ç°¡åãªç޹ä»
ãã®ããã¹ãã¯ãèè
ã圢åŒèšèªããã³ææ³ã®æŠå¿µãåçŽã§è€éãªæ°åŠçèšç®ãªãã§èª¬æããããšããæçš¿ã®ç¶ãã§ãã ãã®ããã¹ãã«å¯ŸããŠã¯éåžžã«å€ãã®åçãå¯ããããèè
ã¯èªåãç¶ç·šãæžã矩åããããšèããŸããã
çæçãã§ã ã¹ããŒææ³ã®åœ¢åŒã¯ä»¥äžã«èª¬æãããŠããŸãã çæææ³ã䜿çšããŠèšèªãæå®ããæ¹æ³ã¯ãç¹ã«ã³ã³ãã¥ãŒã¿ãŒèšèªã®æ©æ¢°åŠçã§éåžžã«äººæ°ããããŸãã ããããéåžžã翻蚳è
çè«ã«ãããçæææ³ã®ç ç©¶ã¯ãæèèªç±ææ³ã§çµãããŸãã åŸè
ã¯ãçæãã§ã ã¹ããŒææ³ã®ããªãçãç¹å¥ãªã¯ã©ã¹ã§ãããéåžžãããŒãµãŒãæå®ããããã®ã«ããŽãªææ³ïŒãããè¡ãæ¹æ³ã以äžã«ç€ºããŸãïŒã®åœ¢åŒãšããŠäœ¿çšãããŸãã åŸè
ã®ç¶æ³ã¯ããã§ã ã¹ããŒã®ã¢ãããŒãã®çè§£ãææ§ã«ããã ãã§ãã æ¬¡ã®èª¬æã¯ããã®ã¢ãããŒãã®æ§æãçè§£ããããšã«é¢å¿ããã人ã察象ãšããŠããŸãã
ææ³å®çŸ©ã®çæ
ææ³ã¯ã圢åŒèšèªã®ç©¶æ¥µã®èšè¿°ã§ãã ãã©ãŒãã«èšèªã¯ãé çªã«ãæéã®ã¢ã«ãã¡ãããã®æåã§æ§æããããã§ãŒã³ã®ä»»æã®ã»ããã§ãã ããã§ã®ã»ããã®ææ§ã¯ãç¡éãæéããŸãã¯ç©ºã«ãªãå¯èœæ§ããããšããæå³ã§çè§£ãããŸãã
çæãã§ã ã¹ããŒææ³ã®åœ¢åŒã¯ãåäžçŽã®50幎代åŸåã«ãã¢ã ãã§ã ã¹ããŒã«ãã£ãŠå°å
¥ãããŸããã çæéã§ããã®åœ¢åŒäž»çŸ©ã¯äžŠå€ãã人æ°ãç²åŸããŸããã ãã°ããã®éãææ³ã®çæã¯äžèœè¬ãšèŠãªãããŠããŸãã-èªç¶èšèªïŒã€ãŸãã人ã
ãæ¥åžžã®ã³ãã¥ãã±ãŒã·ã§ã³ã«äœ¿çšããèšèªïŒãå«ãããããçš®é¡ã®èšèªãèšå®ããããã®æ®éçãªã¢ãããŒã ããããèªç¶èšèªãèšè¿°ããããã®çæææ³ã¯ããŸã䟿å©ã§ã¯ãªãããšãæéã®çµéãšãšãã«ç€ºãããŠããŸãã çŸåšãçæææ³ã¯äž»ã«ãããã°ã©ãã³ã°èšèªããã®ä»ã®ã³ã³ãã¥ãŒã¿ãŒèšèªãªã©ã®åœ¢åŒèšèªã®æ§æãèšè¿°ããããã«äœ¿çšãããŠããŸãã
ãã§ã ã¹ããŒã®çæææ³ã¯ããçæèŠåãïŒãããã¯ã·ã§ã³ïŒã®ã»ãããšããŠå®çŸ©ãããŠããŸãã åã«ãŒã«ã¯ãã§ãŒã³ã®ãã¢
(w', w'')ãããææ³ã§æå®ãããèšèªã®ãã§ãŒã³ãçæãããšãã«ãå·Šã®ãã§ãŒã³ãå³ã®ãã§ãŒã³ã«çœ®ãæããããšãã§ããŸãã ãã®ãããã«ãŒã«ã¯éåžž
w' --> w''ãšããŠèšè¿°ãããå
·äœçã«äœã眮ãæããããšãã§ãããã瀺ããŸãã ææ³ã®èŠåã®ã»ããã¯ç©ºã§ã¯ãªãæéã§ãªããã°ãªãããéåžžã¯ã©ãã³Pã§ç€ºãããŸãã
ææ³èŠåã®ãã§ãŒã³ã¯ã2ã€ã®ã¢ã«ãã¡ãããïŒçµç«¯æåã®ã¢ã«ãã¡ãããïŒçµç«¯ïŒãšéçµç«¯æåã®ã¢ã«ãã¡ãããïŒéçµç«¯ïŒïŒã®æåã§æ§æã§ããŸãã çµç«¯ã®ã¢ã«ãã¡ãããã¯Tã§ç€ºãããŸãããã®ã¢ã«ãã¡ãããã¯ãå®éã«ãã®ææ³ãå®çŸ©ãã圢åŒèšèªã®ã¢ã«ãã¡ããããšäžèŽããŸãã ãã¿ãŒããã«ããšããçšèªã®æå³ã¯ãå·ŠåŽã®ææ³èŠåã§ã¯ãã¿ãŒããã«èšå·ã®ã¿ã§æ§æããããã§ãŒã³ã¯ååšã§ããªããšããããšã§ãã ãããã£ãŠããã®ãããªãã§ãŒã³ã眮æã®çµæãšããŠå€æããå Žåããã§ãŒã³ãçæããæ¬¡ã®ããã»ã¹ã¯åæ¢ïŒçµäºïŒããŸãã éçµç«¯èšå·ã¯ãäžéãã§ãŒã³ã§äœ¿çšãããŸãã ãã§ãŒã³ãçæããããã®ã¢ã«ãŽãªãºã ãå®çŸ©ããéã®éçµç«¯ã®æå³ã¯éåžžã«ç°ãªããéåžžããã®ã·ã³ãã«ã䜿çšãããææ³ã®ã¿ã€ãã«äŸåããŸãã éçµç«¯èšå·ã䜿çšããããŸããŸãªäŸã«ã€ããŠã以äžã§èª¬æããŸãã
ãããã1ã€ã®éçµç«¯èšå·ã¯åžžã«åãæå³ãæã¡ãŸã-ããã¯èšèªã®ãã¹ãŠã®ãã§ãŒã³ã瀺ããŸãã ãã®éçµç«¯èšå·ã¯ãçæææ³ã®æåã®éçµç«¯èšå·ããšåŒã°ããéåžžã¯ã©ãã³èªSïŒéå§ãŸãã¯æïŒã§ç€ºãããŸãã åçæææ³ã«ã¯ãå·Šéšåãåäžã®åæéçµç«¯èšå·ã§æ§æãããã«ãŒã«ãå¿
ãå¿
èŠã§ããããã§ãªãå Žåããã®ææ³ã§ã¯ããã§ãŒã³ã1ã€ã§ãçæããããšã¯ã§ããŸããã
ãããã£ãŠããã§ã ã¹ããŒã®çæææ³ã¯ã4ã€ã®
G = {N, T, P, S} ãããã§ã
Nã¯ãéçµç«¯æåã®æåŸã®ã¢ã«ãã¡ãããã§ããTçµç«¯èšå·ã®æåŸã®ã¢ã«ãã¡ãããïŒææ³ã§æå®ãããèšèªã®ã¢ã«ãã¡ããããšäžèŽïŒãPã¯ãçæã«ãŒã«ã®æéã»ããã§ããSã¯ãææ³Gæåã®éçµç«¯èšå·ã§ãG
çæææ³èšèª
ãã§ã ã¹ããŒã®çæææ³ã¯ãçæèŠåã«åºã¥ããŠãææ³ã®æåã®éçµç«¯ããã®é£éã®æéæ°ã®é åã«ãã£ãŠèšèªãå®çŸ©ããŸãã ããå°ãå
·äœçã«èª¬æããŸãããã
w' alpha w'' => w' beta w''çæããæé ã¯ãalpha-
alpha --> beta generationã«ãŒã«ã«åŸã£ãŠã
alphaãµããã§ãŒã³ã
betaãµããã§ãŒã³ã«çœ®ãæããããšã§ãã ãã®å Žåãæããã«ããã§ãŒã³
w' alpha w'' ããã§ãŒã³
w' beta w'' w' alpha w''ååŸããŸãã ã€ãŸãããã§ãŒã³ãããããã®ãµããã§ãŒã³ã®äžéšãææ³èŠåã®å·ŠåŽã«ããå Žåããã®å·ŠåŽã®èŠåãå³åŽã«çœ®ãæããæš©å©ããããŸãã çæã¹ãããã®æåŸã®ã·ãŒã±ã³ã¹ã¯ãçæãšåŒã°ããŸãã ãŒã以äžã®ã¯ãªãŒãã£ãŒã¯
=>*瀺ãããŸãã æå®
alpha =>* betaã¯ãçæèŠåã«åºã¥ããŠæéæ°ã®é åã«ãã£ãŠ
alphaãã§ãŒã³ãã
betaãã§ãŒã³ãååŸãããããšã瀺ããŸãã ãã®è¡šèšã§ã¯ã眮æïŒçæïŒãäžåºŠãé©çšãããŠããªãå¯èœæ§ããããŸãããã®å Žåã
alphaãã§ãŒã³ã¯
betaãšäžèŽããŠããŸãã
ãããã£ãŠãçæææ³
G = {N, T, P, S}ã®èšèªã¯ãçµç«¯èšå·ã§æ§æãããææ³ã®åæèšå·ããçæããããã§ãŒã³ã®ã»ããã§ãã æ°åŒã¯æ¬¡ã®ãšããã§ã
L = {w | S =>* w} L = {w | S =>* w} ã
説æã®ããã«ã2ã€ã®ç°¡åãªäŸã瀺ããŸãã
éåžžã«åçŽãªèšèªã®äŸ
èšèª
Lã1ã€ã®ãã§ãŒã³ã§æ§æããåäžã®ã·ã³ãã«
aã§æ§æ
aãŸãã ã€ãŸãã
L = {a}ã§ãã ãã§ãŒã³ãçæããã«ã¯ã1ã€ã®ã«ãŒã«
S --> aååã§ãã ãã®ææ³ã«å«ãŸããå¯äžã®è£œåã¯
S => aã§ãã
ãã®èšèªã§ã¯ãå¥ã®éçµç«¯èšå·ãããšãã°èšå·
A ãããã³èŠå
S --> Aããã³
A --> a S --> Aãå°å
¥ã§ããããšã«æ³šæããŠãã ããã ãã®å Žåãå¯äžã®çµæã¯æ¬¡ã®ããã«ãªããŸãïŒ
S => A => a ã éçµç«¯ææ³ã®ã¢ã«ãã¡ãããã¯ä»»æã«éžæããããããã®ãããªåçŽãªèšèªã§ãã£ãŠãããã®èšèªãå®çŸ©ããçæææ³ã¯ç¡éã«ããããšãæããã«ãªããŸãã
ç°¡åãªç®è¡åŒèšèª
èšèª
A = {a+a, a+a+a, a+a+a+a, ...}èããŠã¿ãŸãããã ãã®èšèªã®ãã§ãŒã³ã¯ã
+æåã§åºåãããæåã·ãŒã±ã³ã¹
aã§ãã ãã®èšèªãçæããããã®ã«ãŒã«ãèšå®ããæ¹æ³ã¯ïŒ åèšèªãã§ãŒã³ã¯
aå§ãŸã
aãã®åŸã«1ã€ä»¥äžã®ãã§ãŒã³
+aç¶ãããšã«æ³šæããŠãã ããã ãããã£ãŠãæåã«ã·ã³ãã«
açæããæ¬¡ã«ãã®ã·ã³ãã«ã®å³åŽã«1ã€ä»¥äžã®ãã§ãŒã³
+aãä»å ããããšã«ãããèšèªã®åãã§ãŒã³ãçæããããšããã¢ã€ãã¢ãçãŸããŸãã ããã2ã€ã®çææ®µéãäºãã«åé¢ããããã«ãéçµç«¯èšå·
Aãå°å
¥ããŸã
A 次ã«ã
S --> aA, A --> +aA, A --> +aã«ãŒã«ãæã€ææ³ãååŸ
S --> aA, A --> +aA, A --> +aãŸãã
ããšãã°ããã§ãŒã³
a+a+aãçæããæ¹æ³ãèããŸãã
S => aA => a+aA => a+a+a ãã®äžä»£ã§ã¯ã
S --> aA, A --> +aA, A --> +a 3ã€ã®ã«ãŒã«ãã¹ãŠãé£ç¶ããŠé©çšãããŸã
S --> aA, A --> +aA, A --> +a ã
èšèª
Aã«ã¯ç¡éã®æ°ã®ãã§ãŒã³ãå«ãŸããŠããŸããã€ãŸãããã®èšèªã§ã¯ãã§ãŒã³ã®é·ãã«å¶éã¯ãããŸããã ç¡å¶éã®é·ãã®ãã§ãŒã³ãã¹ããŒã³ããå¯äžã®æ¹æ³ã¯ãååž°ã¹ããŒã³ã«ãŒã«ã䜿çšããããšã§ãã ã«ãŒã«ã®å³åŽã«å·ŠåŽãå«ãŸããã«ãŒã«ã äžèšã®äŸã§ã¯ããã®ã«ãŒã«ã¯
A --> +aAã§ãã å·ŠåŽã¯ãå³åŽã«ãå«ãŸããåäžã®ã·ã³ãã«
Aãã§ãŒã³ã§ãã ãã®ååž°ã«ããã眮æã«åãã«ãŒã«ãäžè²«ããŠé©çšããå¿
èŠã«å¿ããŠçæããããã§ãŒã³ã®é·ããå¢ããããšãã§ããŸãã ååž°ã¯ãäžéã«ãŒã«ãä»ããŠéæ¥çã«è¡ãããšãã§ããŸãã ããšãã°ãã«ãŒã«
A --> aBc, B --> deAã¯ããã§ãŒã³
A鿥ååž°ãæå®ããŸã
Aææ³ã¯ã©ã¹
Noam Chomskyã¯ãçæããææ³ã®ã«ãŒã«ã®åœ¢åŒã«å¶éãèšå®ããããšã«ãããææ³ã¯ã©ã¹ïŒããã³å¯Ÿå¿ããèšèªã¯ã©ã¹ïŒãå°å
¥ããŸããã ææ³ã®åã¯ã©ã¹ã«ã¯ãç¬èªã®èšè¿°åããããŸãã ææ³ã®ã¯ã©ã¹ã®èšè¿°åã¯ãç¹å®ã®æ§æé¢ä¿ã®ææ³èŠåã«ããã衚çŸã®å¯èœæ§ãšããŠç¹åŸŽä»ããããšãã§ããŸãã ææ³ã¯ã©ã¹ãæ§æé¢ä¿ãå®çŸ©ããæ¹æ³ãæ€èšããŠãã ããã
ææ³ã¿ã€ã3
ãã®ã¯ã©ã¹ã®ææ³ã¯ãçæããããã§ãŒã³ã®å³ç«¯ãŸãã¯å·Šç«¯ããäžå®æ°ã®çµç«¯èšå·ãä»å ããããšã«ããããã§ãŒã³ãçæããã¢ã«ãŽãªãºã ãå®çŸ©ããŸãã æããã«ããã®ãããªçææ¹æ³ã®èŠåã¯ã
A --> alpha BãŸãã¯
A --> B alphaã®åœ¢åŒã§ããå¿
èŠããããŸããããã§ã
alphaã¯çµç«¯èšå·ã§æ§æããããã§ãŒã³ã§ãã ãã®å ŽåãïŒçæã®éçšã§ïŒãã§ãŒã³
X1..Xn Aãååšããå Žåãã«ãŒã«
A --> alpha Bã«åŸã£ãŠçœ®æãããšããã§ãŒã³
X1..Xn alpha B A --> alpha BãåŸãããŸã
X1..Xn alpha B ããšãã°ãã«ãŒã«
S --> aaaA ã
A --> abcAããã³
A --> bbbå Žåãäžä»£
S => aaaA => aaaabcA => aaaabcbbbãæå®ã§ããŸãã
ã¿ã€ã3ã®ææ³ã«ãã£ãŠäžããããæ§æé¢ä¿ã¯ããè¿ãã«ããšããçšèªã§è¡šãããšãã§ããŸãã ããã§ãè¿ãããšã¯ãäœããã®çæã«ãŒã«ã®å³åŽã§æå®ãããŠããå Žåã¯ãã®ããé£ã«ãé¢é£ããçæã«ãŒã«ã®éçµç«¯èšå·ãä»ããŠéæ¥çã«ã¯é£ã«ããããšãæå³ããŸãã
æ°åŠçå³å¯ãã®ããã«ãææ³ã¿ã€ã3ã®èŠåã®çµç«¯èšå·ã®æååã¯ãå³åŽã«1ã€ã®çµç«¯èšå·ãããããã€ãã®èŠåã«åå²ãããŸãã ããšãã°ãã«ãŒã«
A --> abcBãããå Žåãæ¬¡ã®ã«ãŒã«ã«çœ®ãæããããšãã§ããŸãããã®çµæãã¢ããªã±ãŒã·ã§ã³ã¯åããã§ãŒã³ãçæããŸãïŒ
A --> a A1 ã
A1 --> b A2 ã
A2 --> cB ã€ãŸããé å
A => abcB ãé å
A => a A1 => ab A2 => abcBã§ãã ãã®ãããªææ³ã¯ãéçµç«¯èšå·ãã«ãŒã«ã®å³åŽã®å³åŽã«ããå Žåãå³ç·åœ¢ææ³ãšåŒã°ããŸããå³åŽã®éçµç«¯èšå·ã端æ«ã®å·ŠåŽã«ããå Žåããã®ææ³ã¯å·Šç·åœ¢ãšåŒã°ããŸãã
ããšãã°ãèšèª
A = {a+a, a+a+a, a+a+a+a, ...}å·Šç·åœ¢ææ³ãèšå®ããŠã¿ãŸãããã åè¿°ã®ã¿ã€ã3ã®ææ³èŠåã¯ã
S --> aA, A --> +aA, A --> +aã§ãã ããã§ããã§ãŒã³ã¯ãæåã®ãã¢ãå³åŽã«è¿œå ããããšã«ãã£ãŠçæãããŸãã æåãå·ŠåŽã§çµåããããã«ææ³ã倿Žããéçµç«¯æåã远å ããŠãæ¯å1ââæåã®ã¿ã远å ããŸãã ææ³ãååŸããïŒ
S --> AaA --> B+B --> AaB --> aããã¯ããã§ãŒã³
a+a+aã®çææ¹æ³ã§ãïŒ
S => Aa => B+a => Aa+a => B+a+a => a+a+aæ³šææ·±ãèªè
ã¯ãããããã¿ã€ã3ææ³ãçæãªãŒãããã³ã«äŒŒãŠããããšã«æ°ä»ããã§ããããçæãªãŒãããã³ã§ã¯ãéçµç«¯ææ³ã·ã³ãã«ãç¶æ
ã®åœ¹å²ãæãããŸãã ãã®ææ³ã®èããããè§£éã®1ã€ã¯ãå®éã«ã¯æéç¶æ
ãã·ã³ã§ãã
æèèªç±ææ³
æèèªç±ææ³ã«ã¯ã
A --> alphaãšãã圢åŒã®èŠåããããŸãã ã«ãŒã«ã®å·ŠåŽã«ã¯1ã€ã®æåïŒãã¡ãããéçµç«¯æåïŒããããå³åŽã«ã¯çµç«¯æåãšéçµç«¯æåã®ãã§ãŒã³ïŒç©ºã®æåãå«ãïŒããããŸãã
KSææ³ã¯ã2ã€ã®ã¿ã€ãã®æ§æé¢ä¿ãå®çŸ©ããŸãããè¿ãã«ãªããé¢ä¿ãšãäžéšã«ãªããé¢ä¿ããŸãã¯éå±€ã®é¢ä¿ã§ãã éå±€ã®é¢ä¿ã¯ã人éã®å¿ã«ãšã£ãŠæãèªç¶ã§ãã ç©äºãé¡ååããã®ã¯äººéã®æ§è³ªã§ãã äžè¬çãªã¿ã€ãïŒã¯ã©ã¹ïŒã®äžéšãšããŠãæèã®ç¹å®ã®ãªããžã§ã¯ããèæ
®ããŠãã ããã 人ãèãããã¹ãŠã®ãã®ã¯ãç¹å®ã®ã¯ã©ã¹ã®ã€ã³ã¹ã¿ã³ã¹ã§ãã ããšãã°ãç¹å®ã®æ€
åã¯ã察å¿ããç¹æ§ãæã€ãæ€
åãã¯ã©ã¹ã®ã€ã³ã¹ã¿ã³ã¹ã§ãã ãŸãã人éã®å¿ã¯ã¿ã€ãããµãã¿ã€ãã«åå²ããããå
·äœçãªã¿ã€ãããããæœè±¡çãªã¿ã€ãã«ç§»è¡ããããšãäžè¬çã§ãã æ€
åã¯å®¶å
·ã¿ã€ãã®ãµãã¿ã€ããå®¶å
·ã¯ã¿ã€ããªããžã§ã¯ãã®ãµãã¿ã€ãããªããžã§ã¯ãã¯ã¿ã€ããªããžã§ã¯ãã®ãµãã¿ã€ããªã©ã§ãããšããŸãã ãtype-subtypeããšããé¢ä¿ã¯ãéå±€ã®é¢ä¿ã§ãã
KSææ³ã¯ãã«ããŽãªææ³ãã€ãŸã ææ³ã¿ã€ãã ãã®å Žåã®ææ³èšå·ã¯ã¿ã€ããšèããããšãã§ããã«ãŒã«ã¯ã¿ã€ãéã®éå±€é¢ä¿ãæå®ããŸãã éçµç«¯èšå·ã¯è€ååãšããŠæ©èœããçµç«¯èšå·ã¯ãµãã¿ã€ããæã€ããšãã§ããªãã¢ãããã¯åãšããŠæ©èœããŸãã ãã®KSææ³ã®è§£éã¯éåžžã«äººæ°ããããèšèªç¿»èš³è
ã®äœæã«ãã䜿çšãããŸãã ããããKSææ³ã®ã¯ã©ã¹ãèšå®ããããšã§ããã§ã ã¹ããŒã¯äœãä»ã®ãã®ãæå³ããŸããã
KS-grammarã¯çæçã§ãããããèšèªã®ãã§ãŒã³ãçæããã¢ã«ãŽãªãºã ïŒå³å¯ã«ã¯ãã¢ã«ãŽãªãºã ã§ã¯ãªãã埮ç©åã¯å€å€éã¢ã«ãŽãªãºã ã§ãïŒãå®çŸ©ããŸãã ããã§ã®ã¹ããŒã³ã¯ãæ¢åã®ãã§ãŒã³ã®å³ãŸãã¯å·Šã«ãã§ãŒã³ãçµåããã ãã§ãªããæ¢åã®ãã§ãŒã³å
ã®ã©ããã«ãã§ãŒã³ãæ¿å
¥ããããšã«ãã£ãŠãå®çŸ©ãããŸãã æ¿å
¥ã¯ããã§ãŒã³å
ã®éçµç«¯èšå·ããããã«ãŒã«ã®å³åŽã«ãããã§ãŒã³ã«çœ®ãæããŠè¡ãããŸãããã®å·ŠåŽã«ã¯ããã®éçµç«¯èšå·ããããŸãã ã«ãŒã«
A --> aaaãããå Žåã
aabBBaaaCbbbãã§ãŒã³ã
aabBBaaaCbbbãã§ãŒã³ã«å€æã§ãããšããŸãããã ãã®æå³ã§ãçæããããã§ãŒã³ã¯ãšããžããåçã«æé·ããã®ã§ã¯ãªããå
éšããäœããã®åœ¢ã§ãèšåŒµãããŸãã
ãããŸã§ã«èšãããããšãäŸã§èª¬æããŸãã èšèª
L = {a^nb^n | n = 1, 2, 3,...} L = {a^nb^n | n = 1, 2, 3,...} ããã§ã®åŒ
a^nã¯ãæå
aã
nåç¹°ãè¿ãããšãæå³
aãŸãã ãããã£ãŠãèšèª
Lã¯ã
ab, aabb, aaabbbãªã©ã®åœ¢åŒã®ãã§ãŒã³ã§æ§æãããŸãã ãã®èšèªã®KSææ³ãå®çŸ©ããŸãã ãããè¡ãã«ã¯ãèšèªãã§ãŒã³ãããã·ã³ãã«
bãå·ŠåŽã®æåã«ãã·ã³ãã«
bãå³åŽã«è¿œå ããããšã«ãããå¥ã®èšèªãã§ãŒã³ãååŸã§ããããšã«æ³šæããŠãã ããã
aabbãã§ãŒã³ãããå Žåã¯ããããã
aaabbbãã§ãŒã³ãååŸã§ããŸãã ãã®çºèšã¯ãçæèŠå
S --> aSb ïŒèšèªã®ãã§ãŒã³ã¯ãææ³ã®æåã®éçµç«¯ããçæãããããããã®èšå·ã§è¡šãããšãã§ããŸãïŒã å°ããªãã§ãŒã³ã«åå²ã§ããªãç¹æ®ãªã±ãŒã¹ããããŸã-ããã¯
abãã§ãŒã³ã§ãã çæã®ããã«ã«ãŒã«
S --> abãå°å
¥ããŸãã ãã®ãããèšèªã®ææ³ã«ã¯
S --> aSbããã³
S --> abãšããã«ãŒã«ããããŸãã ãã§ãŒã³çæ
aaabbbèšå®ããŸãããïŒ
S => aSb => aaSbb => aaabbbæèäŸåææ³ãšå¶éãªãã®ææ³
CSææ³ã®èŠåã§ã¯ãçæèŠåã®å·Šéšåã®éçµç«¯èšå·ã¯ãçæããããã§ãŒã³ã®ã©ãã§ãããã®èšå·ãçºçããå Žæã§ããã°ã©ãã§ãå³éšåã«å€æŽã§ããŸãã ããããæã«ã¯ãã·ã³ãã«ããã§ãŒã³å
ã«ããã³ã³ããã¹ããåºå¥ãããå ŽåããããŸããå Žåã«ãã£ãŠã¯ãã·ã³ãã«ã眮ãæããŸãã COPææ³ã®èŠåã§ã¯ãããèš±å¯ãããŠããªãããããã®ãããªå Žåã«ã¯ç¹å¥ãªçš®é¡ã®èŠåãå¿
èŠã§ãã
æèäŸåææ³ã«ã¯ã
w' A w'' --> w' alpha w''ãšãã圢åŒã®èŠåããããŸãã ããã§ã
w'ããã³
w''ã¯ãææ³ã®çµç«¯èšå·ãšéçµç«¯èšå·ã§æ§æããããã§ãŒã³ïŒç©ºã«ããããšãã§ããŸãïŒã
alphaã¯åãèšå·ã®ç©ºã§ãªããã§ãŒã³ã§ãã ã€ãŸããéçµç«¯èšå·
Aã¯ããã§ãŒã³
w'ããã³
w''ã®ã³ã³ããã¹ãã§ãã§ãŒã³
alphaã«çœ®ãæããããŸãã
KZææ³ã«é¢é£ä»ããããŠããã®ã¯ãå¥ã®ã¯ã©ã¹ã®ææ³ãã€ãŸãççž®ããªãææ³ã§ãã ãã®ãããªææ³ã®ã«ãŒã«ã¯ã1ã€ã®æ¡ä»¶ãæºããå¿
èŠããããŸããå³åŽã®é·ãã¯å·ŠåŽã®é·ã以äžã§ãªããã°ãªããŸããã KZææ³ã®èŠåã«ã¯ã
alphaãã§ãŒã³ã空ã§ãªããšããæ¡ä»¶ãããããããããã®ææ³ãççž®ãããŸããã ããããæãè峿·±ãã®ã¯ãéççž®ææ³ã§å®çŸ©ãããåèšèªã«ã€ããŠãåãèšèªãå®çŸ©ããKZææ³ãçºæã§ããããšã§ãã ã€ãŸããKZææ³ãšéççž®ææ³ã§å®çŸ©ãããèšèªã®ã¯ã©ã¹ã¯äžèŽããŸãã
ççž®ããªãææ³ã§å®çŸ©ãããèšèªã®ã¯ã©ã¹ãéžæããå¿
èŠãããã®ã¯ãªãã§ããïŒ å®éããã®ãããªèšèªã§ã¯ãèªèãã·ã³ãæå®ã§ããŸãã ææ³ã®èªèã¯æ¬¡ã®ããã«æ§ç¯ãããŸããå
¥åãšããŠãã§ãŒã³ãåãåããçæããããã§ãŒã³ã®é·ãã«æ²¿ã£ãŠé åºä»ããŠè£œåãé çªã«äœæããŸãã ãªããªã ææ³ãççž®ãããªãå Žåããã®ãããªè£œåã®æéã»ãããååšãããããã®éã«ç¹å®ã®å
¥åãã§ãŒã³ãšã®äžèŽããªãã£ãå ŽåããnoããåºåããŸãã
èŠåã®ã¿ã€ãã«å¶éã®ãªãææ³ã®å Žåãäžè¬çãªå Žåã®ãã®ãããªèªèã¢ã«ãŽãªãºã ã¯æ§ç¯ã§ããŸããã çæããããã§ãŒã³ã¯ãçæããã»ã¹ã§ã¢ã³ãŒãã£ãªã³ãèšåŒµãåçž®ã®ããã«åäœã§ããŸãã ãããã£ãŠããã§ãŒã³ã«ãã£ãŠçæãããç¹å®ã®é·ãã®éæã¯ãå
¥åã«äŸçµŠããããã§ãŒã³ãçæããã»ã¹ã§ããã«åä¿¡ãããªãããšãä¿èšŒããŸããã
KGèšèªã¯æ¬åœã«ç¬èªã®ã¯ã©ã¹ã圢æããŠããŸããïŒãã®ã¯ã©ã¹ã¯KSèšèªã®ã¯ã©ã¹ãšäžèŽããŸããïŒ ã€ãŸããKSææ³ã¯æå®ã§ããªãããKZææ³ã¯æå®ã§ããããšãä¿èšŒãããŠããèšèªã¯ãããŸããïŒ åçïŒã¯ãããã®ãããªèšèªããããŸãã ãã®ãããªèšèªã®äŸã¯ã次ã®èšèª
L = {ww}ã§ãã ãã®èšèªã®ãã§ãŒã³ã¯ãã¢ã«ãã¡ãããäžã®2ã€ã®ç¹°ãè¿ããã§ãŒã³ã§æ§æãããŠããŸãã ãã®èšèªã®KSææ³ãæ§ç¯ããããšãäžå¯èœã§ããããšã蚌æããããã«ãããã«ã¯ããŸããã KZææ³ã¯ã次ã®èæ
®äºé
ã«åºã¥ããŠå®çŸ©ã§ããŸãã ãŸãããã§ãŒã³
wãšéçµç«¯èšå·ãããšãã°
AçæããŸãã ãã§ãŒã³
AwååŸããŸãã æ¬¡ã«ããã§ãŒã³
Aãä»ããŠãã£ã©ã¯ã¿ãŒ
Aãé²ããéäžã§ãã®ãã§ãŒã³ã®ãã£ã©ã¯ã¿ãŒã®ã³ããŒãçæããŠããããããã®ãã£ã©ã¯ã¿ãŒãå³ã«é²ããŸãã 以äžã®äŸã§å®è£
ããããã®ãšã»ãŒåãã§ãã
èšèª
L = {a^n^2 | n = 1, 2, 3, ...}ææ³ãæå®ããäŸãèããŠã¿ãŸããã
L = {a^n^2 | n = 1, 2, 3, ...} L = {a^n^2 | n = 1, 2, 3, ...} ãã®èšèªã®ãã§ãŒã³ã¯æå
aã§æ§æããããããã®æåã®æ°ã¯èªç¶æ°ã®2ä¹ã§ãïŒ1ã4ã9ã25ãªã©ã ãã®èšèªã®ææ³ãå¶éãªãã«æäŸããŸãã ãã§ãŒã³ã®çæã¯ãæ¬¡ã®æé ã§æ§æãããŸãã
- èªç¶æ°
nã«å¯Ÿããnæåã®çæã - ãã®æåæ°
n^2æåããçæããŸãã - ãããã®æåãæå
a倿aãŸãã
æåã®æ®µéãå®è£
ããã«ã¯ãã«ãŒã«ã远å ããŸã
S --> LS'RS' --> AS'BS' --> ABæåã®èŠåã¯ãçæããããã§ãŒã³ãåºåãæå
Lããã³
Rã§ã©ããããããšã§ã
R çæã®ç¬¬3ãã§ãŒãºã®å®è£
ã«ã¯ãå°æ¥ããããå¿
èŠã«ãªããŸãã æ®ãã®2ã€ã®ã«ãŒã«ã¯ãæå
Aãš
Bæ°ãäžèŽãã
AA...ABB...Bãšãã圢åŒã®ãã§ãŒã³ãåçŽã«çæããŸãã
ããã§ãæåå
AA...ABB...Båºã¥ããŠ
n^2æåãçæããå¿
èŠããã
AA...ABB...B ããã¯ç°¡åãªããªãã¯ã«ãªããŸãã ãã£ã©ã¯ã¿ãŒ
Bå·Šã«ç§»åãããã£ã©ã¯ã¿ãŒ
Bééãããã³ã«ãå¥ã®ãã£ã©ã¯ã¿ãŒ
CçæããŸã
C æåCãä»ããŠãæå
Aã¯èªç±ã«å³ã«ãæå
Bã¯å·Šã«èªç±ã«ç§»åã§ããŸãã ãã®æé ã®ã«ãŒã«ã¯æ¬¡ã®ãšããã§ãã
AB --> BACAC --> CACB --> BCBãã¹ãŠã®æåã
Aã®æåãè¶ããŠå·Šç«¯ã«å°éãããšã
Cã®æåã¯æ£ç¢ºã«
n^2ãŸãã
ããã§ãæå
L ã
A ã
B ã
Rããè§£æŸããæå
Cãæå
a倿ããå¿
èŠããããŸãã ãããè¡ãã«ã¯ãã·ã³ãã«
Bã巊端ãééãããšãã«æ¶æ»
ãããŸãã ãã£ã©ã¯ã¿ãŒ
L ãããã£ãŠãå³ç«¯ã®ã·ã³ãã«
Aã§è¡åããŸãã ãã®ãããªæŠç¥ãå®è£
ããå Žåã
LCC....CRãšãã圢åŒã®ãã§ãŒã³ãæ®ããŸãã ã·ã³ãã«
Lããã³
Rãåãé€ãããã«ãå·Šã®ãªããã¿ãŒãå³ã«åããå§ããããããè§Šãããšãã«ãããã®ã·ã³ãã«ãç Žå£ããŸãã åæã«ãã·ã³ãã«
Lãééãããšãã«ãããããã·ã³ãã«
a倿ããŸãã
ãã®çæãã§ãŒãºã®ã«ãŒã«ã¯æ¬¡ã®ãšããã§ããLB --> LAR --> RLC --> aLLR --> epsilonããã§ã¯epsilonãç©ºã®æååãæããŸãããã§ãŒã³çæã®äŸãæããŸãããaaaaïŒS => LS'R => LAS'BR => LAABBR => LABACBR => LBACACBR => LACACBR => LACABCR => LACBACCR => LABCACCR => LBACCACCR => LACCACCR => LCACACCR => LCCAACCR => LCCACACR => LCCACCAR => LCCACCR => LCCCACR => LCCCCAR => LCCCCR => aLCCCR => aaLCCR => aaaLCR => aaaaLR => aaaaãããã«
èè
ã¯ãåŸè
ã®äŸãããã§ã ã¹ããŒã®çæææ³ããã®ææ³ã«ãã£ãŠå®çŸ©ããã圢åŒèšèªã®ãã§ãŒã³ãçæããããã«èšèšãããäžçš®ã®ããã°ã©ã ã§ããããšãèªè
ã«æç¢ºã«ç€ºããããšãæãã§ããŸããããã°ã©ã å²ãåœãŠã®èšèªã¯ããããéåžžã«å
·äœçã§ããããçæããã°ã©ã ãïŒææ³ïŒã®å®è£
ã«ã¯ãçµéšãšããããæžãããã®ç¹å®ã®ç¿æ
£ãå¿
èŠã§ãããã§ã ã¹ããŒã®çæææ³ã¯æ·±ãã¢ã€ãã¢ã«åºã¥ããŠããããã®ã¿ã€ãã®ææ³ã®ãµãã¯ã©ã¹ã®äžã«ã¯ãç¹å®ã®çš®é¡ã®èšèªãçæããã ãã§ãªããæ°åŠèšèªåŠã®ä»ã®ã»ã¯ã·ã§ã³ã®ã¢ã€ãã¢ãšäº€å·®ãããã®ããããŸãããã®ãããªã»ã¯ã·ã§ã³ã«ã¯ãã«ããŽãªææ³ãšèªèãªãŒãããã³ãå«ãŸããŸãããã¡ããããã®ããã¹ãã§ã¯åºæ¬çãªèãã®ã¿ã説æãããŠããŸããçæææ³ã®çè«ã¯ããåºããããæ·±ãã®ã§ã1ã€ã®èšäºã®æ çµã¿ã§èª¬æããããšãã§ããŸãã