Habréã«ã¯ãèè
ãã³ãŒããŒã®3åå²ãäœæã
ãèšäºããããŸããã ãã®æçš¿ã§ã¯ã代æ°å Žã®çè«ãç°¡åã«ç޹ä»ããéäžã§ãã³ã³ãã¹ãšå®èŠã«ãã£ãŠä»»æã®å¹³åŠãªè§åºŠãæ£ç¢ºã«3ã€ã®çããéšåã«åå²ããããšãäžå¯èœãªçç±ã説æãããããä»ã®ããç¥ãããŠãã建èšåé¡ã«ã©ã®ããã«é©çšã§ãããã瀺ããŸãã
ã¯ããã«
äžå¯Ÿã®ã³ã³ãã¹ãšåå²ã®ãªãå®èŠã«ããä»»æã®è§åºŠã®äžçåãšããæåãªä»äºã¯ãæ°å幎ã«ããã£ãŠå€ãã®æ°åŠè
ãé
äºããæãå€ãåé¡ã®äžã€ã§ãã åé¡ã®è§£æ±ºäžèœãããªãã¡ ãã®ãããªæ§é ã®äžå¯èœæ§ã¯19äžçŽã«ãããã蚌æãããŸããããäžéšã®äººã
ã¯ãŸã 解決çãæäŸããŠããŸãã ããšãã°ããã·ã¢ç§åŠã¢ã«ãããŒã®ããåŠè
ã®æ±ºå®ããScience and Lifeèªã«
æ²èŒãããŸããã ãããããããã¯ãšãŠãç¹çްãªãããŒãªã³ã°ã§ã...

Science and LifeãNoã3ã1998
確ãã«ãæ°åŠã®ããææã«ãããšããã§ã«ããŒã®å倧ãªå®çã®è§åºŠã®äžåæ³ãš
ç°¡åãªèšŒæã«å¯Ÿãã解決çãå«ãæåã®æµãã¯æè¿èããæžå°ããŸããã çŸåšã圌ãã¯åœŒã«ãååãšããŠ
ããªãŒãã³ä»®èª¬ã®èšŒæ ãéã£ãŠ
ãã ã
ãã£ãŒã«ã
å®éããã£ãŒã«ãã¯èŠçŽ ã®éåã§ããããããã®éã§å ç®ãæžç®ãä¹ç®ãé€ç®ïŒãŒãé€ç®ãé€ãïŒãå¯èœã§ããããã®ãããªæŒç®ã®çµæã¯åžžã«äžæã«æ±ºå®ããããã®ãã£ãŒã«ãã®èŠçŽ ã§ããããŸãã ãŸãã宿°ã䜿çšããç®è¡æŒç®ã«ã€ããŠã¯ããã£ãŒã«ãã§çµæã倿Žããã«çšèª/å åã亀æããæ¬åŒ§ãéãããšãã§ããŸãã
宿°Rã®ã»ããã¯ããã£ãŒã«ãã®æãåçŽãªäŸã§ãã ãã®ãããªæ°å€ã䜿çšããç®è¡æŒç®ïŒãŒãé€ç®ãé€ãïŒã®å Žåãçµæã¯å®æ°ã«ãªããŸãã åæ§ã®äŸã¯ãè€çŽ æ°Cã®ãã£ãŒã«ãã§ãã
æçæ°Qã®ãã£ãŒã«ãã¯ãæŽæ°mãnã®åæ°m / nã®ã»ããã§ãã åæ°ãå ç®/ä¹ç®/é€ç®ãããšãåæ°ãåŸããããããQããã£ãŒã«ãã§ããããšãç°¡åã«ããããŸãã
æŽæ°ã®ã»ããZã¯ãéã«ãé€ç®ãåžžã«æŽæ°ãäžããããã§ã¯ãªãããããã£ãŒã«ãã§ã¯ãããŸããã5/ 7ã¯æŽæ°ã§ã¯ãªããããZã«ã¯å«ãŸããŸããã
åå¥ã«ãæçµãã£ãŒã«ãããŸãã¯æéæ°ã®èŠçŽ ãæã€ãã£ãŒã«ãã§ããã¬ãã¢äœãã£ãŒã«ãã«æ³šæããå¿
èŠããããŸãã çŽ æ°pã®å Žåããã£ãŒã«ãF
pã¯pæ°ã®ã»ãã{0,1ã...ãp-1}ãšããŠè¡šãããšãã§ããpãæ³ãšããŠç®è¡æŒç®ãå®è¡ãããŸãã ããšãã°ããã£ãŒã«ãF
5ã§ã¯ã2 + 3 = 5 mod 5 = 0ã§ãã 2 * 3 = 6 mod 5 = 1ããããã£ãŠ1/3 =ïŒ2 * 3ïŒ/ 3 = 2ãªã© æéäœã¯ã代æ°ç誀ãèšæ£ç¬Šå·ããã³æå·åã§ãã䜿çšãããŸãããªãŒããœãã¢ã³ç¬Šå·ãAESãããã³æ¥åæå·åã¯ãæéäœã§åäœããŸãã
ãã£ãŒã«ãæ¡åŒµ
ãã£ãŒã«ãLã¯ãã£ãŒã«ãKã®æ¡åŒµã§ãããLãå®å
šã«Kãå«ãå ŽåãLãšKã§ç€ºãããLãšKã®æŒç®ã¯åãããã«åäœããŸãã ããšãã°ããã£ãŒã«ãRã¯æçæ°Qã®ãã£ãŒã«ãã®R / Qã®æ¡åŒµã§ãããè€çŽ æ°Cã®ãã£ãŒã«ãã¯ãã£ãŒã«ãRã®C / Rã®æ¡åŒµã§ãã
ä»»æã®ãã£ãŒã«ãKãšãKããã®ä¿æ°ãæã€å€æ°xã®ãã¹ãŠã®å€é
åŒã®ã»ããK [x]ãèããŸããK[x]ããã®å€é
åŒpïŒxïŒã¯ãK [x]ããïŒé宿°ïŒå åã«åè§£ã§ããªãå Žåããã£ãŒã«ãKäžã®
æ¢çŽãšåŒã°ããŸãã ããšãã°ãå€é
åŒPïŒxïŒ= x
2 +1ã¯Rã§æ¢çŽã§ãããCã§æ¢çŽã§ãã C [x]ããå æ°åè§£ããŸãïŒx
2 + 1 =ïŒxiïŒïŒx + iïŒã
Kã«èŠçŽ wïŒLã«å«ãŸãããKã«ã¯å«ãŸããªãïŒãšwãšKããã®èŠçŽ ãå«ããã¹ãŠã®å¯èœãªåŒãKã«è¿œå ããããšã§æ§ç¯ã§ãããã£ãŒã«ãKã®æ¡åŒµL / Kã«èå³ããããŸããæ¬¡ã«ããã£ãŒã«ãã®æ¡åŒµã次ã®ããã«ç€ºããŸãïŒ L / K = KïŒwïŒã èŠçŽ wãK [x]ããã®æ¬¡æ°dã®æ¢çŽå€é
åŒpïŒxïŒã®æ ¹ïŒã€ãŸããpïŒwïŒ= 0ïŒã§ããå ŽåãL / K = KïŒwïŒ= K [x] /ïŒ pïŒxïŒïŒãããŠã
Lã¯æ¬¡æ°[LïŒK] = dã®æ¡åŒµã§ããã
wã¯äœKäžã§æ¬¡æ°dãæã€ãšèšã
ãŸãã ãã®å Žåãæ¡åŒµL / Kã¯ãå€é
åŒpïŒxïŒãæ³ãšããKããã®ä¿æ°ãæã€å€é
åŒã®ã»ãããšããŠè¡šãããšãã§ããŸãã d以äžã®æ¬¡æ°ã®å€é
åŒã®ã»ãã 1æ¬¡ã®æ¡åŒµL / Kã¯ãåæãã£ãŒã«ãL = Kã«çãããã€ãŸã å®éã«ãã£ãŒã«ãKãå±éããªãã§ãã ããã
è€çŽ æ°ã®ãã£ãŒã«ãã®äŸã«æ»ããšãèæ°åäœã远å ããããšã«ãããRããC = C / RãååŸã§ããŸãã

C / R = RïŒiïŒ; ããã«ãiã¯Räžã®æ¢çŽ
2次ã®å€é
åŒx
2 +1ïŒi
2 + 1 = 0ããïŒã®æ ¹ã§ãããããC = C / R = R [x] /ïŒx
2 +1ïŒã¯2æ¬¡ã®æ¡åŒµã§ããã衚çŸå¯èœã§ãã Rããã®ä¿æ°ãæã€æåãš0床ã®å€é
åŒã®ã»ããã®åœ¢åŒã§ãæŒç®ã¯x
2 +1ãæ³ãšããŠå®è¡ãããŸãã ãŸãã¯ãåçã«ã

ã
ãã é£ããçè«ã¯çµãããããããç°¡åã§æ¥œããç·Žç¿ãå§ãŸããŸãã
ã³ã³ãã¹ãšå®èŠ
ä»ãç§ãã¡ã¯äœãå¯èœããã³ã³ãã¹ãšå®èŠã®å©ããåããŠäœãæ§ç¯ã§ããªãã®ããèªåããŸããïŒ
ãã®ãããªæ§é ã¯ããŠãããã»ã°ã¡ã³ããå®çŸ©ããå¹³é¢äžã®2ã€ã®ãã€ã³ãããå§ãŸããŸãã ãããã®ãã€ã³ãã
æ§ç¯ããããšèããŸãã 2ã€ã®ãã€ã³ããäœæããããããããéãçŽç·ãæããã1ã€ã®ã³ã³ãã¹ã䜿çšããŠãäžæ¹ãäžå¿ã«ããäžæ¹ãéãåãäœæããŸãã ãããã®ç·ãšåã¯ãæ§ç¯æžã¿ãšãåŒã°ããŸãã æ§ç¯ãããç·ãšåã®äº€å·®ç¹ã¯ãæ°ããç·ãåãªã©ãæãããšãã§ããæ°ããæ§ç¯ç¹ãæäŸããŸãã ããã«ãããã³ã³ãã¹ãšåå²ã®ãªãå®èŠã䜿çšããæäœã䜿ãæããããŸãã æéæ°ã®åæ§ã®æäœã§ãã€ã³ããšã©ã€ã³ãæ§ç¯ã§ããå Žåããããã«
å°éã§ããŸãã
ãã«ã«ã座æšç³»0xyãå°å
¥ããŸãããã®ã·ã¹ãã ã§ã¯ãæåã®2ã€ã®ç¹ã®åº§æšã¯ïŒ0,0ïŒãšïŒ1,0ïŒã§ãã æ°åaãbãcãdãa 'ãb'ãc 'ãd'ããã£ãŒã«ãKã«å±ããŠãããšä»®å®ããŸãããã®ãããªåº§æšãæã€ç¹ã§æ§æãããç·ã¯ããã£ãŒã«ãLã®åº§æšãšäº€ããããšã瀺ãããŸãã [LïŒK]â€2ã
瀺ãå¿
èŠãããç¹ïŒaãbïŒãïŒcãdïŒãéãçŽç·ã¯ãåŒïŒacïŒïŒybïŒ=ïŒbdïŒïŒxaïŒã§äžããããŸãã äžå¿ïŒaãbïŒãïŒcãdïŒãéãåã®æ¹çšåŒã¯ãïŒxaïŒ
2 +ïŒybïŒ
2 =ïŒcaïŒ
2 +ïŒdbïŒ
2ã§äžããããŸãã 2çµã®ç¹ïŒaãbïŒãïŒcãdïŒããã³ïŒa 'ãb'ïŒãïŒc 'ãd'ïŒããæ§æãããçŽç·ããã³åã®æ¹çšåŒã®ä¿æ°ãKã«ãããŸãããã®ãããª2ã€ã®çŽç·ã®äº€ç¹ã®åº§æšã¯æ¬¡ã®ãšããã§ããç·åœ¢ã·ã¹ãã ãè§£ãããšã«ãã

è§£ã¯ãæ¹çšåŒã®ä¿æ°ã®ç·åœ¢é¢æ°ã®é¢ä¿ã«ãã£ãŠè¡šãããŸããã€ãŸããïŒxãyïŒãKã«å±ããŸããç·ãšåã®äº€ç¹ã®åº§æšã¯ãã·ã¹ãã ããååŸãããŸãã

æåã®åŒããxããyãŸã§ã衚çŸãã2çªç®ã®åŒã§xã代å
¥ããŠé€å€ãããšãKããä¿æ°ãæã€yã®2次æ¹çšåŒãåŸãããŸããè§£ã¯ä¿æ°ãšã«ãŒãã®ç·åœ¢çµåã§è¡šãããŸãã

æ¹çšåŒã®å€å¥åŒDããã ã«ãŒãã¯å¿
ãããKã®èŠçŽ ã§ã¯ãªããæ¡åŒµèŠçŽ ã§ã

ã DãKã®å®å
šãªæ£æ¹åœ¢ã§ãªãå Žåã2æ¬¡ã®æ¡åŒµããããŸãã

æ¢çŽå€é
åŒã®æ ¹

ã xã®åæ§ã®åŒæ°

ã å€å¥åŒãè² ã®å Žåãè§£ã¯èæ°ã§ãããåã¯ç·ãšäº€å·®ãããæ°ããç¹ã¯åœ¢æãããŸããã
æåŸã«ã2ã€ã®åã®äº€å·®ç¹

äžæ¹ã®æ¹çšåŒãã仿¹ãåŒããx
2 ãy
2ãæžãããxãyã§ç·åœ¢ã®æ¹çšåŒãååŸããŸãã ã·ã¹ãã ã«æ°ããæ¹çšåŒã远å ãããšãçŽç·ãšåã®äº€ç¹ã®å Žåã«ãªããŸãã

ã
ïŒaãbïŒ=ïŒ0,0ïŒãïŒcãdïŒ=ïŒ1,0ïŒãïŒa 'ãb'ïŒ=ïŒ-4 / 9,3ïŒãïŒc 'ã d 'ïŒ=ïŒ1 / 3,1 / 2ïŒQããã®åº§æšã2ã€ã®ç·ã®äº€ç¹ãåãšçŽç·ãããã4ã€ã®ç¹ã«æ§ç¯ããã2ã€ã®åã®åº§æšã¯åº§æšãæã¡ãŸãã
ïŒx
0 ãy
0 ïŒ=ïŒ22 / 45.0ïŒã
ïŒx
1 ãy
1 ïŒ=

ã
ïŒx
2 ãy
2 ïŒ=

ã
ããã«å¿ããŠã x
0 ãy 0âQãç·ã¯åãšäº€å·®ããªããx
2 ãy
2 
ã
ãããã£ãŠãå³é¢ã«æ°ããç·ã远å ãããšãæ°ããäœæãããç¹ã®åº§æšã¯çŸåšã®ãã£ãŒã«ãKãŸãã¯ãã®æ¬¡æ°2ã®æ¡åŒµL / Kã«ãããŸããL/ Kããã®ç¹ã«æ°ããåãäœæãããšãL / Kãã£ãŒã«ãã®æ¡åŒµã圢æãããŸãïŒE / Lã[EïŒL] = 2ã é£ç¶ããæ¡åŒµã®æ¬¡æ°ãä¹ç®ãããŸããã€ãŸããEã¯æ¬¡æ°ã®ãã£ãŒã«ãKã®E / Kã®æ¡åŒµã§ã[EïŒK] = [EïŒL] [LïŒK] = 2 * 2 = 2
2 ã ãããã£ãŠã
å°éå¯èœãªãã¹ãŠã®ãã€ã³ãã¯ããã£ãŒã«ãKã®æ¡åŒµããã®åº§æšã2 n床ã®ã¿ã§ãã ãã€ã³ãïŒaãbïŒã®æ§ç¯ã¯ããã€ã³ãïŒaã0ïŒãïŒbã0ïŒã®æ§ç¯ãšåçãªã®ã§ã以äžã§ã¯åã«ãé·ãaã®ã»ã°ã¡ã³ããæ§ç¯ããããŸãã¯ãæ°bãæ§ç¯ããããšèšããŸãã
äžçåè§

ç¹ïŒ0,0ïŒã§è§åºŠÎŸã§äº€å·®ããç·ã®ãã¢ãäžããŸãã ä»ã®éå§ç¹ïŒ1,0ïŒãšçµã¿åãããŠãè§åºŠãå®çŸ©ããããšã¯ãé·ãcosΟã®ã»ã°ã¡ã³ããå®çŸ©ããããšãšåçã§ããã€ãŸãããã£ãŒã«ãQïŒcosΟïŒã®æ°å€ããæ§ç¯ãéå§ããŸãã åæ§ã«ãè§åºŠÎŸ/ 3ã®æ§ç¯ã¯ãé·ãcosïŒÎŸ/ 3ïŒã®ã»ã°ã¡ã³ãã®æ§ç¯ãšåçã§ãã äžè§é¢æ°ã®åäžæ§cosΟ= 4cos
3 ïŒÎŸ/ 3ïŒ-3cosïŒÎŸ/ 3ïŒã¯ã
座æšpããå§ãŸãå€é
åŒpïŒxïŒ= 4x 3 -3x-cosÎŸã®æ ¹ïŒé·ãcã®ã»ã°ã¡ã³ãïŒãæ§ç¯ããå¿
èŠ
ãããããšã瀺ããŠ
ããŸããã£ãŒã«ãQïŒcosÎŸïŒ ãã ããã»ãŒãã¹ãŠã®è§åºŠÎŸã«ã€ããŠããã®å€é
åŒã¯äœQïŒcosΟïŒã§æ¢çŽã§ãã ããšãã°ãΟ= 60°cosΟ= 1/2ã®å Žåãå€é
åŒpïŒxïŒ= 4x
3 -3x-1 / 2ã¯äœQïŒcosΟïŒ= QïŒ1/2ïŒ= Qãå æ°åè§£ããŸããã cosïŒÎŸ/ 3ïŒã¯ãã£ãŒã«ãQïŒcosΟïŒã®æ¡åŒµQïŒcosïŒÎŸ/ 3ïŒïŒ= Q [x] /ïŒpïŒxïŒïŒã«ãããæ¢çŽpïŒxïŒã®å Žåã®ãã®æ¡åŒµã¯æ¬¡æ°å€é
åŒpïŒxïŒã®3â 2
nã§ããå ŽåãcosïŒÎŸ/ 3ïŒã¯ã»ã°ã¡ã³ãã®å°éå¯èœãªé·ããŸãã¯ãã€ã³ãã®åº§æšã§ã¯ãããŸããã ãããã£ãŠããããã®å Žåãè§åºŠã®æ£ç¢ºãªäžçåã¯äžå¯èœã§ãã
ãã¡ãããäžçåã§ããè§åºŠããããŸãã ããšãã°ãΟ= 90°ã®è§åºŠãæã€ïŒããã«ã¯æããªãïŒ30°ã®è§åºŠãäœæããã®ã¯ç°¡åã§ãã ãã®å Žåãå€é
åŒpïŒxïŒ= 4x
3 -3x-cosΟ= 4x
3 -3x = xïŒ4x
2 -3ïŒã¯QïŒcosΟïŒ= Qã§å æ°åè§£ãããŸãã cos 30Â°ã®æ¢çŽå€é
åŒã¯4x
2 -3ãæ¡åŒµQïŒcosïŒÎŸ/ 3ïŒïŒ= QïŒ

ïŒQã«å¯ŸããŠæ¬¡æ°2ãæã¡ããã®èŠçŽ ã¯ã³ã³ãã¹ãšå®èŠã§ç°¡åã«ã¢ã¯ã»ã¹ã§ããŸãã ãããããã®ãããªè¯ãè§åºŠã¯ç¡èŠã§ããŸãã
ãããã«
åæ§ã®ã¢ãããŒãã¯ãã³ã³ãã¹ãšå®èŠã䜿çšããä»ã®å¹ŸäœåŠçæ§é ã®å¯èœæ§ã®èšŒæã«ã䜿çšãããŸãã
- ãã¥ãŒãã2åã«ããäœæ¥-ãã1ã€ã®è§£æ±ºã§ããªãå€ä»£ã®åé¡-ã¯ã1çµã®ã³ã³ãã¹ãšå®èŠã䜿çšããŠãã¥ãŒãã®ç«¯ãæ§ç¯ããããšã§ãã é·ãã»ã°ã¡ã³ãã®æ§ç¯
ç¹å®ã®åäžã»ã°ã¡ã³ãã«å¯ŸããŠã bã¯Qäžã®æ¢çŽå€é
åŒx 3 -2ã®æ ¹ã§ãããQäžã®æ¬¡æ°3â 2 nã§ããããããã£ãŠéæäžå¯èœã§ããããšã¯å®¹æã«ããããŸãã
- åæ§ã®ç¶æ³ã¯ãåã®æ±ç©æ³ã§ãåŸãããŸããããã¯ãäžããããåãšåãé¢ç©ã®æ£æ¹åœ¢ãäœæããã¿ã¹ã¯ã§ãã ã¿ã¹ã¯ã¯ãæ°å€ãæ§ç¯ããããšã§ã
ãããã¯äžè¬ã«Q [x]ã®å€é
åŒã®æ ¹ã§ã¯ãªããQãè¶
ããæ¬¡æ°ãæã¡ãŸããã
- éåžžã®äžè§åœ¢ã®æ§ç¯ã¯äžå¯èœã§ãã ããã¯ããã£ãŒã«ãQããæ°cosïŒ2ð / 7ïŒããã³\ãŸãã¯sinïŒ2ð / 7ïŒãæ§ç¯ããããšã«ãªããŸãããŠããã£z = e 2ð / 7ã®7æ¬¡æ ¹ã¯æ ¹x 7 -1 =ïŒx-1ïŒïŒx 6 + x 5 + ... + 1ïŒããã³Qã«å¯ŸããŠæ¬¡æ°6 2çªç®ã®èŠå ã¯æ¢çŽã§ãã äžæ¹ãz = cosïŒ2ð / 7ïŒ+ i sinïŒ2ð / 7ïŒâLïŒiïŒã§ãããããzã¯L = QïŒcosïŒ2ð / 7ïŒãsinïŒ2ð / 7ïŒïŒã«å¯ŸããŠæ¬¡æ°2ãæã¡ãŸãã [LïŒiïŒïŒL] = 2ã ãããã£ãŠãLã¯Q ã«å¯ŸããŠæ¬¡æ°6/2 = 3â 2 nã§ãããå°éã§ããŸããã

- éã«ãz = e 2ð / 17ã¯ã«ãŒãx 17 -1 =ïŒx-1ïŒïŒx 16 + x 15 + ... + 1ïŒã§ãããæ¬¡æ°16 = 2 4ã§ãããããéåžžã®17è§åœ¢ãæ§ç¯ã§ããŸããäžè¬ã«ãããã¯ä»»æã®pãŽã³ã«å¯ŸããŠæ©èœããŸããããã§ãpã¯p-1 = 2 nã®ãããªçŽ æ°ã§ãã ãã®ãããªæ°ã¯ãã§ã«ããŒçŽ æ°ãšåŒã°ããŸãã ããšãŒã«ã»ãã§ã«ããŒèªèº«ã¯ã2 2 ^ n +1ã®åœ¢åŒã®ãã¹ãŠã®æ°åã¯åçŽã§ãç¿æ
£ã«å¿ å®ã§ã蚌æãããŠããªããšäž»åŒµããŸããã ããããããã¯ããã«åè«ãããŸããã ãã§ã«ããŒã®æå€§ã®æ¢ç¥ã®çŽ æ°ã«å¯Ÿå¿ããã¬ã®ã¥ã©ãŒ65537ãŽã³ã¯ã1894幎ã«éåžžã®ã³ã³ãã¹ãšå®èŠã䜿çšããŠãå¿èåã«åªãããšãã³ãšã«ã¡ã¹ã«ãã£ãŠå»ºèšãããŸããã
è±å¯ãªèšç®ã§èŠªæãªãèªè
ã飜ããããããã®ãããªç°¡åãªäŸã䜿çšããŠæ°åŠã®ããŸããŸãªã»ã¯ã·ã§ã³ã®çŸãããšå¯æ¥ãªçžäºé¢ä¿ãå®èšŒã§ãããšæããŸãã ç§ã¯ã³ã¡ã³ããã³ã¡ã³ããèŠãŠããããã§ãã