pã奿°ã®çŽ æ°ãšããŸãã
pãæŽæ°ã®2ä¹ã®åãšããŠè¡šã
ããšãã§ããããšã¯éåžžã«åºãç¥ãããŠããŸã
p = a 2 + b 2 2ã17 = 1
2 +4
2 ã...; 3ã7ã11ã...ã¯è¡šçŸã§ããŸããã
aãš
bã1ã€ã®æ¥åæ²ç·ã«çŽæ¥é¢ä¿ããçŸããåŒã§æžãçããããããšã¯ããŸãç¥ãããŠããŸããã
1907幎ã®ãã®
çµæã«ã€ããŠ
ãã€ã³ãã¹ã¿ãŒã«ãšããååã®ãã€ã人ã®èè
ã«ãããã®ãšãé¢é£ãããã®ã«ã€ããŠã話ããŸãã
3ã7ã11ãããã³4ã§å²ã£ããšãã«3ã®å°äœãäžããä»ã®æ°å€ã
a 2 + b 2ã®åœ¢åŒã§è¡šçŸã§ããªãçç±ãçè§£ããã®ã¯éåžžã«ç°¡åã§ãïŒå¶æ°ã®
2ä¹ã¯åžžã«4ã§é€ç®ãã奿°ã®2ä¹ã¯åžžã«4ã§å²ã£ããšãå°äœ1ãäžããŸãã4ã§å²ã£ããšãã®2ã€ã®å¹³æ¹ã®åèšã¯ã0ã1ãŸãã¯2ã®å°äœãäžããããšãã§ããŸããã3ã§
ã¯ãããŸãã
ã4k+ 1ã®åœ¢åŒã®çŽ æ°ã®è¡šçŸå¯èœæ§ã¯æçœã§
ã¯ãããŸããïŒç¹ã«ãåçŽããäžå¯æ¬ ââã§ããããšã«æ°ã¥ããå ŽåïŒæãŸãã21ã®æ°21ã¯ãåèšã2ã§ãæ£æ¹åœ¢ãªãïŒã
æ§é€
èªç¶æ°ã¯ç¡éã«ãããŸãã ããã€ãã®çç±ã§ããããã¯ã©ã¹ã«çµåãããšäŸ¿å©ã§ãã ç¹ã«ãããæ°
nã«ããé€ç®ã®å°äœãçµåãããšã
nãæ³ãšããå°äœã«ãªããŸããå°äœ
xÌ
ã¯ã
nã§é€ç®ãããš
xãšåãå°äœãäžãããã¹ãŠã®æ°ã®ã¯ã©ã¹ã§ãã ããã¯åçã§ãããå°äœ
xÌ
ã¯
x + nâkã®åœ¢åŒã®ãã¹ãŠã®æ°ã§æ§æãããŸããããã§ã
kã¯æŽæ°ã§ãã ãã®æçš¿ã®ãã¬ãŒã ã¯ãŒã¯å
ã§ã¯ããã¹ãŠã®æ®åºã¯ã¢ãžã¥ã
p ïŒå°å
¥éšãšåã奿°ã®çŽ æ°ïŒã«ãªããŸãã åœç¶ã
pã§é€ç®ããæ®åºãã€ãŸãæ£ç¢ºã«
pã®æ®åºãšåãæ°ã®ç°ãªãæ®åºããããŸãã èªç¶æ°ã®ç¡éãšæ¯èŒããŠãæ®åºãžã®ç§»è¡ã¯ãªãã·ã§ã³ã®æ°ã倧å¹
ã«æžãããŸãã
ã¯ã©ã¹æäœã¯åžžã«æå³ããªããªãã ããšãã°ãçŽ æ°ã®ã¯ã©ã¹ãè€åæ°ã®ã¯ã©ã¹ã«è¿œå ããããšããŠãæå³ããããŸãããæ°åã®ã¿ã远å ã§ããçŽ æ°ãšè€åæ°ã®åèšã«ã¯ã¯ã©ã¹ã«å
±éã®ããããã£ã衚瀺ãããŸããã
ããŒãããžãŒã¯ã©ãã®ã¡ã³ããŒ
ã¯ãçŽ æ°ã®ã¯ã©ã¹ãšè€åæ°ã®ã¯ã©ã¹ãåèšãããšãçŽ æ°ãšè€åæ°ã®åèšã§åèšã§ããæ°ã®ã¯ã©ã¹ãäžãããšèšãããšãã§ããŸãã
ãã ããæ§é€ã®å Žåãèªç¶æ°ãããç¶æ¿ããããå ç®ãæžç®ãããã³ä¹ç®ã¯ãä»ã®æ§é€ãäžããŸãã ããšãã°ã2Ì
+3Ì
=5Ì
ïŒå°äœ2ã®ä»»æã®æ°ãåããæ®ã3ã®ä»»æã®æ°ãåãããããã®åèšã¯ééããªã5ã®å°äœãäžããŸããäžå¿«ãªã¢ãžã¥ãŒã«6ã ããããåçŽãªã¢ãžã¥ãŒã«ã®å Žåãæããã«ãããã¯èµ·ãããŸããã圌ããèšãããã«ã
ãŒã逿°ã¯ãã
ãŸãã ã ããã«ã
aÌ
=0Ì
ã®å Žåãé€ããä»»æã®2ã€ã®å°äœã«ã€ããŠæ¹çšåŒ
aÌ
âxÌ
=bÌ
ïŒé€ç®ïŒãè§£ãããšãã§ããçµæã¯äžæã«æ±ºå®ãããŸãã äžææ§ã¯ãéãŒãã®å°äœã®ç©ãéãŒãã§ãããšããäºå®ããåŸãããŸãã
aÌ
â 0Ì
ã§ããããã
aãš
pã®æå€§å
¬çŽæ°ã¯1ã§ãïŒããã§ãåçŽã
pãå¿
èŠã§ãïŒã
æ¡åŒµãŠãŒã¯ãªããã¢ã«ãŽãªãºã ã¯ã
aâx + pây = 1ã®ããã«
xãš
yãèŠã€ããŸããã€ãŸãã
aÌ
âïŒbÌ
âxÌ
ïŒ=bÌ
ãšãªããŸãã
ãŒã逿°ããªãããšã®éèŠãªçµæïŒæ¬¡æ°
nã®åäžå€æ°ã®éãŒãå€é
åŒã¯ã
nãè¶
ããæ ¹ãæã€ããšã¯ã§ããŸããã ïŒããã¯éåžžã®æŽæ°ã§ã¯ããç¥ãããŠããŸãããå°äœæŒç®ã䜿çšããå Žåã远å ã®æ£åœåãå¿
èŠã§ãã3Ì
âxÌ
=0Ì
6ãæ³ãšãã3ã€ã®è§£0Ì
ã2Ì
ã4Ì
ããããŸããïŒå®éãéåžžã®ãåãé€ç®ã¯å€é
åŒ
fïŒxïŒã¯ã
fïŒxïŒ=ïŒx-cïŒgïŒxïŒ+ ïŒå®æ°ïŒãšããŠè¡šãããšãã§ããŸããããã§ãå€é
åŒ
gïŒxïŒã®æ¬¡æ°ã¯1æªæºã§ãã
cã
fïŒxïŒã®æ ¹ã§
ããå Žåã宿°ã¯ãŒãïŒ
x = cã代å
¥ïŒã§ãã
c 'ã
fïŒxïŒã®å¥ã®ã«ãŒãã§ããå Žåã
gïŒxïŒã®ã«ãŒãã«ãªããŸã
ïŒããã§ã¯ãŒã逿°ããªãããšãéèŠã§ãïŒããããã£ãŠãããã»ã¹ãç¶è¡ã§ããŸãã
nåã®æ ¹ãæ¢ã«èç©ãããŠããå Žåãæ®ãã®
gïŒxïŒã¯å®æ°ã§ãããããã«ãŒã以å€
ïŒfïŒxïŒ= 0 ïŒã§ãããæ ¹ã¯ãããããŸããã
åçŽãªã¢ãžã¥ãŒã«ã«ããæ§é€ã¯ãå ç®ãæžç®ãä¹ç®ã§ããŸãã éãŒãã®æ§é€ã¯åå²ã§ããŸãã ããããã¹ãŠã®æäœã«ã¯ãã¿ã€ã
aÌ
âbÌ
=bÌ
âaÌ
ã®éåžžã®ããããã£ããããŸãã ã¹ããŒãããã¯ã¯ãåçŽãªã¢ãžã¥ãŒã«ã«ããæ§é€ã
ãã£ãŒã«ãã圢æãããšèšã
ãŸã ïŒãããŠãåå²ããããšãäžå¯èœã§ãä»ã®ãã¹ãŠãåãã§ããè€åã¢ãžã¥ãŒã«ã«ããæ§é€ã¯
坿ç°ã§ã ïŒã ãããŠããã®åéã
æéãšåŒã¶ã®ã«è³¢ãæ¬ã§ããå¿
èŠã¯ãããŸããã æ®å·®ãã£ãŒã«ãã¯å¯äžã®æéãã£ãŒã«ãã§ã¯ãããŸããããä»ã®æçµãã£ãŒã«ãã¯å¿
èŠãããŸããã
æ¥åæ²ç·ã«ã€ããŠå°ã
pãæ³ãšããæ¥åæ²ç·ïŒåã
奿°çŽ æ°ïŒã¯ãæ¹çšåŒ
y 2 = x 3 + a 2 x 2 + a 4 x + a 6ã®è§£ã®éåãšèããããšãã§ããŸããããã§ã
x ã
y ãããã³ãã¹ãŠã®
aã¯å°äœã§ãïŒåè§£ã¯1ãšåŒã°ããŸãïŒ
point ïŒã«å ããŠããã¢
xãyãæããªã1ã€ã®ç¹å¥ãªãã€ã³ã
Oã æ¹çšåŒã®å³èŸºã¯æ£æ¹åœ¢ã§é€ç®ããªãã§ãã ãããããããªããšæ¥åæ²ç·ã«ãªããŸãããã¿ã€ã
y 2 =ïŒx-1Ì
ïŒ 2 ïŒx +2Ì
ïŒã®æ¹çšåŒã§ã¯ã倿°
yã
z = y /ïŒx-1Ì
ïŒã«çœ®ãæããŠäŸåé¢ä¿ãååŸã§ããŸã3床ã§ã¯ãªã2床ã
pâ 3ã®å Žåã倿°
xã®ä»£ããã«
x + a 2/3ãåã ã
x 2ã®é
ãåãé€ããŸãã
xãyã¯æééåã«å±ãããããæ¥åæ²ç·äžã®ç¹ã®æ°ãæéã§ããããšã¯æããã§ãã ãããã®ããã€ïŒ ããã¯äžè¬çã«é£ãã質åã§ãã
y 2 = x 3 -kâxã®åœ¢åŒã®æ²ç·ã«å¶éããŸãã ãã®ãããªæ²ç·ã®å Žåãå®å
šãªèšŒæã1ã€ã®Habrãã¹ãã«å
¥ããããšãã§ããŸãïŒããªãé·ããã®ã§ããïŒã
äºæ¬¡æ§é€ãšéæ§é€
ãŸãç°¡åãªè³ªåãããŠã¿ãŸãããã æ¹çšåŒ
y 2 = cã®è§£ã¯ããã€ãããŸãããããã§ã
yãcã¯å°äœã§ãã
p = 7ã®äŸïŒ
y | 0Ì
| 1Ì
| 2Ì
| 3Ì
| 4Ì
| 5Ì
| 6Ì
|
y 2 | 0Ì
| 1Ì
| 4Ì
| 2Ì
| 2Ì
| 4Ì
| 1Ì
|
c =0Ì
ã®å Žåã1ã€ã®è§£
y =0Ì
ããããŸãã æ®ãã®
yå€ã¯ã1Ì
ãã
ïŒp-1ïŒ/ 2ã«å¯Ÿå¿ããæ§é€ãŸã§ãããã³
ïŒp + 1ïŒ/ 2ã«å¯Ÿå¿ããæ§é€ãã-1Ì
ãŸã§ã®2ã€ã®ååã«åå²ãããŸãã
y 2 =ïŒ-yïŒ 2ã§ããããã
y 2ã®å€ã®è¡ã®åŸåã¯ãååã«å¯ŸããŠé¡é¢å¯Ÿç§°ã§ãã äžæ¹ãæ¹çšåŒã«ã¯å°ãªããšã4ã€ã®è§£ãããã2次ã®å€é
åŒã§ã¯äžå¯èœã§ãããããåååã«ç¹°ãè¿ãã¯ãããŸããããããã£ãŠãæ£ç¢ºã«2ã€ã®è§£ããããåãæ°ã®
ïŒp-1ïŒ/ 2ã®å°äœ
cããããŸããè§£ããŸã£ãããªãæ®åº
cè§£ãååšãã
cã®éãŒãã®å°äœã¯ã
2次å°äœãšåŒã°ããŸãã è§£ãååšããªãå°äœ
cã¯
2次å°äœãšåŒã°ããŸãã äºæ¬¡çãªéæ§é€ã¯æ§é€ã§ããããšã«æ³šæãã䟡å€ããããŸããäºæ¬¡çã§ããããšã¯åœŒã幞éã§ã¯ãªãã£ããšããã ãã§ãã
ã«ãžã£ã³ãã«èšå·
cãš2ä¹ã®é¢ä¿ã瀺ããŸããé©çšãããå Žåã¯1ïŒã€ãŸãã
cã¯äºæ¬¡å°äœïŒã-1ãé©çšãããªãå ŽåïŒã€ãŸã
cã¯äºæ¬¡å°äœïŒã
c =0Ì
ã®å Žåã¯0ã§ãã æ¹çšåŒ
y 2 = cã®è§£ã®æ°ã¯

ã
æ¥åæ²ç·ã«æ»ããŸãã åºå®
xã®ãªãã·ã§ã³
yã®æ°ãæ²ç·äžã®ãã€ã³ãã®ç·æ°
y 2 = x 3 -kâxã¯ããã¹ãŠã®
xãåèšããç¹å¥ãªãã€ã³ããå¿ããã«
æžãçããããšãã§ããŸãã

ã åã«çŸããªãã£ãã·ã³ãã«
F pã«ãã£ãŠã
pãæ³ãšããå°äœã®ãã£ãŒã«ãïŒãã£ãŒã«ãïŒã瀺ãã®ãæ
£äŸã§ãã
ããã§ã2ä¹åã®
pã®å±éã®æåã®çŽæãããåŒãæç€ºããæºåãã§ããŸããã
å®ç gãä»»æã®2次éå°äœãšããŸãã
pã4ã§é€ç®ããŠäœã1ãåŸãããå Žåã

ãŸããæåã®æ¬åŒ§å
ã®æ°åã¯å¥æ°ã®æŽæ°ã§ããã2çªç®ã®æ¬åŒ§å
ã®æ°åã¯å¶æ°ã®æŽæ°ã§ãã
pã4ã§é€ç®ãããšãå°äœã3ã«ãªãå Žåãæ¬åŒ§å
ã®äž¡æ¹ã®åèšã¯ãŒãã«ãªããŸãïŒã€ãŸããæ¥åæ²ç·äžã®ç¹ã®æ°ã¯
p + 1ã«ãªããŸã ïŒã
蚌æ
ãã¹ãã¯ãã§ã«é·ãããã蚌æ ã¯ãã¿ãã¬ã®äžã§åé€ãããŸãã ç¥èŠãæãªãããšãªãå®å
šã«ã¹ãããã§ããŸãã
ããŒã1ãã±ãŒã¹p = 4k + 3ããã³ããªãã£/奿°ã®åé¡ãéãŒãã®æ®åº
cãååŸããããã
1Ì
ãã
pÌ
- 1allãŸã§ã®ãã¹ãŠã®æ®åºã§ä¹ç®ãããšããã¹ãŠã®ç©ã¯éãŒãã§ããããã¢ããšã«ç°ãªããŸãïŒ
câx = câyã®å Žåã
câïŒxyïŒ= 0 which x = yã®å Žåã®ã¿ïŒãã€ãŸãã
1Ì
ãã
pÌ
-1Ì
ãŸã§ã®ãã¹ãŠã®æ®åºã®ããçš®ã®é åã«
ãªããŸãã ãããã£ãŠã
1Ì
â2Ì
â...âïŒpÌ
-1Ì
ïŒ=ïŒcâ1Ì
ïŒâïŒcâ2Ì
ïŒâ...âïŒcâïŒpÌ
-1Ì
ïŒïŒ= c p-1 â1Ì
â2Ì
â...âïŒpÌ
-1Ì
ïŒããã³
c p-1 =1Ì
ïŒãŒã以å€ã®å°äœ
cã®å ŽåïŒ ïŒããã¯
ãã§ã«ããŒã®å°ããªå®çã®èšŒæ
ã§ãã ãïŒ
ãããã£ãŠãå€é
åŒ
x p-1 -1 =ïŒx ïŒp-1ïŒ/ 2 -1ïŒïŒx ïŒp-1ïŒ/ 2 +1ïŒã®æ ¹ã¯
p-1ã§ãã ãããã£ãŠãåãã©ã±ããã«ã¯
ïŒp-1ïŒ/ 2ã®ã«ãŒãïŒãã©ã±ããã®æ¬¡æ°ã®æå€§å¯èœæ°ïŒããããŸãã åäºæ¬¡å°äœã¯ãæåã®ãã©ã±ããã®ã«ãŒãã§ãïŒ
x = c 2ã®å Žåãæ¬¡ã«
x ïŒp-1ïŒ/ 2 = c p-1 =1Ì
ïŒããããã®
ïŒp-1ïŒ/ 2ããããŸã ãã€ãŸãããã¹ãŠã®äºæ¬¡å°äœã«å¯ŸããŠ2çªç®ã®ãã©ã±ãããæ®ããŸãã ãããã£ãŠã
cã®ã«ãžã£ã³ãã«èšå·ã¯
c ïŒp-1ïŒ/ 2ãšåãæ®åºã«å±ããŸãã ïŒããã¯
ãªã€ã©ãŒã®åºæºã®èšŒæã§ããïŒã
çµæãšããŠã

ã
-1Ì
ã¯2次å°äœã§ããïŒ ç¬Šå·ã«äŸå
ïŒ-1ïŒ ïŒp-1ïŒ/ 2 pã 4ã§å²ã£ããšãã«å°äœ1ãåŸãããå Žåã
ïŒp-1ïŒ/ 2ã¯å¶æ°ã
ïŒ-1ïŒ ïŒp-1ïŒ/ 2 = 1 ã-1Ì
ã¯2次å°äœã§ãã
pã4ã§å²ããšãå°äœã3ã«ãªãå Žåããã¹ãŠãéã«ãªãã-1Ì
ã¯2次ã®éå°äœã«ãªããŸãã
å®çã®åçŽãªéšåïŒ
pã¯ã4ã§å²ã£ããšãã«å°äœ3ãäžããŸããæ¬¡ã«ãåæ¬åŒ§å
ã§ã
xãš
-xã®é
ã¯ã-1ã®ã«ãžã£ã³ãã«èšå·ãæããããšã§äºãã«ç°ãªããŸããã€ãŸãã笊å·ãå察ã§ãåèšã0ã«ãªããŸãã
x =0Ì
ãé€ããŠããããã¯åèšããŒãã®ãã¢ã«åå²ããã
x = 0
withã®é
ã¯ãŒãã§ãããåèšã¯0ã§ãã
pã4ã§å²ã£ããšãã«äœã1ãäžããå Žåã
xãš
-xã®é
ã¯çããããããã®åèšã¯å¶æ°ã§ãã ãããã£ãŠãå
šäœã®éãå¶æ°ã§ãããæ¬åŒ§å
ã®æ°å€ã¯å®éã«ã¯æŽæ°ã§ãã åæžåŸã®ããªãã£/奿°ã¯ããã»ã©è€éã§ã¯ãããŸããïŒå®çã®æåã®ãã©ã±ããã«ã¯3ã€ã®ãŒãé
ããããæ®ãã®é
ã¯
ïŒp-3ïŒ/ 2ã€ã®ãã¢ã«åå²ãããåãã¢ã®åèšã¯Â±2ã§ãã 4ã§é€ç®ãããšãã®ç¬Šå·ã䜿çšãããšãå°äœã¯2ã«ãªãã4ã§é€ç®ãããšãã®å
šéã¯
p-3ãšåããã€ãŸã2ã«ãªããŸããååã«é€ç®ãããšã奿°ã«ãªããŸãã å®çã®2çªç®ã®ãã©ã±ããã«ã¯ããŒãé
ã1ã€ãš
ïŒp-1ïŒ/ 2ã®ãã¢ã2ã€ããã4ã§é€ç®ããæçµäœãã¯0ã«ãªããŸããååã«é€ç®ãããšãå¶æ°ãæ®ããŸãã
ããŒã2.ã±ãŒã¹p = 4k + 1ãpã4ã§å²ã£ããšããå°äœ1ãäžããŸããå®çã®æåã®ãã©ã±ããã
a ã2çªç®ã
bã§è¡šããŸãã
aãš
bãæŽæ°ã§ããããš
ã¯æ¢ã«ç¥ã£ãŠ
ããŸãã
ããã蚌æããããã«ã次ã®å¥åŠãªé
Nã2ã€ã®æ¹æ³ã§èšç®ããŸãïŒ5ã€ã®æ®åºã®æ°ïŒ
x 1 ãy 1 ãx 2 ãy 2 ãt ïŒã§ã2ã€ã®åŒãåæã«æºããããããã«ããŸãïŒ
y 1 2 = x 1 3 -tâx 1ããã³
y 2 2 = x 2 3 -tâx 2 ã
æåã®æ¹æ³ã§ã¯ãæåã«
tãä¿®æ£ãã
xãyãã4ã®æ°ãèšç®ããŸãããã®åŸããã¹ãŠã®
tã®çµæã远å ããŸãã åºå®
tã®å Žåããã¢ïŒ
x 1 ãy 1 ïŒã¯æ²ç·ã®ä»»æã®éç¹æ®ç¹
y 2 = x 3 -tâx ã2çªç®ã®ãã¢ïŒ
x 1 ãy 1 ïŒã¯åãæ²ç·ã®ä»»æã®éç¹æ®ç¹ããã®ãããªãã¢ã®ç·æ°ã¯ãéç¹æ®ãã€ã³ãã®æ°ã®2ä¹ã«çãããªããŸãã ïŒå®éããããå¥åŠãªéãæ€èšããŠããçç±ã§ããa2ãš
b 2ã«è¿ã¥ããããšãã§ããŸã
ã ïŒ
t = 0ã®å Žåãæ¹çšåŒ
y 2 = x 3ã¯æ¢ã«è¿°ã¹ãããã«ãæ¥åæ²ç·ãå®çŸ©ãããæ¹çšåŒãšåæ°ã®è§£ãæã¡ãŸã
z 2 = x ïŒããã§
y = zâx ïŒãã€ãŸãæ£ç¢ºã«
p t = 1ã®å Žåã
p + 2aã®è§£ãåŸããã
t = g -
p + 2bã®è§£ãåŸãããŸãã ä»ã®
tå€ã¯ã©ãã§ããïŒ
y 2 = x 3 -tâxãã€
cããŒã以å€ã®å°äœã®å Žåã
c 6 y 2 = c 6 x 3 -c 6 tâxã§ãããããã¯
ïŒc 3 yïŒ 2 =ïŒc 2 xïŒãšåç
3 -c 4 tâïŒc 2 xïŒ ã ã€ãŸãã
ïŒxãyïŒã
tã®æ¹çšåŒã®è§£ã§
ããå Žåã
ïŒc 2 xãc 3 yïŒã¯
c 4 tã®æ¹çšåŒã®è§£ã§ãããããè§£ã®æ°ã¯
tããã³
c 4 tãšäžèŽããŸãã
c 4ã®åœ¢ã®ããã€ã®ç°ãªãéãŒãæ®åºïŒ äžæ¹ã§ã¯ãå°ãªããšã
ïŒp-1ïŒ/ 4 ïŒ
ïŒp-1ïŒã®
cã®å€ã¯4ãè¶
ããªãã°ã«ãŒãã«ãçµåãã§ããŸããäžæ¹ã
ïŒp-1ïŒ/ 4ãæŽæ°ã®å Žåããã¹ãŠãã®ãããªæ®å·®ã¯å€é
åŒ
x ïŒp-1ïŒ/ 4 -1ã®æ ¹ã§ããããããã以äž
ïŒp-1ïŒ/ 4ã¯ååšã§ããŸããã ãããã£ãŠãæ£ç¢ºã«
ïŒp-1ïŒ/ 4åãããŸã ã
ãããã£ãŠã
ïŒp-1ïŒ/ 4æ²ç·ã«ã¯
p + 2aã®éç¹æ®ç¹ããããå¥ã®
ïŒp-1ïŒ/ 4æ²ç·ã«ã¯
p + 2bã®éç¹æ®ç¹ããããŸãã ããã¯ãã§ã«å¿
èŠãªãã¹ãŠã®ååã§ãã
y 2 = x 3 -tâxã®å Žåã
g 3 y 2 =ïŒgâxïŒ 3- ïŒg 2 tïŒïŒgâxïŒ ã åºå®
xã®å Žåãæ¹çšåŒ
g 3 y 2 = ...ã®è§£ã®æ°ã¯2-æ¹çšåŒ
y 2 = ...ã®è§£ã®æ°
ã§ãã ãããã£ãŠã
t = g 2 ïŒãããã£ãŠ
ïŒp-1ïŒ/ 4åæ§ã®æ²ç·ïŒã®æ²ç·äžã®éç¹æ®ç¹ã®æ°ã¯
2p-ïŒp + 2aïŒ= p-2aã§ãã åæ§ã«ã
t = g 3ã®æ²ç·äžã®é
ç¹æ®ç¹ã®æ°ã¯
2p-ïŒp + 2bïŒ= p-2bã§ãã
ãããã£ãŠãæåã®èšç®æ¹æ³ã¯
Nãèšç®ãã2çªç®ã®æ¹æ³ã§ã¯
ããŸã
x 1ãš
x 2ãä¿®æ£ããããªãã«ã®æ°
tãš
yãèšç®ããŸãããã®åŸããã¹ãŠã®ãã¢
xã®çµæã远å ããŸãã
x 1 = x 2 =0Ì
ã®å Žåãæ£ç¢ºã«
pãªãã·ã§ã³ããããŸã
ãyã¯äž¡æ¹ãšããŒãã§ãªããã°ãªããã
tã¯ä»»æã§ãã
x 1 =0Ì
ããã³éãŒã
x 2ã®å Žå ã
y 1 = 0 ã§ããå¿
èŠãããã
y 2ã¯ä»»æã§ããã
tã¯æç¢ºã«èšç®ããã
pãªãã·ã§ã³ãåã³ååŸãããŸãã ãŒã
x 2ãšéãŒã
x 1ã®ç¶æ³
ã¯å¯Ÿç§°çã§ãã æåŸã«ãäž¡æ¹ã®
xããŒã以å€ã«ããŸãã æ¬¡ã«ã
t = x 1 2- ïŒy 1 2 / x 1 ïŒã§ãæ¡ä»¶
ïŒx 2 / x 1 ïŒy 1 2 = y 2 2 + x 2 ïŒx 1 2 -x 2 2 ïŒã§ãã¢ã®æ°
yãèšç®ããå¿
èŠããããŸãã
x 1 = x 2ã®å Žåãæ¹çšåŒã¯
yã®2ä¹ãäžèŽããããã®æ¡ä»¶ã«å€ããã
yã®ç°ãªããã¢ã¯
1 + 2ïŒp-1ïŒãååŸããŸãã
x 1 = -x 2ã®å Žåã
pã¯4ã§å²ã£ããšãã«äœã1ãäžãã-1Ì
ã¯2次å°äœã§ãããããç¶æ³ã¯äŒŒãŠããŸãã
x 2 / x 1ã±1Ì
ã«çãããªã2次å°äœã®å Žåã
c 2 = x 2 / x 1ã§ãããããªéãŒãã®
cããããŸãã æ¬¡ã«
ïŒc 2 y 1 2 -y 2 2 ïŒ=ïŒcây 1 -y 2 ïŒïŒcây 1 + y 2 ïŒ= x 2 ïŒx 1 2 -x 2 2 ïŒ ãåŒ
cây 1- y 2ã¯ãŒã以å€ã®ä»»æã®å°äœã§ããã
cây 1 + y 2ãäžæã«æ±ºå®ã
ãŸã ããããã£ãŠã
y 1ãš
y 2ãæ±ºå®ããŸãã åèš
p-1ãªãã·ã§ã³ã
x 2 / x 1ã2次ã®éå°äœã®å Žåãæ¥åæ²ç·ãšåæ§ã«ãè§£ã®æ°ã¯
2p -2次ã®å°äœã®å Žåã®è§£ã®æ°ãã€ãŸã
2p-ïŒp-1ïŒ= p + 1ã§ãã
ãŸãšããŸãã
x 1 = x 2 = 0ã§ påã®è§£ãäžãããªãã·ã§ã³ã1ã€ãããŸãã
2ã€ã®ïŒp-1ïŒãªãã·ã§ã³ãããã
xã® 1ã€
ããŒãã§ããã1ã€
ããŒã以å€ã®å Žåãåãªãã·ã§ã³ã¯
påã®è§£ãäžããŸãã
x 2 =±x 1ã® 2ã€ã®ïŒp-1ïŒãªãã·ã§ã³ãããããããã
2p-1ã®è§£ãäžããŸãã
ïŒp-1ïŒïŒïŒp-1ïŒ/ 2-2ïŒãªãã·ã§ã³ãããã
x 1ã¯ä»»æã®éãŒãã®å°äœã§ããã
x 2 / x 1ã¯Â±
1 1以å€ã®2次å°äœã§ããããããã®åãªãã·ã§ã³ã¯
p-1ãäžããŸã決å®ã æåŸã«ã
ïŒp-1ïŒ 2/2ãªãã·ã§ã³ããããŸã
ãx1ã¯ä»»æã®éãŒãã®å°äœã§ããã
x 2 / x 1ã¯2次ã®éå°äœã§ããããããã®åãªãã·ã§ã³ã«ã¯
p + 1ã®è§£ããããŸãã åèš

ã
Nã®2ã€ã®åŒãæ¯èŒãããšã蚌æãå®äºããŸãã
æå·åã¯ã©ãã§ããïŒ
ã«ãžã£ã³ãã«èšå·ã
påã«ãŠã³ãããŠ
aãš
bãèšç®
ããã®ã¯å®çšçã§ã¯ãããŸããã
Cornacchiaã¢ã«ãŽãªãºã ã¯ãããã
ã¯ããã«é«éã«åŠç
ã§ããŸã ã å®éã®å©ç¹ã¯
ãaãbã®åŒãå察æ¹åã«äœ¿çšããããšã§ããå±é
p = a 2 + b 2㯠ã
aãš
bã®é åãšç¬Šå·ã®å€åãŸã§äžæã§ããããšã蚌æã§ããããã
aãš
bãèŠã€ããããšã¯æ²ç·
yäžã®ç¹ã®æ°ãç¥ãããšãæå³ããŸã
2 = x 3 -tâxéãŒã
tã®å Žåãããã¯
p + 1±2aããã³
p + 1±2bã«ãªããŸãã
æ²ç·äžã®ãã€ã³ãã®æ°ãç¥ãããšã¯ããã®æ²ç·äžã®æå·åã«ãšã£ãŠéèŠã§ãã æ¥åæ²ç·ã§ã¯ããŒãã®åœ¹å²ã®ç¹å¥ãªãã€ã³ã
Oã䜿çšããŠããã€ã³ãã远å ããæäœïŒæå·åã«ã€ããŠå°ãªããšãäœããç¥ã£ãŠãã人ãªã誰ã§ãèããŠãããããããŸããïŒãå
¥åã§ããŸãã å ç®æŒç®ã«åºã¥ããŠãèªç¶æ°ã«ããä¹ç®ã決å®ã§ããŸãïŒ
2P = P + P ã
3P = P + P + Pãªã© ã ãããã£ãŠã
nãæ²ç·ã®æ¬¡æ°ã§ããå Žåãä»»æã®ç¹
Pã«å¯ŸããŠ
nP = Oã§ããããšã蚌æã§ããŸã
ã nãcãdã ãããã° ã
xâïŒcPïŒ= dPãšãã圢åŒã®æ¹çšåŒãè§£ãããšãã§ããŸããå°äœã®é€ç®ã«å®å
šã«é¡äŒŒããŠããŸããé«åºŠãªãŠãŒã¯ãªããã¢ã«ãŽãªãºã ã¯ã
câx + nây = 1 ã
x xïŒcPïŒ+ yâïŒnPïŒ= P ãã€ãŸã
xâïŒcPïŒ= P. ããã«ã
cãdãäžæã§ã
cPãš
dPã座æšã§äžããããŠããå Žåãæå¹ãªå岿¹æ³ã¯äžè¬ã«äžæã§ãã
äžããããæ²ç·äžã®ç¹ã®æ°ãèšç®ããããšã¯ããªãå°é£ã§ãïŒå€é
åŒã¢ã«ãŽãªãºã ãååšããŸãããå®éã«ã¯ããªãé
ãã§ãïŒã ãã€ã³ãæ°ã«é¢ããããã€ãã®ããããã£ã䜿çšããŠæ²ç·ãäœæããã«ã¯ãå¿
èŠãªãã®ãåŸããããŸã§ã©ã³ãã ä¿æ°ãåãããµã€ã¯ã«å
ã®ãã€ã³ãæ°ãèšç®ããããšããŸãããåŸ
ã€å¿
èŠããããŸãã 幞ããªããšã«ãå¥ã®æ¹æ³ããããŸãã
4k + 1ã®åœ¢åŒã®çŽ æ°ãšç¹å¥ãªåœ¢åŒã®æ²ç·
y 2 = x 3 -tâx ïŒããæå³ãä»»æã®éãŒã
tã®æ²ç·ïŒã«æºè¶³ããç¹æ°
p + 1±2aãŸãã¯
p + 1± 2b ãããªãã¯ãããåãããšãã§ããŸãã ä»ã®æ²ç·ã¯ã©ãã§ããïŒ
å°ãåŸã®1911幎ã«ãå¥ã®èè
von Schrutkaã y 2 = x 3 -tã®åœ¢åŒã
6k + 1ã®åçŽãªåœ¢åŒãããã³è¡šçŸ
p = a 2 + 3b 2ã®æ²ç·ã«ã€ããŠ
åæ§ã®çµæã
åŸãŸãã ã ãã®ãããæ²ç·
y 2 = x 3 -täžã®ç¹ã®æ°ãèŠã€ããããã«ãCornacchiaã¢ã«ãŽãªãºã ãåã³å¯èœã«ããŸãã
蚌æ ã«ã€ããŠäžèšå
šäœãšããŠã®èšŒæã¯äžèšãšåæ§ã§ã t = 1ãg 2 ãg 4ã«å¯ŸããŠ3ã€ã®æ°åaãb 1 ãb 2ã®ã¿ãçŸããŸããããã§ã gã¯ç«æ¹äœã§ã¯ãªãããããã®åèšã¯ãŒãã§ãããå¹³æ¹åãèšç®ãããŸãã åçŽãªå€æã®åŸãå¿
èŠãªãã®ãåŸãããŸãã
åŸã«ãæ¥åæ²ç·ã®çè«ãçºå±ããã«ã€ããŠã
4p = a ' 2 + dâb' 2ã®è¡šçŸãããå Žåã
dã¯èªç¶ã§ããã4ã§å²ããšã0ãŸãã¯3ã®å°äœãåŸããã
pãšã¯äºãã«çŽ ã§ããããšãæããã«ãªããŸãã倧ãããããšã
pãéåžžã«å€§ããå Žåã§ããæ£ç¢ºã«
p + 1±a 'ãã€ã³ããæã€æ²ç·ãå¹ççã«äœæã§ããŸãã 2ã€ã®æå°å€
d = 3ããã³
d = 4ã¯ãæ²ç·
y 2 = x 3 -tããã³
y 2 = x 3 -tâxã«å¯Ÿå¿ããŸãã
d = 163ã®äŸïŒ

奿°
pâ 163ã®å Žåããã®æ¹çšåŒã¯æ¥åæ²ç·ãå®çŸ©ããŸãã
4pãæŽæ°
a 'ãb'ã§
a ' 2 + 163b' 2ã®åœ¢åŒ
ã§è¡šçŸ
ã§ããå Žåãæ¥åæ²ç·äžã®ç¹ã®æ°ã¯
p + 1±a 'ã§ãã ããã§ãªãå Žåã¯ã
p + 1ã§ãã æ®å¿µãªããããã®èšŒæã¯ãããŒããçè«ã䜿çšããŠãããããããã§ã¯ãã³ããããããŸããã
ãã ããéåžžãã©ãžã«ã«ãååŸãããŸãã ããšãã°ã
d = 15ã®å Žå ïŒ

ã
4pãåèš
a ' 2 + dâb' 2ã«åè§£ããã
pã d ãšäºãã«çŽ ã§ããå Žåããã¹ãŠã®ã©ãžã«ã«ãå¿
ãæœåºããïŒããšãã°ã
d = 15ã®å Žåã
c 2 =5Ì
ã®å°äœ
cãåžžã«ååšã
ãŸã ïŒãæ¬¡ã®æ¥åæ²ç·ãåŸãããŸãåžæã®ãã€ã³ãæ°ã