翻蚳è
ããïŒãã®ããã¹ãã¯ãææãé床ã«ãåããå Žæã®ããã«ãå°ããªç¥èªã§ç€ºãããŠããŸãã èè
ã¯ãç¹å®ã®ãããã¯ãããŸãã«ãåçŽãŸãã¯æåãããããã«èŠããããšãæ£ããèŠåããŠããŸãã ããã«ãããããããå人çã«ã¯ããã®ããã¹ãã¯ãã¢ã«ãŽãªãºã ã®è€éãã®åæã«é¢ããæ¢åã®ç¥èãåçåããã®ã«åœ¹ç«ã¡ãŸããã ä»ã®èª°ãã«åœ¹ç«ã€ããšãé¡ã£ãŠããŸãã
å
ã®èšäºã®éãå€ããããç§ã¯ãããéšåã«åå²ããŸãããããã®ãã¡åèš4ã€ã«ãªããŸãã
ç§ã¯ïŒãã€ãã®ããã«ïŒç¿»èš³ã®åè³ªã®æ¹åã«é¢ããPMã®ã³ã¡ã³ãã«éåžžã«æè¬ããŸããã¯ããã«
ã¯ãŒã«ã§æ®åããããã°ã©ã ãæžãçŸä»£ã®ããã°ã©ããŒã®å€ãã¯ãçè«çãªã³ã³ãã¥ãŒã¿ãŒãµã€ãšã³ã¹ã®éåžžã«ææ§ãªèããæã£ãŠããŸãã ããã¯ã圌ããåªç§ãªã¯ãªãšã€ãã£ãã¹ãã·ã£ãªã¹ãã§ããç¶ããããšã劚ãããã®ã§ã¯ãããŸããã圌ããäœæãããã®ã«æè¬ããŠããŸãã
ãã ããçè«ã®ç¥èã«ãå©ç¹ããããéåžžã«æçšã§ãã ãã®èšäºã¯ãåªããå®è·µè
ã§ãããçè«ã®çè§£ãäžååãªããã°ã©ããŒã察象ã«ãæãå®çšçãªããã°ã©ãã³ã°ããŒã«ã®1ã€ããããã°Oãè¡šèšæ³ãšã¢ã«ãŽãªãºã ã®è€éãã®åæã玹ä»ããŸãã åŠè¡ç§åŠã®åéãšåçšãœãããŠã§ã¢ã®äœæã®äž¡æ¹ã§åãã人ãšããŠãç§ã¯ãããã®ããŒã«ãå®éã«éåžžã«åœ¹ç«ã€ãšæããŸãã ãã®èšäºãèªãã åŸããããããªãèªèº«ã®ã³ãŒãã«é©çšããŠãããã«æ¹åã§ããããšãé¡ã£ãŠããŸãã ãŸãããã®æçš¿ã§ã¯ããããã°OãããæŒžè¿çæ¯ãèããããææªã®å Žåã®åæããªã©ãã³ã³ãã¥ãŒã¿ãŒãµã€ãšã³ã¹ã®çè«å®¶ã䜿çšããäžè¬çãªçšèªã®çè§£ããããããŸãã
ãã®ããã¹ãã¯ãã®ãªã·ã£ãŸãã¯
ã³ã³ãã¥ãŒã¿ãŒãµã€ãšã³ã¹ã®åœéãªãªã³ããã¯ã«åå ããŠããä»ã®åœã®é«æ ¡çãåŠçã®ã¢ã«ãŽãªãºã ã®ç«¶äºãªã©ã察象ãšããŠããŸãã ãã®ãããè€éãªæ°åŠçåé¡ã«é¢ããäºåç¥èã¯äžèŠã§ãããã¢ã«ãŽãªãºã ã®ãããªãç ç©¶ã®åºç€ãæäŸãããããã®èåŸã«ããçè«ããã£ãããšçè§£ããŸãã ãã€ãŠããŸããŸãªã³ã³ãã¹ãã«ããããåå ãã人ãšããŠãå
¥éè³æããã¹ãŠèªãã§çè§£ããããšã匷ããå§ãããŸãã ãã®ç¥èã¯ãã¢ã«ãŽãªãºã ãšããŸããŸãªé«åºŠãªæè¡ãåŒãç¶ãåŠç¿ããå Žåã«äžå¯æ¬ ã§ãã
ãã®ããã¹ãããçè«çãªã³ã³ãã¥ãŒã¿ãŒãµã€ãšã³ã¹ã®çµéšãããŸããªãå®è·µçãªããã°ã©ããŒã«åœ¹ç«ã€ããšãé¡ã£ãŠããŸãïŒæãåºæ¿ãåãããœãããŠã§ã¢ãšã³ãžãã¢ã倧åŠã«é²åŠããããšããªããšããäºå®ã¯é·å¹Žã®äºå®ã§ãïŒã ãããããã®èšäºã¯åŠçã察象ãšããŠãããããæã«ã¯æç§æžã®ããã«èãããŸãã ããã«ãäžéšã®ãããã¯ã¯ããªãã«ã¯åçŽãããããã«èŠãããããããŸããïŒäŸãã°ããã¬ãŒãã³ã°äžã«ãããã«ééãããããããŸããïŒã ããªããããããçè§£ããŠãããšæãããããããã®ç¹ãã¹ãããããŠãã ããã ç«¶æã«åå ããåŠçã¯ãå¹³åçãªå®è·µè
ãããã¢ã«ãŽãªãºã çè«ãããããçè§£ããå¿
èŠããããããä»ã®ã»ã¯ã·ã§ã³ã¯å°ãæ·±ããããçè«çã«ãªããŸãã ãããããããã®ããšãç¥ãããšã¯ããã»ã©æçšã§ã¯ãªããç©èªã®çµéããã©ãããšã¯ããã»ã©é£ãããªãã®ã§ãããããããªãã®æ³šæã«å€ããã§ãããã å
ã®ããã¹ãã¯é«æ ¡çã«éä¿¡ããããããç¹å¥ãªæ°åŠçç¥èã¯å¿
èŠãªããããããã°ã©ãã³ã°ã®çµéšããã人ïŒããšãã°ãååž°ãšã¯äœãïŒã¯åé¡ãªãçè§£ã§ããŸãã
ãã®èšäºã§ã¯ãè°è«ã®ç¯å²ãè¶
ããè³æãžã®å€ãã®è峿·±ããªã³ã¯ãèŠã€ããã§ãããã ããªããããã°ã©ããŒã§ããå Žåããããã®æŠå¿µã®ã»ãšãã©ã«ç²ŸéããŠããå¯èœæ§ããããŸãã ã³ã³ãã¹ãã«åå ããåå¿è
ã®åŠçã®å Žåããããã®ãªã³ã¯ãã¯ãªãã¯ãããšããŸã ç ç©¶ããŠããªãã³ã³ãã¥ãŒã¿ãŒãµã€ãšã³ã¹ãšãœãããŠã§ã¢éçºã®ä»ã®åéã«é¢ããæ
å ±ãåŸãããŸãã ããããåç
§ããŠãèªåã®ç¥èãå¢ãããŠãã ããã
ãBig Oãè¡šèšæ³ãšã¢ã«ãŽãªãºã ã®è€éãã®åæã¯ãå®çšçãªããã°ã©ããŒãšåå¿è
ã®åŠçã®äž¡æ¹ãã圹ã«ç«ããªããšçè§£ããã®ãé£ãããæããããŸãã¯äžè¬çã«åé¿ãããããšãå€ãããšã§ãã ãããããããã¯äžèŠãããšæãããã»ã©è€éã§é£è§£ã§ã¯ãããŸããã ã¢ã«ãŽãªãºã ã®è€éãã¯ãããã°ã©ã ãŸãã¯ã¢ã«ãŽãªãºã ã®åäœéåºŠãæ£åŒã«æž¬å®ããããã®åãªãæ¹æ³ã§ãããããã¯éåžžã«å®çšçãªç®æšã§ãã ãã®ãããã¯ã«é¢ããå°ãã®åæ©ä»ãããå§ããŸãããã
ããæ°
ã³ãŒãã®åäœéåºŠãæž¬å®ããããŒã«ãããããšã¯ãã§ã«ããã£ãŠããŸãã ãããã¯
ãããã¡ã€ã©ãŒãšåŒã°ããããã°ã©ã ã§ãå®è¡æéãããªç§åäœã§æ±ºå®ããããã«ããã¯ãç¹å®ããŠæé©åããŸãã ããããããã¯äŸ¿å©ãªããŒã«ã§ãããã¢ã«ãŽãªãºã ã®è€éãã«é¢ä¿ããŠããŸããã ã¢ã«ãŽãªãºã ã®è€éãã¯ãçæ³çãªã¬ãã«ã§ã®2ã€ã®ã¢ã«ãŽãªãºã ã®æ¯èŒã«åºã¥ããŠãããããã°ã©ãã³ã°èšèªã®å®è£
ãããã°ã©ã ãå®è¡ãããŠããããŒããŠã§ã¢ããŸãã¯ãã®CPUã®ã³ãã³ãã»ãããªã©ã®äœã¬ãã«ã®è©³çްãç¡èŠããããšã§ãã å®éã«ã¯ãã¢ã«ãŽãªãºã ããããããäœã§ããããšãã芳ç¹ã§æ¯èŒããããšæããŸããèšç®ãã©ã®ããã«è¡ããããã«ã€ããŠã®ã¢ã€ãã¢ã§ãã ããã§ã¯ããªç§ãã«ãŠã³ãããŠãããŸã圹ã«ç«ã¡ãŸããã äœã¬ãã«ã®èšèªïŒããšãã°ã
assembler ïŒã§æžãããæªãã¢ã«ãŽãªãºã ã¯ãé«ã¬ãã«ã®ããã°ã©ãã³ã°èšèªïŒããšãã°ã
Pythonã
Ruby ïŒã§æžãããè¯ãã¢ã«ãŽãªãºã ãããã¯ããã«é«éã§ããããšã倿ãããããããŸããã ããã§ããæè¯ã®ã¢ã«ãŽãªãºã ããå®éã«äœã§ããããæ±ºå®ããæãæ¥ãŸããã
ã¢ã«ãŽãªãºã ã¯çŽç²ã«èšç®çãªããã°ã©ã ã§ããããããã¯ãŒã¯ã¿ã¹ã¯ããŠãŒã¶ãŒI / Oãªã©ãã³ã³ãã¥ãŒã¿ãŒã«ãã£ãŠé »ç¹ã«å®è¡ãããããšã¯ãããŸããã è€éãã®åæã«ããããã®ããã°ã©ã ãèšç®ãå®è¡ãããšãã®é床ãç¥ãããšãã§ããŸãã çŽç²ãª
èšç®æäœã®äŸãšããŠã¯ã
æµ®åå°æ°ç¹æ°ã®æäœïŒå ç®ãšä¹ç®ïŒãRAMã«ããããŒã¿ããŒã¹ããç¹å®ã®å€ãæ€çŽ¢ã人工ç¥èœïŒAIïŒã䜿çšããŠãã£ã©ã¯ã¿ãŒã®åããæ±ºå®ããã²ãŒã å
ã§çãè·é¢ã ãç§»åããããã«ããŸããŸãã¯ãæååã«äžèŽãã
æ£èŠè¡šçŸãã¿ãŒã³ãèµ·åããŸãã æããã«ãã³ã³ãã¥ãŒãã£ã³ã°ã¯ã³ã³ãã¥ãŒã¿ãŒããã°ã©ã ã®ããããšããã«ãããŸãã
è€éãã®åæã«ãããå
¥åããŒã¿ã¹ããªãŒã ãå¢å ãããšãã®ã¢ã«ãŽãªãºã ã®åäœã説æããããšãã§ããŸãã å
¥åã§1000åã®èŠçŽ ã䜿çšããŠã¢ã«ãŽãªãºã ã1ç§éå®è¡ããå Žåããã®å€ã2åã«ãããšã©ããªããŸããïŒ ãŸããé«éã§åäœããŸããã1.5åéããªããŸããã4åé
ããªããŸããïŒ ããã°ã©ãã³ã°ã®å®è·µã§ã¯ããã®ãããªäºæž¬ã¯éåžžã«éèŠã§ãã ããšãã°ã1,000人ã®ãŠãŒã¶ãŒã§åäœããWebã¢ããªã±ãŒã·ã§ã³çšã®ã¢ã«ãŽãªãºã ãäœæãããã®å®è¡æéãæž¬å®ããè€éæ§åæã䜿çšãããšããŠãŒã¶ãŒæ°ã2,000ã«å¢ãããšãã«äœãèµ·ããããããªãããããŸãã ã¢ã«ãŽãªãºã ã®æ§ç¯ã«ãããç«¶äºã«ã€ããŠã¯ãè€éæ§åæã«ãããã³ãŒããæ£ç¢ºæ§ãæ€èšŒããããã«æå€§ã®ãã¹ãã§å®è¡ãããæéã®é·ããçè§£ã§ããŸãã ãããã£ãŠãå°éã®å
¥åããŒã¿ã§ããã°ã©ã ã®äžè¬çãªåäœã決å®ãããšã倧éã®ããŒã¿ãããŒã§ããã°ã©ã ã«äœãèµ·ããããç¥ãããšãã§ããŸãã ç°¡åãªäŸããå§ããŸãããïŒé
åã®æå€§èŠçŽ ãèŠã€ããã
ã«ãŠã³ãåœä»€
ãã®èšäºã§ã¯ãããŸããŸãªããã°ã©ãã³ã°èšèªã䜿çšããŠäŸãå®è£
ããŸãã ãããã®ã©ãã«ã粟éããŠããªããŠãå¿é
ããªãã§ãã ãã-ããã°ã©ãã³ã°ãã§ãã人ãªã誰ã§ãåé¡ãªããã®ã³ãŒããèªãããšãã§ããŸããããã¯åçŽã§ãããå®è£
èšèªã®ãšããŸããã¯ãªã€ãŸããªããã®ã䜿çšããªãããã§ãã ããªãããªãªã³ãã¢ãŒãã®åŠçãªããã»ãšãã©ã®å Žå
C ++ã§æžããŠãã ããã ãã®å ŽåãC ++ã䜿çšããŠæŒç¿ãè¡ããããã«ç·Žç¿ããããšããå§ãããŸãã
é
åã®æå€§èŠçŽ ã¯ãæãåçŽãªã³ãŒãã¹ããããã䜿çšããŠèŠã€ããããšãã§ããŸãã ããšãã°ã
Javascriptã§èšè¿°ããããã®ã ãµã€ãº
n
å
¥åé
å
äžãããã
n
ïŒ
var M = A[ 0 ]; for ( var i = 0; i < n; ++i ) { if ( A[ i ] >= M ) { M = A[ i ]; } }
æåã«ãããã§èšç®ããã
åºæ¬åœä»€ã®æ°ãèšç®ããŸãã äžåºŠã ããããè¡ããŸã-çè«ãæ·±ãæãäžãããšããã®ãããªå¿
èŠæ§ã¯ãªããªããŸãã ããããä»ã®ãšãããç§ãã¡ãããã«è²»ããæéã«ææ
¢ããŠãã ããã ãã®ã³ãŒããåæããéçšã§ãã³ãŒããåçŽãªåœä»€ã«åå²ããããšã¯çã«ããªã£ãŠããŸããããã¯ãããã»ããµãããã«ãŸãã¯ããã«è¿ããšããã§å®è¡ã§ããã¿ã¹ã¯ã§ãã ããã»ããµãæ¬¡ã®æäœãåäžã®åœä»€ãšããŠå®è¡ã§ãããšä»®å®ããŸãã
- 倿°ã«å€ãå²ãåœãŠã
- é
åå
ã®ç¹å®ã®èŠçŽ ã®å€ãèŠã€ãã
- 2ã€ã®å€ãæ¯èŒãã
- å¢åå€
- åºæ¬çãªç®è¡æŒç®ïŒäŸïŒå ç®ããã³ä¹ç®ïŒ
åå²ïŒ
if
æ¡ä»¶ã®èšç®åŸã®ã³ãŒãã®
else
éšåãš
else
éšåã®éžæïŒã¯ç¬éçã§ãããšä»®å®ããèšç®ã®éã«ãã®åœä»€ãèæ
®ããŸããã äžèšã®ã³ãŒãã®æåã®è¡ã®å ŽåïŒ
var M = A[ 0 ];
A[0]
ãæ€çŽ¢ãã
M
å€ãå²ãåœãŠãããã®2ã€ã®æç€ºãå¿
èŠã§ãïŒ
n
åžžã«å°ãªããšã1ã§ãããšä»®å®ããŸãïŒã ãããã®2ã€ã®åœä»€ã¯ã
n
ã®å€ã«é¢ä¿ãªããã¢ã«ãŽãªãºã ã«å¿
èŠã§ãã
for
ã«ãŒããç¶ç¶çã«åæåãããããã«2ã€ã®ã³ãã³ããå²ãåœãŠãããŸãïŒå²ãåœãŠãšæ¯èŒã
i = 0; i < n;
ããã¯ãã¹ãŠã
for
ã®æåã®å®è¡åã«çºç
for
ãŸãã æ°ããå埩ã®ãã³ã«ãããã«2ã€ã®åœä»€ããããŸã
i
ã€ã³ã¯ãªã¡ã³ããšãã«ãŒãã忢ããæéãã©ããããã§ãã¯ããæ¯èŒã§ãã
++i; i < n;
ãããã£ãŠãã«ãŒãã®æ¬äœã®å
容ãç¡èŠããå Žåããã®ã¢ã«ãŽãªãºã ã®åœä»€ã®æ°ã¯
4 + 2n
-
for
ã«ãŒãã®éå§æã«4ã€ãåå埩ã«2ã€ããããã®ãã¡
n
åã§ãã ããã§ã
n
ããããã°ãã¢ã«ãŽãªãºã ã«å¿
èŠãªåœä»€ã®æ°ããããããã«æ°åŠé¢æ°
f(n)
ãå®çŸ©ã§ããŸãã ç©ºã®æ¬äœãæã€forã«ãŒãã®å Žåã
f( n ) = 4 + 2n
ã
ææªã®ã±ãŒã¹åæ
ã«ãŒãã®æ¬äœã«ã¯ãé
åå
ã®æ€çŽ¢æäœãšåžžã«çºçããæ¯èŒããããŸãã
if ( A[ i ] >= M ) { ...
ãã ãã
if
æ¬äœã¯ãé
åã®å®éã®å€ã«å¿ããŠéå§ããå Žåãšéå§ããªãå ŽåããããŸãã
A[ i ] >= M
ãçºçã
A[ i ] >= M
å Žåã2ã€ã®è¿œå ã³ãã³ããå®è¡ããŸããé
åå
ã®æ€çŽ¢ãšå²ãåœãŠïŒ
M = A[ i ]
åœä»€ã®æ°ã
n
ã ãã§ãªãç¹å®ã®å
¥åå€ã«ãäŸåããããã«ãªã£ãããã
f(n)
ããã»ã©ç°¡åã«æ±ºå®ã§ããªããªããŸããã ããšãã°ã
A = [ 1, 2, 3, 4 ]
ããã°ã©ã ã«ã¯A = [4ã3ã2ã1
A = [ 1, 2, 3, 4 ]
å Žåãããå€ãã®ã³ãã³ããå¿
èŠã§ãã ã¢ã«ãŽãªãºã ãåæãããšããææªã®å Žåã®ã·ããªãªãèæ
®ããããšãã»ãšãã©ã§ãã ç§ãã¡ã®å Žåã¯ã©ããªããŸããïŒ ã¢ã«ãŽãªãºã ãå®äºããããã«æãå€ãã®æç€ºãå¿
èŠã«ãªãã®ã¯ãã€ã§ããïŒ åçïŒ
A = [ 1, 2, 3, 4 ]
ããã«ãé
åãæé ã§äžŠã¹ãããŠããå Žåã ãã®åŸã
M
ãæ¯ååå²ãåœãŠãããæå€§æ°ã®ããŒã ãäžããããŸãã çè«å®¶ã¯ããã«å¯ŸããŠå¥åŠãªååãæã£ãŠããŸã-
æãäžå©ãªã±ãŒã¹ã®åæã¯ãæã倱æãããªãã·ã§ã³ã®åãªãæ€èšã«éããŸããã ãããã£ãŠãææªã®å Žåãã«ãŒãã®æ¬äœã§ã³ãŒããã4ã€ã®åœä»€ãèµ·åããã
f( n ) = 4 + 2n + 4n = 6n + 4
ãŸãã
挞è¿çæå
äžèšã§ååŸãã颿°ã䜿çšãããšãã¢ã«ãŽãªãºã ã®é床ãéåžžã«ããããããŸãã ããããç§ãçŽæããããã«ãããã°ã©ã ã§ããŒã ãæ°ãããªã©ã®éå±ãªã¿ã¹ã¯ãåžžã«è¡ãå¿
èŠã¯ãããŸããã ããã«ã䜿çšããããã°ã©ãã³ã°èšèªã®åèŠå®ãå®è£
ããããã«å¿
èŠãªç¹å®ã®ããã»ããµãŒã®åœä»€æ°ã¯ããã®èšèªã®ã³ã³ãã€ã©ãŒãšäœ¿çšå¯èœãªåœä»€ã»ããïŒããŒãœãã«ã³ã³ãã¥ãŒã¿ãŒã®AMDãŸãã¯Intel PentiumãPlaystation 2ã®MIPSãªã©ïŒã«äŸåããŸãã åã«ããã®çš®ã®æ¡ä»¶ãç¡èŠããã€ããã§ãããšèšããŸããã ãããã£ãŠã颿°
f
ãããã£ã«ã¿ãŒãã«æž¡ããŠãçè«å®¶ã泚æãæããªãããšã奜ããã€ããŒãªè©³çްãã¯ãªã¢ããŸãã
6n + 4
颿°ã¯ã
6n
ãš
4
2ã€ã®èŠçŽ ã§æ§æãããŠããŸãã è€éããåæããå Žåã
n
倧å¹
ã«å¢å ããåœä»€ãã«ãŠã³ãããæ©èœã§äœãèµ·ãã£ãŠããã®ãã ã
n
éèŠã§ãã ããã¯ããææªã®ã·ããªãªããšãã以åã®èãæ¹ãšäžèŽããŸããç§ãã¡ã¯ãäœãå°é£ãªããšãããããåŸãªããšãã«ãæªãç¶æ
ãã«ããã¢ã«ãŽãªãºã ã®åäœã«èå³ããããŸãã ããã¯ãã¢ã«ãŽãªãºã ãæ¯èŒãããšãã«éåžžã«åœ¹ç«ã€ããšã«æ³šæããŠãã ããã ãããã®1ã€ã倧ããå
¥åããŒã¿ã¹ããªãŒã ã§ä»ã®1ã€ã«åã£ãŠããå Žåãããã¯ããé«éã§ãå°ãããŠè»œãã¹ããªãŒã ã«ãšã©ãŸãå¯èœæ§ããããŸãã ãããã
n
å¢å ãšãšãã«ãã£ããå¢å ãã颿°ã®èŠçŽ ãæšãŠã匷ãæé·ããèŠçŽ ã ããæ®ãçç±ã§ãã æããã«ã
n
ã®å€ã«é¢ä¿ãªã4ã¯4ã®ãŸãŸ
6n
å察ã«
6n
ã¯å¢å ããŸãã ãããã£ãŠãæåã«è¡ãããšã¯4ããããããã
f( n ) = 6n
ã®ã¿ã«ããŸãã
4ãåã«ãåæå宿°ããšèããã®ã¯çã«ããªã£ãŠããŸãã ããã°ã©ãã³ã°èšèªãç°ãªããšãèšå®ã«æéããããå ŽåããããŸãã ããšãã°ãJavaã¯æåã«
ä»®æ³ãã·ã³ãåæåããå¿
èŠããããŸãã ãããŠãããã°ã©ãã³ã°èšèªã®éããç¡èŠããããšã«åæããã®ã§ããã®å€ãåã«ç Žæ£ããŸãã
ç¡èŠã§ãã2çªç®ã®ããšã¯ã
n
åã®èŠå ã§ãã ãããã£ãŠã颿°ã¯
f( n ) = n
ãŸãã ã芧ã®ãšãããããã«ããäœæ¥ãéåžžã«ç°¡åã«ãªããŸãã ç¹°ãè¿ããŸãããç°ãªãããã°ã©ãã³ã°èšèªïŒPLïŒéã®ã³ã³ãã€ã«æéã®éãã«ã€ããŠèããå Žåã宿°ã®èŠçŽ ãç Žæ£ããããšã¯çã«ããªã£ãŠããŸãã ããPLã®ãé
åæ€çŽ¢ãã¯ãå¥ã®PLãšã¯ãŸã£ããç°ãªãæ¹æ³ã§ã³ã³ãã€ã«ã§ããŸãã ããšãã°ãCã§ã¯ã
A[ i ]
å®è¡ã«ã¯ã
i
ã宣èšãããé
åã®ãµã€ãºãè¶
ããªãããšã®ç¢ºèªã¯å«ãŸããŸãããã
Pascalã®å Žåã¯ååšããŸãã ãããã£ãŠããã®Pascalã³ãŒãïŒ
M := A[ i ]
Cã®ä»¥äžãšåçïŒ
if ( i >= 0 && i < n ) { M = A[ i ]; }
ãã®ãããããŸããŸãªããã°ã©ãã³ã°èšèªããåœä»€æ°ã«åœ±é¿ããããŸããŸãªèŠå ã®åœ±é¿ãåããããšãæåŸ
ããã®ã¯çã«ããªã£ãŠããŸãã ãã®äŸã§ã¯ãæé©åã®æ©äŒãç¡èŠããããã ãPascalã³ã³ãã€ã©ã䜿çšããŠããŸãããCã®1ã€ã§ã¯ãªããé
åèŠçŽ ãžã®ã¢ã¯ã»ã¹ããšã«3ã€ã®Pascalåœä»€ãå¿
èŠã§ãã ãã®èŠå ãç¡èŠããããšã¯ãç¹å®ã®ããã°ã©ãã³ã°èšèªéã®éããç¡èŠãããšããäž»æµã§ãããã¢ã«ãŽãªãºã èªäœã®ã¢ã€ãã¢ãã®ãã®ã®åæã«çŠç¹ãåœãŠãŠããŸãã
äžèšã®ãã£ã«ã¿ãŒïŒããã¹ãŠã®å åããããããããããã³ãæå€§èŠçŽ ã®ã¿ãæ®ããïŒã¯ããšãã«
挞è¿çæåãšåŒã°ãããã®ãæäŸããŸãã
f( n ) = 2n + 8
ã颿°
f( n ) = n
ã§èšè¿°ãããŸãã æ°åŠã®èšèªã§ã¯ã
n
ãç¡é倧ã«ãªãåŸåãããããã颿°
f
éçã«èå³ããããŸãã ãã®æ£åŒãªãã¬ãŒãºã®æå³ãååã«çè§£ããŠããªããŠãå¿é
ããå¿
èŠã¯ãããŸãããå¿
èŠãªãã®ã¯ãã¹ãŠããã£ãŠããŸãã ïŒäœè«ïŒå³å¯ã«èšãã°ãæ°åŠçå®åŒåã§ã¯éçã®å®æ°ãç Žæ£ããããšã¯ã§ããŸããã§ããããçè«çãªæ
å ±åŠã®ç®çã®ããã«ãäžèšã®çç±ã§ãããè¡ããŸãïŒã ãã®æŠå¿µãå®å
šã«çè§£ããããã«ãããã€ãã®ã¿ã¹ã¯ãå®è¡ããŠã¿ãŸãããã

宿°å åãç Žæ£ããæãæé·ã®éãèŠçŽ ã®ã¿ãæ®ããšããååã䜿çšããŠã次ã®äŸã®æŒžè¿ç·ãèŠã€ããŸãã
f( n ) = 5n + 12
ã¯f( n ) = n
ãäžããŸãã
æ ¹æ ã¯äžèšãšåãã§ããf( n ) = 109
ã¯f( n ) = 1
ãŸãã
109 * 1
ã§ä¿æ°ãèœãšããŸããã颿°ããŒãã§ã¯ãªãããšã瀺ãã«ã¯1ãå¿
èŠã§ãf( n ) = n
2 + 3n + 112
ã¯f( n ) = n
2ãäžãã
ããã§ã n
2ã¯3n
ããéãæé·ãã 3n
ã¯112
ããéãæé·ããŸãf( n ) = n
3 + 1999n + 1337
ã¯f( n ) = n
3ãäžãã
n
åã®å åã®å€ã¯å€§ããã«ãããããããããã«å€§ããn
èŠã€ããããšãã§ãããšä¿¡ããŠããããã f( n ) = n
3ã¯1999n
ããã1999n
ïŒäžèšã®å³ãåç
§ïŒf( n ) = n + sqrt( n )
ã¯f( n ) = n
åŒæ°ãsqrt( n )
ãããéãæé·ããã«ã€ããŠn
ãå¢å ãããã
æŒç¿1- fïŒnïŒ= n 6 + 3n
- fïŒnïŒ= 2 n + 12
- fïŒnïŒ= 3 n + 2 n
- fïŒnïŒ= n n + n
ãã®ã¿ã¹ã¯ãå®äºããã®ã«åé¡ãããå Žåã¯ãåŒã§ååã«å€§ãã
n
眮ãæããã ãã§ãã©ã®ã¡ã³ããŒã®å€ã倧ãããã確èªã§ããŸãã ãšãŠãç°¡åã§ãããïŒ