªãäžè§åœ¢ã«åå²ããããšãã§ããŸãã ãã®çµæããããã®äžè§åœ¢ã®æ¹åä»ããããé åãåèšãããšãåã³å€è§åœ¢ã®æ¹åä»ããããé åãåŸãããŸãã
S = S
O A 1 A 2 + S
O A 2 A 3 + S
O A 3 A 4 + S
O A 4 A 5 + S
O A 5 A 6 + S
O A 6 A 1ã芧ã®ãšãããããªãŽã³ã®é¢ç©ãèšç®ããã¿ã¹ã¯ã¯éåžžã«ç°¡åã§ãã çç±ã¯ããããŸããããå°åœ¢ã§å²ãããšã«ãã£ãŠãã®åé¡ã解決ããããšã奜ã¿ãŸãïŒãããããã¹ãŠã®ãªãªã³ããã¯ã§ãã®ããã«è§£æ±ºããããã§ãïŒã ããã«ã2çªç®ã®ãœãªã¥ãŒã·ã§ã³ã§ã¯ãäžè§åœ¢ã®é¢ç©ãæãã®ç©ã§èšç®ããå¿
èŠããããŸãã ããã³ã®åŒãå¿ããŠã¯ãããªã!!!
ã¿ã¹ã¯çªå·9
å€è§åœ¢ã¯ãé ç¹ã®åº§æšã«ãã£ãŠããã©ããŒãµã«ã®é åºã§äžããããŸãã ããªãŽã³ãåžé¢ãã©ããã確èªããå¿
èŠããããŸãã
解決çå€è§åœ¢ã¯ããã®èŸºãå«ãç·ã«å¯ŸããŠ1ã€ã®åå¹³é¢ã«ããå ŽåãåžãšåŒã°ããŸãã

åé¡ã¯ããã¯ãã«ã®ã¹ãã¥ãŒç©ã®èšç®ã«æ»ããŸããã€ãŸããåžå€è§åœ¢ã®å Žåãã¹ãã¥ãŒç©[A
i A
i + 1 ãA
i + 1 A
i + 2 ]ã®ç¬Šå·ã¯æ£ãŸãã¯è² ã§ãã ãããã£ãŠãã©ãŠã³ãã®æ¹åãããã£ãŠããå Žåãåžå€è§åœ¢ã®ã¹ãã¥ãŒç©ã®ç¬Šå·ã¯åãã§ããåæèšåãã«åãå Žåã¯è² ã§ã¯ãªããæèšåãã«åãå Žåã¯æ£ã§ã¯ãããŸããã
ã¿ã¹ã¯çªå·10
å¹³é¢äžã®å€è§åœ¢ïŒå¿
ãããåžé¢ã§ã¯ãªãïŒã¯ããã®é ç¹ã®åº§æšã«ãã£ãŠäžããããŸãã æŽæ°åº§æšãå
éšã«ããïŒãã ãå¢çäžã«ãªãïŒãã€ã³ãã®æ°ãã«ãŠã³ãããå¿
èŠããããŸãã
解決çãã®åé¡ã解決ããããã«ãè£å©çãªåé¡ãèããŸããã»ã°ã¡ã³ãã¯æŽæ°ã§ãããã®ç«¯ã®åº§æšã«ãã£ãŠäžããããŸãã ã»ã°ã¡ã³ãäžã«ããæŽæ°ãã€ã³ãã®æ°ãèšç®ããå¿
èŠããããŸãã ã»ã°ã¡ã³ããåçŽãŸãã¯æ°Žå¹³ã®å Žåã端ã®åº§æšãæžç®ããŠè¿œå ããå¿
èŠãããããšã¯æããã§ãã è峿·±ãã®ã¯ãã»ã°ã¡ã³ããåçŽã§ãæ°Žå¹³ã§ããªãå Žåã§ãã ãã®å Žåãã»ã°ã¡ã³ããçŽè§äžè§åœ¢ã«å®æãããå¿
èŠããããçãã¯ããã®äžè§åœ¢ã®è¶³ã®é·ãã®æå€§å
¬çŽæ°ã«1ãè¶³ããæ°ã«ãªããŸãã

é ç¹ã®æŽæ°åº§æšãæã€å€è§åœ¢ã®å ŽåãããŒã¯åŒã¯æå¹ã§ãïŒS = n + m / 2-1ãããã§Sã¯å€è§åœ¢ã®é¢ç©ãnã¯å³å¯ã«å€è§åœ¢ã®å
åŽã«ããæŽæ°ç¹ã®æ°ãmã¯å€è§åœ¢ã®å¢çã«ããæŽæ°ç¹ã®æ°ã§ãã å€è§åœ¢ã®é¢ç©ã®èšç®æ¹æ³ã¯ããã£ãŠããã®ã§ãSã¯æ¢ç¥ã§ãã ãŸããããªãŽã³ã®å¢çã«ããæŽæ°ãã€ã³ãã®æ°ãèšç®ããããšãã§ããŸãããã®ãããPeakåŒã«ã¯ãæªç¥ã®äžæãªæªç¥æ°ã1ã€ãããããŸããã
äŸãèããŠã¿ãŸãããïŒ

S = 16 + 4 + 4.5 + 6 + 1 + 2 = 33.5
m = 15
n = 33.5-7.5 +1 = 27-ãã€ã³ãã¯å³å¯ã«ããªãŽã³ã®å
åŽã«ãããŸã
ãã®åé¡ã¯è§£æ±ºãããŸããïŒ
以äžã§ãïŒ ãã®èšäºã楜ããã§ããã ããããšãé¡ã£ãŠããŸãã第2éšãæžããŸãã