
100é建ãŠã®å»ºç©ãš2ã€ã®ã¬ã©ã¹çã®ã¿ã¹ã¯ã¯ãã€ã³ã¿ãŒãããã³ãã¥ããã£ã«é·ãé
æ©ãŸãããŠããŸããïŒ
Habrahabr ã
LJ ã
ãã©ãŒã©ã ïŒã 奜å¥å¿mindçãªå¿ã¯ç¢ºãã«èªåèªèº«ã«åããããŸããäžè¬çãªå Žåãåºã
n åãããŒã«ã
kåãããšãäœããã¹ããïŒ
n = 2
40 ã
k = 10ã®å Žåã«ïŒå°ãªããšããããïŒäœåã®ã¹ããŒãå¿
èŠã«ãªããšããŸããããïŒ
ãããã¯ãŒã¯ã®åºå€§ããšç§èªèº«ã®ç ç©¶ã§èŠã€ãã£ãæ
å ±ãçµã¿åãããããšã§ããã®åé¡ã解決ããããã®éèŠãªã¢ã€ãã¢ãããã³ç ç©¶äžã«åŸãããäž»ãªçµæãšè峿·±ã芳å¯ã«ã€ããŠã®æçš¿ãæç€ºããããšæããŸãã
ãã®ããã
æ¡ä»¶ãè¿°ã¹ãŸã
ãkåã®åäžã®ã¬ã©ã¹çããããŸãã ã
n ãéã®ã
x ãé以äžã®éããèœã¡ãå Žåãã
x -1ãéããäžã®éãŸã§èœã¡ãå Žåããããã¯å£ããŸããã
xã®å€
ã¯äžæã§ããã1ãã
nãŸã§ã®ä»»æã®èªç¶æ°ã«ããããšãã§ããŸãã å¿
é ã§ãïŒ
1.
xãèŠã€ããããšãä¿èšŒãããŠããæå°è©Šè¡åæ°ïŒããŒã«ã¹ããŒïŒã決å®ããŸãïŒææªã®å Žåããã®å€ã«é¢ä¿ãªãïŒã
2.äžèšã®ãã¹ãæ°ä»¥äžã§
xãèŠã€ããããšãä¿èšŒãããŠããã¢ã«ãŽãªãºã ãéçºããŸãã
æå°ãã¹ãæ°ã®æŠç®
2ã€ã®æ¥µç«¯ãªã±ãŒã¹ãåºå¥ããã®ã¯ç°¡åã§ãïŒ
AïŒ
ããŒã«ã¯1ã€ãããã
ãŸãã ã æ¬¡ã«ãåããã¢ãããæåã®ããã¢ããé çªã«ãåå²ããããã
n -1ãããã¢ã«å°éãããŸã§ãé çªã«ã¹ããŒããå¿
èŠããããŸãã ããŒã«ãã
a ãããã¢ïŒ1â€aâ€n-1ïŒã§ã¯ã©ãã·ã¥ããå Žåã
x =
aã§ãã ã
n -1ãçªç®ã«åå²ãããªãã£ãå Žåã
x =
n ã ææªã®å Žåã
n -1ã®ãã¹ããå¿
èŠã«ãªããŸãã
BïŒ
å€ãã®ããŒã«ããã ïŒã€ãŸããkâ¥log
2 n ïŒã ãã®åŸãããªãã¯é©çšããããšãã§ããŸã
æ€çŽ¢æ¹æ³ãã»ã°ã¡ã³ããååã«åå²ãããå®¶ã®äžå€®ããããŒã«ãââæããŸãïŒçªå·ïŒ n /2âã®åºãããwhere n /2âã¯n / 2以äžã®æå°æŽæ°ã§ãïŒã ã¯ã©ãã·ã¥ããªãå Žåã¯ã建ç©ã®äžååã®äžå€®ããæããŸããã¯ã©ãã·ã¥ããå Žåã¯ã建ç©ã®äžååã®äžå€®ãã2çªç®ã®ããŒã«ãæããŸãã以éãåæ§ã«ã建ç©ã®å¯Ÿå¿ããã»ã¯ã·ã§ã³ãååã«ãåå²ãããŸãã
ææªã®å Žåãâlog2 nâã®ãã©ã€ã¢ã«ãšåãæ°ã®ããŒã«ãå¿
èŠã«ãªããŸãïŒçªç¶æãããã³ã«å£ããŸãïŒã
ãããã£ãŠã
ãã¹ãã®
æå°æ°ã¯ âlog2 nâãn-1
ã®ç¯å²ã«ãããŸã ã ãã®æ°å€ã颿°
f ïŒ
n ã
k ïŒã§ç€ºããŸãã
ããšãã°ãå¹³å±ãš
kåã®ããŒã«ã®å Žåãâlog2100â= 7ã100-1 = 99ã7â€fïŒ100ã
k ïŒâ€99ã§ããäžè¬çã«ã
f ïŒ
n ã
k ïŒã®å€ã¯ã
k ã ãããã£ãŠã
f ïŒ100ã1ïŒ= 99ã
f ïŒ100ã2ïŒ= 14
f ïŒ100ã3ïŒ= 9ã
f ïŒ100ã4ïŒ= 8ã
f ïŒ100ã5ïŒ=
f ïŒ100ã6ïŒ=
f ïŒ100ã7ïŒ= ... = 7ã
é©ãã¹ãäºå®ïŒ1é建ãŠã®å»ºç©ã®å Žåã
ããã5ã€ã®ããŒã«ã§7åã®è©Šè¡ã§
xãèŠã€ããããšãã§ããŸãïŒ ã€ãŸãããã»ã°ã¡ã³ããååã«åå²ãããããšã«ããæ€çŽ¢æ¹æ³ã¯äžèœè¬ã§ã¯ãããŸãã-ããã¯é«éã§ãããå¿
èŠãªããŒã«æ°ã«é¢ããŠåžžã«æé©ãšã¯éããŸããã
ãã¹ãã®æå°æ°ãèšç®ããããã®ç¹°ãè¿ãåŒ
ããã§ã¯ãã©ã®ããã«ããŠ
f ïŒ
n ã
k ïŒã®æ£ç¢ºãªå€ãèŠã€ããã®ã§ããããïŒ
æãåçŽãªç¶æ³ã§ã¯ããã¹ãŠãæç¢ºã§ãïŒ
f ïŒ
n ã1ïŒ=
n -1ïŒã±ãŒã¹Aãåç
§ïŒã
f ïŒ
n ã
k ïŒ=âlog2 nâfor kâ¥log
2 n ïŒã±ãŒã¹Bãåç
§ïŒæ°å€
f ïŒ1ã
k ïŒ= 0ïŒããã¢ã1ã€ãããªãå Žåã¯ãåé¡ã®ç¶æ
ã«å¿ããŠæãŸããããã¢ã«ããªããŸãïŒã
nâ¥2ããã³kâ¥2ã®å ŽåãèããŠã¿ãŸããããæåã®ãã¹ãã§ã
a ãããã¢ããããŒã«ãââæã
ãå Žåã
aã¯
1ãn -1ã®ç¯å²ã§ãããšããŸãïŒã
n ãããã¢ããããŒã«ãââæããŠãæå³ã
ãããŸããïŒã 次ã®2ã€ã®çµæãèããããŸãã
åºãšãžããèš1ïŒããŒã«ãã¯ã©ãã·ã¥ããŸããã ã€ãŸãã1â€xâ€aã§ãã æªæ¢çŽ¢ã®åºã
k -1åã®ããŒã«ãã€ãŸã
xã®æ€åºãä¿èšŒããã«ã¯
ããã1ã€ã®
f ïŒ
a ã
k -1ïŒãã¹ããå¿
èŠã§ãã
åºãšãžããèš2ïŒããŒã«ã¯ã¯ã©ãã·ã¥ããŸããã§ããã ããã¯ã
a + 1â€xâ€nãæå³ããŸãã
nå ã®æªæ¢çŽ¢ã®åºã
kåã®ããŒã«ãã€ãŸã
xãèŠã€ããããšãä¿èšŒãããããã«ã¯
ããã1ã€ã®
f ïŒ
n -
a ã
k ïŒãã¹ããå¿
èŠã§ãã
ãã®çµæãã
a ãéããããŒã«ãââæããåŸã
xãèŠã€ããããšãä¿èšŒããããã«å¥ã®max {
f ïŒ
a ã
k -1ïŒã
f ïŒ
n -
a ã
k ïŒ}ãã¹ããå¿
èŠã«ãªãå ŽåããããŸãã
ãã¹ãã®æ°ãæå°éã«ãããã®ã§ãmax {
f ïŒ
a ã
k -1ïŒã
f ïŒ
n -
a ã
k ïŒ}ãæå°ãã€ãŸãmin
a {max {
f ïŒ
a ã
k -1ïŒ ã
f ïŒ
n -
a ã
k ïŒ}}ã
ãããã£ãŠã
ãã¹ãã®
æå°æ°ã¯æ¬¡ã®ãšãã
ã§ã ã
f ïŒ
n ã
k ïŒ= 1 + min
a {max {
f ïŒ
a ã
k -1ïŒã
f ïŒ
n -
a ã
k ïŒ}}ïŒåŒ1ïŒã
ãã®åŒã¯ãä»»æã®
nããã³
kã® f ïŒ
n ã
k ïŒãããã³ããŒã«ãæãããéæ°
a ïŒ
n ã
k ïŒ=
aãèšç®ããã®ã«ååã§ã-å€ãmax {
f ïŒ
a ã
k -1ïŒã
f ïŒ
n -
a ã
k ïŒ}ã¯æå°å€ã«éããŸãã
èšç®ã¯ãããšãã°
Excelã§ç°¡åã«å®è£
ã§ã
ãŸã ã
èª°ãæ°ã«ãã2åç®ããå§ãŸãåAã«ã
nã®å€ã1ããå¿
èŠãªå€ã®é ã«æžã蟌ã¿ãŸãã åBã®å¯Ÿå¿ããè¡ã«ã
f ïŒ
n ã1ïŒã®å€ãåCã«
f ïŒ
n ã2ïŒã®å€ãªã©ãæžã蟌ã¿ãŸããå³ã«1åã·ãããããšãããŒã«ã®æ°ã1ã€å¢ããŸãã
n = 1ã®å Žåã颿°
f ïŒ
n ã
k ïŒã®å€ã¯ãŒãã§ããããã察å¿ããè¡ããŒãã§åããŸãã
ã»ã«B3ã«ã
f =ïŒ
n ã1ïŒ=
n -1ã§ãããããåŒ=
A 3-1ãèšè¿°ããŸããç®çã®è¡æ°ãŸã§ã³ããŒïŒãŸãã¯ã¹ãã¬ããïŒããŸãã
ã»ã«C3ã«æ¬¡ã®åŒãèšè¿°ããŸãã
= 1 + MINïŒIFïŒB $ 2ïŒB2> BIGGESTïŒC $ 2ïŒC2; $ A $ 2ïŒ$ A2ïŒ; B $ 2ïŒB2; BIGGESTïŒC $ 2ïŒC2; $ A $ 2ïŒ$ A2ïŒïŒïŒïŒ
CTRL + SHIFT + ENTERã
æŒããŸã é
åæ°åŒãå
¥åããŸãã ã³ããŒïŒãŸãã¯ã¹ãã¬ããïŒããŠãå¿
èŠãªè¡æ°ã ãäžã«ãåãå³ã«ç§»åããŸãã
a ïŒ
n ã
k ïŒã®å€ã¯ãåãåçã«åŸã£ãŠ
f ïŒ
n ã
k ïŒã®èšç®ã«äœ¿çšãããåã®å³åŽã®åã§èšç®ãããŸãïŒè¡ã¯
nã®å€ã«å¯Ÿå¿ãã1åå³ãžã®ã·ããã¯ããŒã«ã®æ°ã1ã€å¢ããããšãæå³ããŸãã
ã¹ã¯ãªãŒã³ã·ã§ããã®ãããªç¶æ³ã§ã¯ã
a ïŒ
n ã1ïŒ= 1ã§ããããã3è¡ç®ããå§ãŸãåHã«åäœãå
¥åãããŸãïŒã±ãŒã¹Aãåç
§ããŠãåžžã«1éããã®ã¿ããŒã«ãæããŸãïŒã
ã»ã«I3ã«æ¬¡ã®åŒãèšè¿°ããŸãã
= MAXïŒïŒB $ 2ïŒB2 <C3ïŒ*ïŒBIGGESTïŒC $ 2ïŒC2; $ A $ 2ïŒ$ A2ïŒ<C3ïŒ* $ A $ 2ïŒ$ A2ïŒ
CTRL + SHIFT + ENTERã
æŒããŸã é
åæ°åŒãå
¥åããŸãã ã³ããŒïŒãŸãã¯ã¹ãã¬ããïŒããŠãå¿
èŠãªè¡æ°ã ãäžã«ãåãå³ã«ç§»åããŸãã
Xæ€çŽ¢ã¢ã«ãŽãªãºã
a ïŒ
n ã
k ïŒã®å€ãããã£ãŠããå Žåã
f ïŒ
n ã
k ïŒä»¥äžã®ãã¹ãã§æ€çŽ¢ã¢ã«ãŽãªãºã
xãèšè¿°ããã®ã¯ç°¡åã§ãã
å
¥ãå£ïŒ
nã¯å®¶ã®åºã®æ°ã
kã¯ããŒã«ã®æ°ã§ãã
åºåïŒ
x-ç®çã®ããã¢ã®çªå·ã
ã¢ã«ãŽãªãºã ã®å§ãŸãã
ã¹ããã1.倿°ãåæåããŸã
ãx ïŒ= 1.ã¹ããã2ã«é²ã¿ãŸãã
ã¹ããã2.忢æ¡ä»¶ïŒ
n = 1ã®å Žåã
xããã³STOPãåºåããããã§ãªãå Žåã¯ã¹ããã3ã«é²ã¿ãŸãã
ã¹ããã3.çªå·
x -1 +
a ïŒ
n ã
k ïŒã®åºããããŒã«ãââæããŸãã ããŒã«ãã¯ã©ãã·ã¥ããå Žåã倿°ã®å€ãæŽæ°ããŸãïŒ
n ïŒ=
a ïŒ
n ã
k ïŒã
k ïŒ=
k -1ã
ããŒã«ãã¯ã©ãã·ã¥ããªãå Žåã¯ã倿°ã®å€ãæŽæ°ããŸãïŒ
x ïŒ=
x +
a ïŒ
n ã
k ïŒã
n ïŒ=
n -
a ïŒ
n ã
k ïŒã ã¹ããã2ã«é²ã¿ãŸãã
ã¢ã«ãŽãªãºã ã®çµããã
100ããã¢ãš5ã€ã®ããŒã«ãããå Žåã7åã®è©Šè¡ã§
xãèŠã€ããæ¹æ³ã®äŸãèŠãŠã¿ãŸãããã
Excelã§æ§ç¯ãããããŒãã«ã®
a ïŒ
n ã
k ïŒã®å€ã䜿çšããŠãããŒã«ãæããããã¢ã®çªå·ãæžã蟌ã¿
ãŸã ã
åžžã«å£ããŠããå ŽåïŒ
57- >
26- >
11- >
4- >
1 ïŒå£ããŠããªãå ŽåïŒ->
2 ïŒå£ããŠããªãå ŽåïŒ->
3ããšãã°ã26éããããŒã«ãââæããåŸãã¯ã©ãã·ã¥ããªãã£ãå Žåã
n = 31ã
k = 4ã®ç¶æ³ã«ããããšãããããŸãããã®åŸãã¹ããŒã®ã·ãŒã±ã³ã¹ã¯æ¬¡ã®ããã«ãªããŸãã
57- >
26- > 26 + 15 =
41- > 26 + 7 =
33- > 26 + 3 =
29- > 26 + 1 =
27 ïŒå£ããŠããªãå ŽåïŒ-> 27 + 1 =
28 ã
ãã¹ãŠã®å¯èœãªãªãã·ã§ã³ãæ€èšããã€ããã¯ãããŸããã ãã»ã°ã¡ã³ããååã«åå²ããããšããç¹ã§ãã¢ã«ãŽãªãºã ãæ€çŽ¢æ¹æ³ãšç°ãªãããšãããããŸãã
ãã¹ãã®æå°æ°ãèšç®ããããã®ãæç€ºçãªãåŒ
ãã©ãŒãã¥ã©1ã®äž»ãªæ¬ ç¹ã¯ãèšç®ã«éåžžã«å€ãã®ãªãœãŒã¹ããããããšã§ãã 颿°å€ã®ããŒãã«ã®ãã¿ãŒã³ãæ€çŽ¢ããŠå®èšŒããããšã«ããã
k = 2ããã³
k = 3ã«ã€ããŠã®ã¿ããã®ç¹°ãè¿ãåŒãèªåã§æç€ºçã«è§£æ±ºã§ããŸããã ç¹ã«ãæåã®å Žåãçµæã¯æ¬¡ã®ããã«ãªããŸãã
f ïŒ
n ã2ïŒ=â

âã
ä»ã®èæ
®äºé
ãããåæ§ã®çµæãåŸãããŸããïŒ
èšäº ïŒèè
-Stebanoid ïŒã çå®ã¯åœŒå¥³ã®çãã§ã

ãããã¯åé¡ã®ãããã«ç°ãªãæ¡ä»¶ã«ãã£ãŠåŒãèµ·ããããŸã-æäžéããæãããšãã«ããŒã«ãå£ããå¿
èŠã¯ãããŸããã ãã®å¯èœæ§ãèæ
®ãããå Žåãçãã§ã¯ã
nã®ä»£ããã«åŒ
n + 1ã眮ãæããïŒã€ãŸããäžéã远å ããïŒå¿
èŠããããèšäºããåŒãååŸããŸãã
ããããäžè¬åŒãèŠã€ãããªãã£ããããååž°é¢ä¿ãè€éããããããåŸã
ã«åæ¢ããŸããã
irishoak ã
Bert ã
mikhail_vsãªã©ã®ãŠãŒã¶ãŒããã
f ïŒ
n ã
k ïŒã®èšç®ãæžãããŠè峿·±ãäžå¹³çã解決ã§ããçŽ æŽãããã¢ã€ãã¢ãçºèŠããã®ã¯ããã®ç¬éã§ããã
ãããè¡ãã«ã¯ãå¥ã®é¢æ°ãæ€èšããå¿
èŠããããŸãïŒ
g ïŒ
m ã
k ïŒã¯ããã¢ã®æå€§æ°ã§ããããã®äžã§
kåã®ããŒã«ãååšãã
måã®ãã¹ãã§
xã確å®ã«èŠã€ããããšãã§ããŸãã
æãåçŽãªç¶æ³ã§ã¯ããã®é¢æ°ã¯æ¬¡ã®å€ãåããŸãïŒ
g ïŒ
m ã1ïŒ=
m + 1ïŒã±ãŒã¹Aãåç
§ïŒã
g ïŒ
m ã
k ïŒ=
g ïŒ
m ã
m ïŒfor
k >
m ïŒ
m詊è¡ã¯åè§£ã§ãããã
ïŒæå€§
måã®ããŒã«ãæ®ãã®
k -
måã®ããŒã«ã¯äžèŠã§ããã颿°ã®å€ã«ã¯åœ±é¿ããŸããïŒã
mâ¥2ã
kâ¥2ã®å Žåãç¹°ãè¿ãã®åŒãå°åºã§ããŸãã
g ïŒ
m ã
k ïŒ=
g ïŒ
m -1ã
k -1ïŒ+
g ïŒ
m -1ã
k ïŒïŒåŒ2ïŒ
次ã®çç±ããç°¡åã«çè§£ã§ããŸããã a ãã®åºããããŒã«ãââæããŠå£ããå Žåã m -1åã®è©Šè¡ãšk -1ã®ããŒã«ã䜿çšããŠã 1ãaã®ç¯å²ã§xãèŠã€ããŸãã ãã®ããã«ã¯ã aã¯æ¬¡ã®æ¡ä»¶ãæºããå¿
èŠããããŸãïŒaâ€gïŒ m -1ã
k -1ïŒã ãããã£ãŠãããŒã«ãæããããšãã§ããæäžéã¯a = g ïŒ m -1ã k -1ïŒã§ãã ã¯ã©ãã·ã¥ããªãå Žåã¯ã m -1åã®è©Šè¡ãškåã®ããŒã«ããããããã䜿çšããŠå¥ã®g ïŒ m -1ã k ïŒããã¢ãæ¢çŽ¢ã§ããŸãã ãããã£ãŠãå¯èœãªéãåèšg ïŒ m -1ã k -1ïŒ+ g ïŒ m -1ã k ïŒããã¢ãæ¢çŽ¢ã§ããŸãã
åŒ1ãšã¯å¯Ÿç
§çã«ãåŒ2ã®ç¹°ãè¿ãã¯ç°¡åã«è§£æ±ºã§ããŸãã æç€ºçãªåœ¢åŒã§
g ïŒ
m ã
k ïŒã衚çŸããŸãã
g ïŒ
m ã
k ïŒ= C
m 0 + C
m 1 + C
m 2 + ... + C
m k ã
ããã§ãC
m iã¯
iã®
mã®çµã¿åããã®æ°ã§ããCm
i =
m ïŒ/ïŒ
i ïŒïŒ
m -
i ïŒïŒïŒã
ãã®å¹³çæ§ã¯ã建èšçã«ãæšå®ã§ããŸããããæšæž¬ãããŠåž°çŽæ³ã§èšŒæããããšãã§ããŸãããããã¯ã¯ããã«ç°¡åã§ãïŒããã§ã¯èšŒæããŸããïŒã
ããã§ããã¹ãã®æå°æ°ãèŠã€ããããã«ãèšç®ããå¿
èŠããããŸãïŒ
f ïŒ
n ã
k ïŒ=âlog2 nâkâ¥log
2 nã® å Žå ã
f ïŒ
n ã
k ïŒ= min {æ£ã®æŽæ°
m |
k <log
2 nã®å Žåã C
m 0 + C
m 1 + C
m 2 + ... + C
m kâ¥n}ã
ãšããã§ã
g ïŒ
m ã
k ïŒã®æŒžååŒãå°åºãããšãããã1ã€ã®æ¹æ³ã¯ã
f ïŒ
n ã
k ïŒã®ãã¹ãã§ããŒã«ãæããŠ
xãèŠã€ããããšãã§ããããã¢ã®æ°ã決å®ããŸãïŒ
a ïŒ
n ã
k ïŒ=
g ïŒ
m -1ã
k -1ïŒã
ããã§ã
m =
f ïŒ
n ã
k ïŒãã€ãŸã
a ïŒ
n ã
k ïŒ= C
f ïŒ n ã k ïŒ-1 0 + C
f ïŒ n ã k ïŒ-1 1 + C
f ïŒ n ã k ïŒ-1 2 + ... + C
f ïŒ n ã k ïŒ- k <
f ïŒ
n ã
k ïŒã®
å Žåã¯
1 k -1 ïŒåŒ3ïŒã
a ïŒ
n ã
k ïŒ= 2
f ïŒ n ã k ïŒ -kâ¥fïŒ
n ã
k ïŒã®
å Žåã¯
1 ïŒåŒ4ïŒã
çµè«ãšæå°æ°ã®è©Šéšã®åéºçè©äŸ¡
ã¿ã¹ã¯ã«çããšãç§ã¯çŽæçã«ãœãªã¥ãŒã·ã§ã³ãã©ã³ãæŠèª¬ããŸãããæåã«æ£ããããã¢ãèŠã€ããïŒã€ãŸãã¢ã«ãŽãªãºã ãéçºããïŒåçãçè§£ããæ¬¡ã«ææªã®å Žåã«å¿
èŠãªã¹ããŒã®æ°ãèŠã€ããŸãã
é©ããããšã«ããã¹ã¯ç°ãªãããšã倿ããŸãã
ãf ïŒ
n ã
k ïŒã§æå®ãããã¹ãã®æå°æ°ãèšç®ããããã®åŒããç°¡åãªã¢ã«ãŽãªãºã ãç°¡åã«ãã©ãããšãã§ããŸããã
颿°
fã«ã€ããŠã»ãšãã©äœãç¥ããªãã®ã§ã次ã®ããã«æŠç®ããŸããã
log
2 nâ€fïŒ
n ã
k ïŒâ€n-1
ã倧ããã
kã®å Žåãã€ãŸãkâ¥log
2 nã®å Žåã¯æããã«å·Šã®å¢çã«å°éãã
k = 1ã®å Žåã¯å³ã®å¢çã«å°éããããšãããããŸã
ãkã®äžéå€ã®å Žå
ãæ€çŽ¢
f ïŒ
n ã
k ïŒäžçåŒãæºããæå°ã®æ£ã®æŽæ°
m ïŒ
m 0ã§è¡šãïŒïŒ
C
m 0 + C
m 1 + C
m 2 + ... + C
m kâ¥nïŒäžçåŒ1ïŒã
ãã ãã
f ïŒ
n ã
k ïŒã®çã«æç€ºçãªåŒãååŸããããã«ãããè§£ãããšã¯ãç°¡åãªäœæ¥ã§ã¯ãªãããã§ãã ããªãã®ææ¡ãèãã®ã¯é¢çœãã§ãããã
ãã ããäžçåŒã解決ãããªãå Žåã§ããç®çã®
m 0ãäœçœ®ããç¯å²ãæšå®ã§ããŸããããã¯ã颿°
f ïŒ
n ã
k ïŒã®å€ã§ããããŸãã
äžè¬çã«ãæç€ºãããäºé
ä¿æ°ã®åã¯ã倿°
mã®æ¬¡æ°
kã®å€é
åŒãšèŠãªãããšãã§ããŸãã æ¬¡ã«ãäžçåŒ1ãã
m 0ãèŠã€ãããšãæ¬è³ªçã«ãå€é
åŒC
m 0 + C
m 1 + C
m 2 + ... + C
m k -
nã®æ£ã®æ ¹ãèŠã€ããããšã«ãªããŸãã
å€é
åŒã®æ ¹ãè©äŸ¡ã§ããã¡ãœããããããŸããããã®ããã«ã¯ãã®ä¿æ°ãç¥ãå¿
èŠããããç§ãã¡ã®å Žåããããã¯æãããã«èŠããŸãïŒæãç³ãŸããŠãããšããäºå®ã§ã¯ãªãäžæ°å³ãªéã§è¡šãããŸãïŒã ãããã£ãŠãç§ãã¡ã¯ç°ãªãè¡åããšããŸãã
æåã«ãäžçåŒ
h 1 ïŒ
m ã
k ïŒâ€C
m 0 + C
m 1 + C
m 2 + ... +ãšãªãããã«ã2ã€ã®é¢æ°
h 1 ïŒ
m ã
k ïŒãš
h 2 ïŒ
m ã
k ïŒãéžæããŸãã C
m kâ€h
2 ïŒ
m ã
k ïŒã次ã«ãåºå®
kã®å ŽåãäžçåŒ
h 1 ïŒ
m ã
k ïŒâ¥nããã³
h 2 ïŒ
m ã
k ïŒâ¥nã¯ç°¡åã«è§£ãããšãã§ããŸãã
è§£
h 2 ïŒ
m ã
k ïŒâ¥nã¯ãäžããç®çã®
m 0ã®æšå®å€ãäžããè§£
h 1 ïŒ
m ã
k ïŒâ¥nã¯äžããæšå®ããããšãçè§£ããã®ã¯ç°¡åã§ãã
äºé
ä¿æ°ã®åèšïŒé¢æ°
h 2 ïŒã®äžéã«ã€ããŠã¯ãèŠã€ãã£ãæè¯ã®çµæã¯
ãã§ã«ããã®äžçåŒã§ãïŒ
C
m 0 + C
m 1 + C
m 2 + ... + C
m kâ€

ã
解決ç

â¥n
ã¯ã以äžãããã¹ãã®æå°æ°ã®æ¬¡ã®æšå®å€ãäžããŸã ã
f ïŒ
n ã
k ïŒâ¥
k <

ã
æ£çŽãªãšãããç§ã¯ãã®åŒãããŸã奜ãã§ã¯ãããŸãã-ããã°ãããå°ããã
kã§ã®ã¿åäœããŸãã ããããããã§ããåžžã«ã§ã¯ãããŸããããæåã®ïŒç²éãªïŒè©äŸ¡ãããåªããŠããŸãã
äžè¬çã«ã颿°ã®å€ã¯
kã®å¢å ãšãšãã«æ¥éã«æžå°ãããããç¯å²ã®äžéã¯ããã»ã©éèŠã§ã¯ãããŸããã
äžéãæç¢ºã«ããããšã¯éåžžã«è峿·±ãã§ãã ãããè¡ãã«ã¯ã
h 1ãéžæããŸãã äºé
ä¿æ°ã®åèšã®äžéã§åãå
¥ãå¯èœãªçµæãèŠã€ãããŸããã§ããã äœããçºæããããšããèªèº«ã®è©Šã¿ã¯ãé¢çœãç¶æ³ã«ã€ãªãããŸããã
èããŠãC
m iâ¥

mâ¥iâ¥1ã®å Žå
åŸã§ãç§ã¯æšè«ã®ééããèŠã€ããŸããããäžå¹³çã¯ãŸã çå®ã§ãããšæãããååãªããŒãžã³ããããŸãïŒæ°å€å®éšã§ç€ºãããŠããããã«ïŒã
äžå¹³çèªäœãæºããããªãããšãããã«éèŠã§ããã

â€C
m 0 + C
m 1 + C
m 2 + ... + C
m k ã
æ®å¿µãªãããããã¯ãŸã æ£åŒã«ã¯èšŒæãããŠããŸããã瀺åçãªèãããªã³ã¯ããããŠããããåäŸã«æè¬ããŸãã
æåŸã«ãç§ã®ä»®èª¬ãçå®ã§ãããšããä»®å®ã«åºã¥ããŠãç ç©¶ãç¶ããããšã«ããŸããããããã£ãŠãçµæã®è©äŸ¡ãåéºçãšåŒã³ãŸãã
ãããã£ãŠã
h 1 ïŒ
m ã
k ïŒ=

ã
äžçåŒ
h 1 ïŒ
m ã
k ïŒâ¥nãè§£ãå¿
èŠ
ã¯ãããŸããã
mã®ã¹ãä¹ã®ä¿æ°ãããã£ãŠããã®ã§ãå€é
åŒ
h 1 ïŒ
m ã
k ïŒ
-nã®æ ¹ãæšå®ã§ããŸãã
ãã¯ã©ãŠãªã³æšå®å€ã䜿çšãã
ãš ããã®æ£ã®æ ¹ããã¹ãŠè¶
ããªãããšãããããŸã

ã
ããã¯ãç®çã®
m 0â€

ïŒè©äŸ¡2ïŒã
ç§ã®æèŠã§ã¯ãåŒã¯éåžžã«çŸããã§ã-ã³ã³ãã¯ãã§ãè峿·±ãæ¹æ³ã§äž¡æ¹ã®å€æ°ã«äŸåããæãéèŠãªããšã¯ãç¯å²ãããŸãçããŸãã
äžèšãã
f ïŒ
n ã
k ïŒãæšå®ããå¥ã®æ¹æ³ã¯ã
f ïŒ
n ã2ïŒ= toã«å¶éããããšã§ãã

âã ãã®ãã©ãŒãã¥ã©ã®ããŒã«ã®æ°ã¯èæ
®ãããŠããŸããããã¹ã³ã¢2ã«æ¯ã¹ãŠããè¯ãçµæãåŸãããå ŽåããããŸãã
確ãã«ã
äžèšã®ãã¹ãã®æå°æ°ã®æ¬¡ã®æšå®å€ãæžãããšãã§ããŸã ïŒ
f ïŒ
n ã
k ïŒâ€min {

ã

+ 1}ã
åŸãããåŒãå®éã«é©çšãããšãããšãã°ã
f ïŒ400ã4ïŒã¯9ã19ã®ç¯å²ã«ãããå®éã®å€ã¯11ã§ããããã«ãç¯å²ã®å³å¢çãäžããã®ã¯æšå®2ã§ããã
f ïŒ400ã2ïŒ = 28ã
ããšãã°ã
n = 2
40 ã
k = 10ãªã©ã®ããæ¥µç«¯ãªå€ã®å Žåãå·Šã®å¢çç·-58ãå³ã®å¢çç·-162ãååŸããŸããæ¯èŒã®ããã«ãlog
2 n = 40ã
f ïŒ
n ã2ïŒ= 1482910ãã€ãŸãæšå®1ãç¹ã«2ã¯éåžžã«ããŸãæ©èœããŸããã æ£ç¢ºãªå€ã¯ãäžçåŒ1ãè§£ãããšã§èŠã€ããããšãã§ããŸããåæãããšãçãã76ã«ãªããŸãã
ãããã«
äžèšã®ãã¹ãŠãèæ
®ãããšãäžè¬ã«2ã€ã®ã¬ã©ã¹çã®åé¡ã¯äžè¬ã«è§£æ±ºãããŠãããšèšããŸãã
æå°æ°ã®ãã¹ãã®æç€ºçãªå
¬åŒã¯ãŸã åŸãããŠããŸãããã培åºçãªæ€çŽ¢ãŸãã¯ä»ã®æ¹æ³ã§äžçåŒ1ãè§£ãããšã«ããæ±ºå®ã§ããŸãã
å
¬åŒ3ãš4ãäžããããå Žåãããã¯ãç°¡åãªã¢ã«ãŽãªãºã ã®æäœã§ç®çã®ããã¢ãèŠã€ããã®ã«ååã§ãã
åæèšç®ïŒã°ã¬ãŒã1ããã³2ïŒã¯ããã¹ãã®æå°æ°ãé
眮ãããç¯å²ã倧å¹
ã«çããããšãã§ããŸããããã¯ãæ£ç¢ºãªå€ãèšç®ããã®ã«æéãããããããå ŽåãäžèŠãªå Žåã«åœ¹ç«ã¡ãŸãã
PSïŒæçš¿ãå
¬éããããŸã§ã«ã2ãè©äŸ¡ããããã«äœ¿çšãã仮説ãã€ãŸãïŒ
C
m iâ¥

mâ¥iâ¥1ã®å Žå
ãããã£ãŠãè©äŸ¡ã¯ããã§å®äºã§ããåéºçã§ã¯ãããŸããã
åæã«ãäºé
ä¿æ°ãŸãã¯ãããã®åèšã®äžéãèæ
®ãããæç®ãžã®åç
§ã«
æè¬ããŸãã
éèŠãªUPDïŒåé¡ã®è°è«ã®äžã§ããŠãŒã¶ãŒ
grechnikã¯äºé
ä¿æ°ã®åèšã®äžéãšäžéã®ç¬èªã®ããŒãžã§ã³ãææ¡ããŸããïŒ
h 1 ïŒ
m ã
k ïŒ=

ããã³
h 2 ïŒ
m ã
k ïŒ=

ã
説æããh 1 ïŒ
m ã
k ïŒâ€C
m 0 + C
m 1 + C
m 2 + ... + C
m kâ€h
2 ïŒ
m ã
k ïŒã§ããããšã瀺ããŸãã ããã¯äžçåŒã®é£éããåŸãããŸãïŒ

â€

= C
m kâ€C
m 0 + C
m 1 + C
m 2 + ... + C
m kâ€1 +
m +

â€

ã
å·ŠåŽã®
mã®ã¹ãä¹ã®ä¿æ°ã¯å³åŽã®ä¿æ°ãã倧ãããªããããæåŸã®äžçåŒã¯çã§ãïŒå·ŠåŽã®
m lã®å Žåãä¿æ°ã¯

ãããã³å³åŽïŒ

ïŒ
ããã§
ããã¹ãã®æå°æ°ã次ã®ããã«è©äŸ¡ã§ããŸãã

-kâ€fïŒ
n ã
k ïŒâ€

+
k ã
ããã¯
ã詊è¡ã®
æå°æ°ã 
ããŒã«ã®æ°ã«çããæ°ã®ãã©ã¹/ãã€ãã¹ã®ç²ŸåºŠã§ïŒ ããããçŽ æŽãããåŠæ¹ïŒ
ã³ã¡ã³ãã§ã¯ã
grechnikãš
Mrrlã®ãŠãŒã¶ãŒã¯
f ïŒ
n ã
k ïŒã®å€ã®è峿·±ã挞è¿çãªæšå®å€ãæäŸããŠããŸãã