çŸåšããªã³ã©ã€ã³æè²ã®ãããã¯ã¯äººæ°ããããŸãã誰ããCourseraãUdacityãEdXã«ã€ããŠèããŠããŸãã ãããã¯ãå€ãã®æçšãªã³ãŒã¹ãå«ãåªããæè²ãã©ãããã©ãŒã ã§ãã ããããããããããã€ã³ããªãžã§ã³ãã«ããããšã¯ã§ããŸããïŒ äžè¬ã«ãã€ã³ããªãžã§ã³ããã¥ãŒã¿ãªã³ã°ã·ã¹ãã ã®ç 究ã¯é·ãéè¡ãããŠãããç§åŠè
ã«ã¯å®çšçãªããã°ã©ããæäŸãããã®ããããŸãã äžè¬çãªç§åŠåœ¢åŒã®ãã®èšäºã§ã¯ãç¹å®ã®çš®é¡ã®ç¥çåŠç¿ã·ã¹ãã ã®æ§ç¯ã«é¢ããŠç§åŠçãåŸãçµæãšçµè«ãèå¯ããŸã ã åé¡è§£æ±ºçãåŠç¿è
ã¢ãã«ãåŠç¿ããã»ã¹ç®¡çã¢ã«ãŽãªãºã ããã§ãã¯ããããã®ãµãã·ã¹ãã æ§ç¯ã®åé¡ã«è§ŠããŸããã¯ããã«
åçãéžæããããã®ãªãã·ã§ã³ãå«ã質åãå«ããã¹ããšãäžè¬çãªãšã©ãŒãå«ãæ£ãã解çãšééã£ã解çãå«ãåºç¯ãªãã¬ãŒãã³ã°ããã°ã©ã ã 50幎代ã«ãã®ãããªã·ã¹ãã ãäœæããããã®çè«çåºç€ã 20äžçŽã«ã¯æåãªå¿çåŠè
B.F. ã¹ãããŒããã³ç 究è
N.A. ã¯ã©ãŠããŒã 圌ããææ¡ããæŠå¿µã¯è€æ°åæ¹å€ãããŸããã ç¹ã«ãæ¹è©å®¶ã¯ãå¿çãç£èŠããã ãã§ãªããå¿çã«è³ãçµè·¯ãç£èŠããå¿
èŠããããšææããŸããã ãŸããæ¬åœã«ããã¬ãŒãã³ã°ã®äž»ãªç®çã¯æ£è§£ã®æèšã§ã¯ãªããç 究察象ã®å
žåçãªåé¡ã解決ããããã®åççãªæ¹æ³ã®åœ¢æã ããã§ãã ãããã£ãŠãç§åŠçæèã¯æ°ããæ¹æ³ã§é²ãã ã æåã«ãç§åŠè
ã¯æçµçãªçããèªèããã ãã§ãªãã課é¡äžã®çåŸã®æšè«ãè©äŸ¡ã§ãããã¬ãŒãã³ã°ããã°ã©ã ãäœæãå§ããŸããïŒãã®èšäºã®ããŒã1ãåç
§ïŒã 次ã«ãç§åŠè
ã¯ãåŠç¿ããã»ã¹ã®ç®¡çã«éèŠãªåŠç¿è
ã®ç¹æ§ã枬å®ããæ段ã®éçºãéå§ããŸããïŒãããããåŠç¿è
ã¢ãã«ããããŒã2ãåç
§ïŒããã³åŠç¿ããã»ã¹ç®¡çã¢ã«ãŽãªãºã ïŒããŒã3ãåç
§ïŒã
1.ããã©ããŒã¢ãããã€ã³ããªãžã§ã³ããã¬ãŒãã³ã°ããã°ã©ã
èå³æ·±ããããããæãææãªã¿ã€ãã®ã€ã³ããªãžã§ã³ããã¬ãŒãã³ã°ããã°ã©ã ã¯ãããã©ããŒã¢ãããã€ã³ããªãžã§ã³ããã¬ãŒãã³ã°ããã°ã©ã ã§ãã ããã©ãã¯ãŒãã¯ãèªç¶ç§åŠã®ç§ç®ïŒæ°åŠãç©çåŠãªã©ïŒãæããããã«èšèšãããæè²ããã°ã©ã ã§ããã
- åŠç¿è
ã®æ±ºå®ã®åã¹ãããããæ£ããããŸãã¯ãééã£ãŠããããšè©äŸ¡ãã
- å
¥åãã決å®ã¹ãããã®äœãééã£ãŠããã®ãã次ã«äœãããå¿
èŠãããã®ãââã瀺ããã³ããæäŸããŸãã
- 決å®ã®è©äŸ¡ãäžããŸãã
ãã®ãããªããã°ã©ã ã¯ããã©ãã¯ãŒããšåŒã°ããŸãããªããªããçåŸã®å®å
šæ§ãšæ£ç¢ºæ§ã«ã€ããŠã®æ±ºå®ã確èªããããã«ãçåŸã®æ±ºå®ã¹ããããšæ±ºå®ã¹ããããæ¯èŒããããã§ãã ãããã§å©çšå¯èœãªãœãªã¥ãŒã·ã§ã³ã¯ãäœããã®ã¢ã«ãŽãªãºã ã«ãã£ãŠèªåçã«çæãããããæåž«ã«ãã£ãŠããŒã¿ããŒã¹ã«å
¥åãããŸãã
ãããããæãæåã§æãéçºãããã远跡ãç¥çèšç·Žããã°ã©ã ã¯ãã¢ã³ãã¹ç©çåŠæåž«[1-2]ã§ãïŒå³1ïŒã 圌女ã®ç¥èããŒã¹ã«ã¯ããéçãããéååŠãããä»äºãšãšãã«ã®ãŒããšããç©çåŠã®ããã€ãã®åéãå«ãŸããŠããŸãã ç ä¿®çã¯ç¹å¥ãªãã£ãŒã«ãã«æ±ºå®æé ãå
¥åããŸãã 解æ³ã®ã¹ããããæ£ããå Žåãããã°ã©ã ã¯å¯Ÿå¿ããæ°åŒãç·è²ã«çè²ããæ£ãããªãå Žåã¯èµ€è²ã«çè²ããŸãã ããã°ã©ã ãŠã£ã³ããŠã®å·Šäžã«ã¯ãåŠç¿è
ãåãåã£ãããã³ããã衚瀺ãããŸãã
å³ 1. Andes Physicsãã¥ãŒã¿ãŒããã©ããã³ã°ãã€ã³ããªãžã§ã³ããã¥ãŒããªã¢ã«ã
ãã®ãããªãã¬ãŒãã³ã°ããã°ã©ã ã§ã¯ããœãªã¥ãŒã·ã§ã³ã®æ€èšŒã¯ã©ã®ããã«å®è£
ãããŠããŸããïŒ Andes Physics Tutorã®éçºè
ã¯ããã®åé¡ã2段éã§è§£æ±ºããããšãææ¡ããŠããŸãã
- çåŸãå
¥åããåŒã®æ£ç¢ºæ§ã確èªãã
- 決å®ã¹ãããã«å
¥ã£ãŠããåŠç¿è
ãã©ãã ãé²ãã ãã枬å®ããŸãã ãœãªã¥ãŒã·ã§ã³ã®é²æç¶æ³ã枬å®ããŸãã
æ£ç¢ºãªæ
å ±ã«åºã¥ããŠãçåŸãå
¥åããæ°åŒãããã°ã©ã ã«ãã£ãŠèµ€ãŸãã¯ç·ã«è²ä»ããããŸãã ãœãªã¥ãŒã·ã§ã³ã®é²æç¶æ³ã«é¢ããæ
å ±ã¯ããã³ããäœæãããœãªã¥ãŒã·ã§ã³ã®ã¹ã³ã¢ãªã³ã°ãè¡ããšãã«ããã°ã©ã ã«ãã£ãŠäœ¿çšãããŸãã
æ£ç¢ºæ§ã®ç¢ºèªã¯éåžžã«ç°¡åã§ããçåŸãå
¥åããåŒã§ã¯ãããã«å«ãŸããå€æ°ã®æ°å€ã眮ãæããå¿
èŠããããŸãã 眮æã®çµæãæçåŒã§ããå ŽåãåŒã¯æ£ããã§ãã ããšãã°ãçåŸãåŒ
a = b + 2ãå°å
¥ããåé¡ã®æ¡ä»¶ãã
a = 4ãb = 2ã®å Žåã
4 = 2 + 2ãªã®ã§ ãçåŸãå°å
¥ããåŒã¯æ£ããã§ãã
åé¡è§£æ±ºã®é²æã枬å®ããããšã¯ã¯ããã«å°é£ã§ãã ãœãªã¥ãŒã·ã§ã³ã®é²æç¶æ³ã枬å®ããæãç°¡åãªæ¹æ³ã¯ãæ¢ç¥ã®ãœãªã¥ãŒã·ã§ã³ãæ°åŒã®ãªã¹ãã®åœ¢åŒã§ããã°ã©ã ã«æ瀺ããåŠç¿è
ã«ãã£ãŠå°å
¥ãããæ°åŒããããã®ãªã¹ãã®æ°åŒãšæ¯èŒããããšã§ãã 次ã«ãé²æç¶æ³ã枬å®ããã«ã¯ãæåã«åŠç¿è
ã®ãœãªã¥ãŒã·ã§ã³ã«æãè¿ãããã°ã©ã ã«æ¢ç¥ã®ãœãªã¥ãŒã·ã§ã³ã®1ã€ãéžæãã次ã«ãå«ãŸããæ°åŒã®äœããŒã»ã³ããåŠç¿è
ã®æ±ºå®ã¹ãããã§å®è£
ããããã確èªããå¿
èŠããããŸãã ãã®å²åãé«ãã»ã©ãçåŸã®è§£çã®é²æã倧ãããªããŸãã æ®å¿µãªãããåé¡ã®è§£æ±ºçã«é¢ããæ
å ±ãä¿åããã³åŠçãããã®ãããªãåçŽãªãæ¹æ³ã䜿çšããå ŽåãæãåçŽãªã¿ã¹ã¯ã§ãã£ãŠãã1ã€ãŸãã¯è€æ°ã®åŒãç°ãªãäœãã«ãå€ãã®å¯èœãªè§£æ±ºçãäœæããå¿
èŠããããŸãã ãã®ãããAndes Physics Tutorã®éçºè
ã¯å¥ã®æ¹æ³ãåããŸããã
Andes Physics Tutorã§ã¯ãåé¡ã®å¯èœãªè§£æ±ºçã«é¢ããæ
å ±ã¯ããåºæ¬çãªãæ¹çšåŒã®å°ããªãªã¹ãã®åœ¢åŒã§ä¿åãããŸãã ç ä¿®çã«ãã£ãŠå°å
¥ããã決å®æé ãæ¹çšåŒãšèŠãªãããŸãã åŠçãç¹å®ã®è§£æ³ã¹ããããå
¥åããããã«äœ¿çšãããåºæ¬ãæ¹çšåŒã決å®ããããã«ãç¹æ®ãªã¢ã«ãŽãªãºã ã䜿çšããããã®éã«æ¹çšåŒç³»ã解ãããåå°é¢æ°ãèšç®ãããŸãã äžæ¹ããã®ã¢ã«ãŽãªãºã ã¯ãç ä¿®çã®è§£æ±ºã«å¿
èŠãªãã¹ãŠã®ã¹ãããã«å¯ŸåŠããããšã¯ã§ããŸããã åŠç¿è
ã®å€æ°ã解ãã¹ãããã§å€æ°ãæ°å€ã«çœ®ãæããããèšç®éãæå°ã«ãªãã»ã©ãåŠç¿è
ã解ã®ã¹ãããã«å
¥ããšãã«äœ¿çšãããåºæ¬ãæ¹çšåŒãç解ããã®ãé£ãããªããŸãã
åé¡ã解決ããéçšã§ãåŠçã
aã®å€ãèšç®ããå¿
èŠããããšããŸããaã®å€ã¯
ã a = b + c ã
a = d / 2ã®2ã€ã®æ¹æ³ã§èŠã€ããããšãã§ããŸãã åŠçãåçŽã«
a = 6ãå
¥åã
ãå Žåãã©ã®æ¹æ³ã䜿çšããããç解ããæ¹æ³ã¯ïŒ ããã«ãäžéšã®çåŸã¯ãã€ãŸããªããå ŽåããããŸããããšãã°ãã³ã³ãã¥ãŒã¿ãŒã¯ã©ã¹ã®ãã¬ãŒãã³ã°ããã°ã©ã ã§äœæ¥ããé£äººãã
aã6ã§ãã©ãããããã
bã«äŸåããŠ
ãããšèããå Žåã
b = 2 a = 8-bã®åœ¢åŒã®è§£ã¹ããããå°å
¥ããŸãã ãã®å Žåãé²æ枬å®ã¢ã«ãŽãªãºã ã®çµæãšããŠãç ä¿®çã¯äžèšã®2ã€ã®æ¹æ³ã®ããããã䜿çšããŠå
¬åŒãå°å
¥ãããšçµè«ä»ããããŸãã ãã¡ãããå Žåã«ãã£ãŠã¯ç¶æ³ãæ確ã«ãããã¥ãŒãªã¹ãã£ãã¯ãæãä»ãããšãã§ããŸããããã¹ãŠã§ã¯ãããŸããã ãããã£ãŠããã¬ãŒãã³ã°ããã°ã©ã ã®æ±ºå®ã100ïŒ
ã®ç¢ºå®æ§ã§æ€èšŒããããã®ã¢ã«ãŽãªãºã ããåŠçã®æ±ºå®ã®ã¹ããããèªèããããšãã§ãããšäž»åŒµããããšã¯ã§ããŸããã ãããããã¬ãŒãã³ã°ããã°ã©ã ãç¹å®ã®èªç¶ç§åŠã®ç¹å®ã®ã¯ã©ã¹ã®åé¡ã«å¯ŸããåŠçã®ææ決å®æé ã®å€§éšåãé«ã確çã§æ£ããèªèã§ããããã«ããããšã®ã¿ãå¯èœã§ãã
2.åŠç¿è
ã¢ãã«
ãã¬ãŒãã³ã°ããã°ã©ã ãç¥çåãããã1ã€ã®æ¹æ³ã¯ãåŠç¿è
ã¢ãã«ã䜿çšããããšã§ãã åŠçã®ã¢ãã«ã¯ãåŠç¿ããã»ã¹ã管çããããã«éèŠãªåŠçã®ç¹æ§ã枬å®ããããã®æ段ãããã³ãããã®ç¹æ§ã枬å®ããçµæãšåŒã¶ããšãã§ããããšãæãåºããŠãã ããã åŠçã®ã¢ãã«ã«ã¯2ã€ã®ã¿ã€ãããããŸãã
- çåŸã®ç¥èãšã¹ãã«ã®ã¬ãã«ãåæ ãã
- ãã¬ãŒãã³ã°ããã°ã©ã ã®ã¿ã¹ã¯ã®å®è¡äžã«ãåŠçã®ç²Ÿç¥ç¶æ
ãç¹åŸŽä»ããŸãã
ãªãŒããŒã¬ã€ã¢ãã«ã¯ãã»ãšãã©ã®å Žå
ãåŠçã®ç¥èãšã¹ãã«ã®ã¬ãã«ã
ç¹åŸŽä»ããããã«äœ¿çšãããŸãã ãªãŒããŒã¬ã€ã¢ãã«ã®å Žåããšãã¹ããŒãã®ç¥èã®æ瀺ã¯åŠç¿è
ã®ç¥èãšåãã§ãããšæ³å®ãããŸãããåŠç¿è
ã®ç¥èã¯å®å
šã§ã¯ãããŸããïŒå³2ãåç
§ïŒã å°éç¥èã¯ãåçŽãªéšåãšå°ããªéšåã«åãããŠããŸãã åŠç¿è
ã¯ããããã®ç¹å®ã®éšåãç¥ã£ãŠããããç¥ããªãïŒãŸãã¯ããçšåºŠç¥ã£ãŠããïŒãã®ããããã§ãã
å³ 2.çåŸã®ãªãŒããŒã¬ã€ã¢ãã«ïŒçåŸã«ååšããå°é家ã®ãç¥èãã®éšåã¯å¡ãã€ã¶ãããŸãïŒã
çŸåšããªãŒããŒã¬ã€ã¢ãã«ã¯ãã»ãšãã©ã®å ŽåãåŠç¿ã³ãŒã¹ããã³/ãŸãã¯ãã®ã³ãŒã¹ã«å¯Ÿå¿ããã¹ãã«ã®ãã¹ãŠã®æŠå¿µã®å
šäœãå«ãéå±€æ§é ã®åœ¢ã§å®è£
ãããŠããŸãã å³ å³3ã¯ãåŠçã®ç¥èãšã¹ãã«ã®ã¢ãã«ã®åºç€ã圢æããäž»é¡ãGeometryãã®æŠå¿µã®éå±€æ§é ã瀺ããŠããŸãã æ§é ã®ããŒãã¯ãå®çŸ©ãå
¬çããŸãã¯å®çã«å¯Ÿå¿ããŠããŸãã ããããŒãããå¥ã®ããŒãã«ã€ãªããç¢å°ã¯ããããã®ããŒãã«å¯Ÿå¿ããçè«çææã®éšåéã®é¢ä¿ã瀺ããŸãã ãã®é¢ä¿ã¯ãã
Aãå匷
ããåã«ã
Bãç¥ãå¿
èŠããããããŸãã¯ã
Aãç¥ã£ãŠãããªãã
Bãç¥ã£ãŠããããšããããã«è§£éã§ããŸãã çè«çãªææã®éšåéã®é¢ä¿ãèæ
®ãããšãæŒç¿ã®æ°ãæžããããšãã§ãããã®çµæã¯åŠçã®ç¥èãšã¹ãã«ã®ã¬ãã«ãèšç®ããŸãã
å³ 3.äž»é¡ãã£ãŒã«ããGeometryãããã®æŠå¿µã®éå±€æ§é ã®æçã
æ§é ã®åããŒãã«ã¯ãã©ãã«ãåŠç¿æžã¿ããŸãã¯ãæªåŠç¿ããå²ãåœãŠãããŸãã ã©ãã«ã®å€æŽã¯ãåŠçãçè«çãªè³æãèªãã åŸããŸãã¯å®çšçãªèª²é¡ãå®äºããåŸã«çºçããå¯èœæ§ããããŸãã ã©ãã«ã®å€æŽãå®è£
ããèšç®ã«ã¯ããã€ãžã¢ã³ãããã¯ãŒã¯ããã¡ãžãŒããžãã¯ã¡ãœãããªã©ãããŸããŸãªã¢ã«ãŽãªãºã ãšæ¹æ³ã䜿çšã§ããŸãã
åŠçã®ç²Ÿç¥ç¶æ
ã®ã¢ãã«ã
æ§ç¯ããããã«ãããŸããŸãªããŒã¿ãœãŒã¹ã䜿çšã§ããŸã-ãããªã«ã¡ã©ïŒãã®è¡šæ
ãèªèãããïŒãå¿ææ°ã枬å®ããã»ã³ãµãŒãªã© åŠç¿è
ã«ã¯èŠããããããã£ãŠå®çšäžæã䟿å©ãªããŒã¿ååŸã®ãœãŒã¹ã¯ããã¬ãŒãã³ã°ããã°ã©ã ã§ã®ãŠãŒã¶ãŒã®äœæ¥ã®å±¥æŽã§ã[3-4]ïŒå³4ãåç
§ïŒã
å³ 4.çåŸã®ä»äºã®å±¥æŽã®æçã
圌ã®ç 究ã®æŽå²ã«åºã¥ããŠåŠçã®ç²Ÿç¥ç¶æ
ã蚺æããããã®ã¢ãã«ã®äŸãšããŠãã¢ã¹ã¯ã¯ç§åŠå€§åŠã®å¿çšæ°åŠç 究æã®ç 究æ17ã§éçºãããã¢ãã«ãã¢ã¹ã¯ã¯å·ç«å€§åŠã®å¿çåŠéšã®åå ãåŸãŠèª¬æããŸã[5]ã ãã®ã¢ãã«ã¯ãçåŸã®ç²Ÿç¥ç¶æ
ããç¬ç«ãããåªåããã欲æ±äžæºè¡åãã®3ã€ã®ææšã®å€ã«ãã£ãŠç¹åŸŽä»ããããããšãåæãšããŠããŸãã ã€ã³ãžã±ãŒã¿ãŒã®å€ã¯nç§ããšã«åèšç®ãããŸãïŒããšãã°ãn = 300ç§ãã€ãŸã5åãããããšããããŸãïŒã ç¹å®ã®æéã®ææšã®å€ã¯ãäž»ã«ãã®æéäžã«çºçããããŸããŸãªã€ãã³ãã®ããŸããŸãªæ°å€ç¹æ§ã«åºã¥ããŠåœ¢æãããŸãã ãããã®ã€ãã³ãã¯ãåæïŒäŸãã°ããåŠçãæ£ãããã©ããã®æ±ºå®ã¹ãããã確èªããã¹ããããæ£ããããšãå€æãããïŒãŸãã¯é·æïŒäŸãã°ããåŠçãåèè³æãèªãã ãïŒã§ããå¯èœæ§ããããŸãã ã€ãã³ãã®æ°å€ç¹æ§ã¯ããæ°éãããå¹³åæéããã环ç©æéããªã©ã§ãã
ã¢ãã«ãäœæããéãåŠçã®ä»äºã®å±¥æŽã§èå³æ·±ãã€ãã³ãã¯ãã7ç§ãè¶
ãããã¬ãŒãã³ã°ããã°ã©ã ã®éã¢ã¯ãã£ãããšããã€ãã³ãã§ããã åŠçã®ä»äºã®å±¥æŽã«ãã®ã€ãã³ããç»å Žããããšã¯ãåŠçã®åŠç¿ã«ãšã£ãŠå¥œãŸããç¶æ
ãšãéåžžã«æãŸãããªãç¶æ
ã®äž¡æ¹ã話ãããšãã§ããããšãå€æããŸããã ã»ãšãã©ã®å ŽåãçåŸã®äžå©ãªç¶æ
ã¯ãåé¡ã解決ããæé ã玹ä»ããããã°ã©ã ããèªåã®äžæ£ç¢ºãã«ã€ããŠã®ã¡ãã»ãŒãžãåãåã£ãåŸã«çŸããŸããã ãã®å Žåã圌ã¯ããã°ã©ã ã§ã®ä»äºããããé£äººãå
çããå©ããåããããšããŸããããããã¯ãã°ããã®éã麻çºç¶æ
ã«é¥ãããããŸããã åŠçã®è¯å¥œãªç¶æ
ã¯ãããã°ã©ã ã圌ãå
¥åãã決å®ã¹ããããæ£ãããšããŒã¯ããåŸã«çŸããŸããã ãã®åŸã圌ã¯è§£æ±ºçã®æ¬¡ã®ã¹ãããã«åãçµã¿ãçŽãšãã³ã§èšç®ãéå§ããŸããïŒãããã£ãŠããã®æç¹ã§ã¯ãåŠçã®è¡åã¯ããã°ã©ã ã«èšé²ãããŸããã§ããïŒã ãããã£ãŠãåŠçã®ç²Ÿç¥ç¶æ
ã枬å®ããããã«ããæ£ãã決å®ã¹ãããã®å
¥åã«ãã£ãŠå
è¡ãã7ç§ããé·ãããã°ã©ã å
ã®éã¢ã¯ãã£ãã€ãã³ãã®æ°ããã誀ã£ã決å®ã¹ãããã®å
¥åã«ãã£ãŠå
è¡ãã7ç§ããé·ãéã¢ã¯ãã£ãã€ãã³ãã®æ°ããªã©ã®ã€ãã³ããå¥ã
ã«èæ
®ãããŸããã
ã¢ãã«ã䜿çšããåã«ãã¢ãã«ãæ§æããå¿
èŠããããŸããã€ãŸããã€ã³ãžã±ãŒã¿ãŒãç¬ç«æ§ãããåªåããããã©ã¹ãã¬ãŒã·ã§ã³è¡åãã®çŸåšå€ãèšç®ããé¢æ°ã®ä¿æ°ãéžæããå¿
èŠããããŸãã 詳现ã«ã¯è§ŠããŸããããä¿æ°ãéžæããããã»ã¹ã¯å埩çã§ãããä¿æ°ãéžæããã¢ã«ãŽãªãºã ã®äž»ãªæé ã®1ã€ã¯ãšã©ãŒé¢æ°ãæå°åããããšã§ããå®éšããŒã¿ã
äžèšã®ã¢ãã«ã®èª¿æŽã«åºã¥ããããŒã¿åéæé ã説æããŸãããã ããŒã¿ãåéããããã®å®éšãè¡ããããã®éã«ãã©ã³ãã£ã¢ã®åŠçããã¬ãŒãã³ã°ããã°ã©ã ã®1ã€ãŸãã¯2ã€ã®ã¿ã¹ã¯ã解決ããŸããã å®éšã®åŸãå°é家ã®è©äŸ¡ãåéãããŸããã å°é家ã¯ããããªé²ç»ã«åºã¥ããŠåŠçã®ç²Ÿç¥ç¶æ
ãè©äŸ¡ããŸããããããªé²ç»ã§ã¯ãåŠçã®ç»é¢ããã®èšé²ãšåŠçã®é¡ã®èšé²ã®äž¡æ¹ãåæã«å©çšã§ããŸãã 5åããšã«ãçåŸã®äœæ¥ã®ãããªé²ç»ãåæ¢ããŸãããå°é家ã¯ãããã°ã©ã ãŠã£ã³ããŠã®ç¹å¥ãªãã£ãŒã«ãã«çåŸã®ç¶æ
è©äŸ¡ãå
¥åããå¿
èŠããããŸããã 次ã«ãååŠçã®äœæ¥å±¥æŽã®5åéã®æçããšã«ããã¯ãã«ã圢æãããŸããããã®1ã€ã®ã³ã³ããŒãã³ãã¯ã察象æéã®åŠçã®ç²Ÿç¥ç¶æ
ã®å°é家è©äŸ¡ã«å¯Ÿå¿ããæ®ãã®ã³ã³ããŒãã³ãã¯ã察象æéã«çºçããäœæ¥å±¥æŽã®ã€ãã³ãã®æ°å€ç¹æ§ã«å¯Ÿå¿ããŸã ãããã®ããŒã¿ïŒãã¯ãã«ã®ã»ããïŒã«åºã¥ããŠãããç¥ãããæ©æ¢°åŠç¿æ³ã䜿çšããŠã¢ãã«ä¿æ°ãéžæãããŸããã
3.åŠç¿è
ã¢ãã«ã䜿çšããæè²ããã»ã¹ã®ç®¡ç
ããŸããŸãªã¿ã€ãã®åŠç¿è
ã¢ãã«ãšãã®æ§ç¯æ¹æ³ã«ã€ããŠåŠç¿ããã®ã§ãç¥çåŠç¿ç®¡çã®åé¡ã«æ»ããŸãããã åé¡ã¯ããã«çºçããŸããã©ã®æç¹ã§åŠç¿ããã»ã¹ãå¶åŸ¡ã§ããã©ã®ããã«åŠç¿è
ïŒããã°ã©ã ã®ãŠãŒã¶ãŒïŒã«åœ±é¿ãäžããããšãã§ããŸããïŒ ãŸãã察å¿ããã¢ãã«ã«èšé²ãããåŠçã®ç¥èãšã¹ãã«ãèæ
®ã«å
¥ããŠã次ã®ã¬ãã¹ã³ã®ãã¬ãŒãã³ã°è³æïŒçè«ããã³/ãŸãã¯è§£ãããã®ã¿ã¹ã¯ïŒãç¥çã«éžæããããšãã§ããŸãã 第äºã«ããã¬ãŒãã³ã°ããã°ã©ã ã®åé¡ã解決ããããã»ã¹ã«ã€ã³ã¿ã©ã¯ãã£ããªãµããŒããæäŸã§ããŸãã ãã¹ããŒããå¶åŸ¡ã¢ã«ãŽãªãºã ã¯ããã¬ãŒãã³ã°ããã°ã©ã ã®çºçæå»ãšã¢ã¯ã·ã§ã³ã®é »åºŠã次ã®ããã«éžæããŸãã
- æ¯æŽã®æäŸïŒããšãã°ãåé¡ã®æ¬¡ã®äºæž¬ãããã¹ãããã®çãããã¹ã圢åŒã®ããã³ããã®åœ¢åŒããŸãã¯ãã®åé¡ã®è§£æ±ºã«åœ¹ç«ã€çè«çè³æãžã®ãªã³ã¯ã®åœ¢åŒïŒã
- åŠçã®èŠæ±ã«å¿ããŠæ¯æŽãæäŸããããšãæåŠãã
- 解決ãããåé¡ã®ä»£ããã«ä»ã®ææã®æšå¥šïŒäŸãã°ãåŠçãçŸåšã®èª²é¡ã«å¯ŸåŠã§ããªãå Žåã®ããåçŽãªèª²é¡ïŒã
- ããã°ã©ã ã§ã®äœæ¥ã®äžæçãªå®äºãæšå¥šããïŒå®æçãªäŒæ¯ã®å¿
èŠæ§ãæãåºãããããããŸãã¯ãçåŸã¯ä»æ¥äœèª¿ãæŽã£ãŠããªãããšããäºå®ãè¿°ã¹ãïŒ
- ããŸããŸãªåæ©ä»ãã®ã¡ãã»ãŒãžã衚瀺ããŸãïŒããšãã°ãããã®åé¡ã¯ã»ãšãã©è§£æ±ºããŸããïŒãïŒã
ãããããã®ãããªã¢ã«ãŽãªãºã ã¯ã©ã®ããã«ãæ°žç¶çããã€ã決å®çããªã®ã§ããããïŒ ãã®è³ªåã«çããããã«ãBenedict de Boulevard [6]ã®ç 究çµæãèŠãŠã¿ãŸãããã ãããã£ã¯ãã»ãã»ãã€ãšã¯è±èªã®ææã§ããããã®æå°ã®äžã§ããã¬ãŒãã³ã°ããã°ã©ã ã§åããŠããéã®åŠçã®ææ
ã®èªå管çã«é¢ããå€ãã®ç 究ãè¡ãããŸããã 圌ãšåœŒã®ååã¯ãå°éåéã®åŠçãåŠç¿ããã»ã¹ã®èªååããã管çã«å¯ŸããŠåŠå®çãªæ
床ããšãå¯èœæ§ããããšããäºå®ãç¹ã«æ¯æŽãæåŠããããšã«çŽé¢ããå Žåã«æ³šæãåèµ·ããŸããã ããã°ã©ã ã®æ¯ãèãã«æãæã£ãŠããããã€ãšã®å®éšã«åå ããåŠçã®äœäººãã¯ããããã¯ãã ã®ããã°ã©ã ã§ããã圌ããèšãããšãæ£ç¢ºã«è¡ãã¹ãã§ãïŒã
ã芧ã®ãšãããæè²ããã»ã¹ã®èªå管çã®æåã¯ãããã°ã©ã ã®ç¥èœã«å¯ŸããåŠç¿è
ã®ä¿¡é ŒåºŠã«å€§ããäŸåããŸãã ãã®ä¿¡ä»°ã¯åºæ¬çã«ãããã°ã©ã ããã®ã¢ã¯ã·ã§ã³ãã©ã®çšåºŠç解ããŠããããç¹ã«ã解決çãšããŠåé¡ã解決ããããã«ãã€ã玹ä»ããã®ã¯åœŒã§ãã£ããã©ããã«äŸåããŸãã åè¿°ã®ããã«ãæè²ããã°ã©ã ã®ãœãªã¥ãŒã·ã§ã³ã100ïŒ
ã®ç¢ºå®æ§ã§æ€èšŒããã¢ã«ãŽãªãºã ãåŠç¿è
ã®æ±ºå®ã®ããããã¹ããããèªèããããšãã§ãããšäž»åŒµããããšã¯ã§ããŸããã ãããã£ãŠãèªååŠç¿ç®¡çã®ã¢ã«ãŽãªãºã ã¯ãæ¬è³ªçã«å©èšã®ã¿ã§ããå¿
èŠããããŸãã åŠçã®èŠæ±ã«å¿ããŠç¡å¹ã«ããããšãå¯èœã§ãã
äžæ¹ãåŠçã®äžåçãªè¡åã®å ŽåïŒããšãã°ãåŠçãåé¡è§£æ±ºäžã«çãããã¹ãããã³ãããä¹±çšããå ŽåïŒãã³ãŒã¹æåž«ã®äººã«è¿œå ã®åãé¢äžããŠããã«ãããããããåŠç¿ããã»ã¹ã«åœ±é¿ãäžããå¯èœæ§ããããŸãã æåž«ã¯ãã«ãªãã¥ã©ã ã§ã®è¡åã«ã€ããŠèªåçã«çæãããã¬ããŒãã«åºã¥ããŠãçåŸãã眰éãã§ããŸãã ãããã£ãŠãã€ã³ããªãžã§ã³ããã¬ãŒãã³ã°ããã°ã©ã ã¯ãåŠçãšæåž«ã®äž¡æ¹ã«ãšã£ãŠãã®ããã»ã¹ã倧å¹
ã«ä¿é²ã§ããŸããã誀ã£ãåæ©ãæã€ãcãªãåŠçã®å ŽåïŒç§ç®ãå匷ããã®ã¯é¢çœããªãããè¯ãæ瞟ããšãããšã¯èå³æ·±ãïŒãæåž«ã®åå ãªãã«è¡ãããšã¯ãŸã äžå¯èœã§ãã
䟿å©ãªãªã³ã¯
ç¥çåŠç¿ã·ã¹ãã ã®ç 究ç¶æ³ã®ããªãå®å
šã§æ¯èŒçæ°é®®ãªæŠèŠãæžãããæ¬ãšããŠãç§ã¯æ¬WoolfãBeverly ParkïŒ2009ïŒããå§ãããŸãã ã€ã³ããªãžã§ã³ãã€ã³ã¿ã©ã¯ãã£ããã¥ãŒã¿ãŒã®æ§ç¯ã ã¢ãŒã¬ã³ã»ã«ãŠããã³ã ISBN 978-0-12-373594-2ã
ã»ãŒæ¯å¹Žãã€ã³ããªãžã§ã³ããã¥ãŒã¿ãªã³ã°ã·ã¹ãã ã®äŒè°ããããŸãã
ITS 2010ã¯ãããããŒã°ïŒç±³åœïŒãITS 2012-ã¯ã¬ã¿ã§éå¬ãããŸããã
AIED Societyã¯
å®æçã«äŒè°ãéå¬ããŸãã
- Shapiro JAã§ã®çåŸã®å
¥åã蚺æããããã®ä»£æ°ãµãã·ã¹ãã
ç©çæå°ã·ã¹ãã - VanLehn K.ïŒet alãïŒThe Andes Physicsåå¥æå°ã·ã¹ãã ïŒåŠãã æèš
- Baker RSJdïŒãªã©ïŒã®ã»ã³ãµãŒããªãŒã®åœ±é¿æ€åºã«åããŠ
èªç¥æåž«ä»£æ° - Baker RSJdïŒãªã©ïŒåŠçã®è¡åã®ã©ããªã³ã°
ããã¹ããªãã¬ã€ã§ããéããããæ£ç¢ºã« - ã¹ãã«ããN.V. 远跡ç¥çæè²ã·ã¹ãã ã§ã®äœæ¥ã®å±¥æŽã«å¿ããåŠçã®ç²Ÿç¥ç¶æ
ã®èªååæ
- B. de BoulayãSoldato T.ã§ã®åæ©ä»ãæŠè¡ã®å®è£
åå¥æå°ã·ã¹ãã