å
é±ã®æ¥ææ¥ã
ãã·ã¢ã³ãŒãã«ãã2014ã®äºéžã©ãŠã³ããè¡ãããŸããã 4人ã®è³æ Œã§æé«ã®çµæã瀺ãã802人ã®ããã°ã©ããŒãåå ããŸããã ãã®æ®µéã§ã¯ãåå è
ã¯3æéã§6ã€ã®åé¡ã解決ããªããã°ãªããŸããã§ãããããã¯1æéã§ãããäºéžã©ãŠã³ãããã1ã€ã®ã¿ã¹ã¯ãå€ããªããŸãã ãŸããã¿ã¹ã¯ã¯ä»¥åã®ã¿ã¹ã¯ãããã¯ããã«è€éã§ããã 802ã®ç«¶äºäžãå°ãªããšã1ã€ã®åé¡ã解決ã§ããã®ã¯444人ã®åå è
ã ãã§ããã åèš3271ã®ãœãªã¥ãŒã·ã§ã³ãéä¿¡ããããã®ãã¡1402ãæ£ããã£ãã
GNU C ++ã®ã»ãšãã©ã®ãœãªã¥ãŒã·ã§ã³ã¯1516ã§ãã
Java 7ã«ã¯333ã®ãœãªã¥ãŒã·ã§ã³ããããŸãã
Java 8-106ãœãªã¥ãŒã·ã§ã³ã
æåã®ã¿ã¹ã¯Aã¯ã2æ52åã§Gennady KorotkevichïŒèŠ³å
客ïŒã«ãã£ãŠè§£æ±ºãããŸããã Gennadyã¯ããããã7ïŒ05ã24ïŒ29ã13ïŒ05ã«åé¡BãCãDãè¿
éã«è§£æ±ºããŸããã åé¡Eã¯ãDmitry EgorovïŒDmitry_EgorovïŒã«ãã£ãŠæåã«1å40:59ã«è§£æ±ºãããŸããã åé¡Fã¯ãã·ã¢ã³ãŒãã«ããã®æŽå²ã®äžã§æãå°é£ãªãã®ã®1ã€ã«ãªããŸãã-ãã¹ãŠã®åå è
ã®ãã¡ã3人ã ããæ£ããããã解決ããæåã®ã¿ã¹ã¯Fã¯RCC 2013 Petr MitrichevïŒPetrïŒã®2:25:46ã§åã¡ãŸããã
ãã¹ãŠã®ã¿ã¹ã¯ãæåã«å®äºããã®ã¯ã2æé47åã§Pavel KunyavskiyïŒPavelKunyavskiyïŒã§ããã 3人ã§6åã®åé¡ã解決ããã100人ã§5å以äžã®åé¡ã解決ãããŸããã 倧äºã«ãããããã50ã®æåŸã¯ãéå§ãã2æé30ååŸã«5çªç®ã®ã¿ã¹ã¯ã«åæ ŒããRoman BilyïŒRomaWhiteïŒã§ããã
åã€æå¿ã«ã€ããŠã¯ãäžäœ50äœã«å
¥ãã7åç®ã®è©Šè¡ã§ã¿ã¹ã¯ã®1ã€ããã¹ããEgor KulikovïŒEgorïŒã«æ³šç®ããŸãã ãŸããåé¡Cã®è§£æ±ºæ¹æ³ãåãããã解決ãè©Šã¿ãããšãæåŠããPetr MitrichevïŒPetrïŒã¯ãæãå°é£ãªã¿ã¹ã¯Fãæåã«è§£æ±ºããŸããã次ã«ãã¿ã¹ã¯Cã«æ»ããçµäº4ååã«åæ Œããåèš3å Žæã
ãã®ã©ãŠã³ãã®åå è
ã®é åååžã¯æ¬¡ã®ãšããã§ããã
ãã·ã¢ | 515 |
ãŠã¯ã©ã€ã | 112 |
ãã©ã«ãŒã· | 77 |
ã«ã¶ãã¹ã¿ã³ | 26 |
ã¢ã¡ãªã« | 17 |
ã¢ã«ã¡ã㢠| 8 |
ãŠãºããã¹ã¿ã³ | 8 |
ã¹ã€ã¹ | 6 |
ãã€ã | 4 |
ã©ãã㢠| 4 |
ãªãŒã¹ããªã¢ | 2 |
ãã«ã¬ãªã¢ | 2 |
è±åœ | 2 |
ãžã§ãŒãžã¢ | 2 |
ã¢ã«ãã | 2 |
ããŒã©ã³ã | 2 |
ã·ã³ã¬ããŒã«å
±ååœ | 2 |
ã¢ãŒã«ãã€ãžã£ã³ | 1 |
ã¢ã«ãŒã³ãã³ | 1 |
ã¢ã€ã«ã©ã³ã | 1 |
ã«ãã | 1 |
ãããã¹ | 1 |
ãªãã¢ã㢠| 1 |
倧éæ°åœ | 1 |
ã¹ããã㢠| 1 |
ãã«ã³ | 1 |
ã¹ãŠã§ãŒãã³ | 1 |
æ¥æ¬ | 1 |
åæã«ããã·ã¢ã³ãŒãã«ããã§åããŠããªãŒã¹ããªã¢ãã¢ã«ãŒã³ãã³ãæ¥æ¬ããã®ãã·ã¢èªãç¥ããªãåå è
ãããŸããïŒ åœŒãã®äžäººãèªããããã«ã圌ã¯ãªã³ã©ã€ã³ç¿»èš³ãµãŒãã¹ãéããŠã©ãŠã³ãã®ã¿ã¹ã¯ã®æ¡ä»¶ã翻蚳ããŸããã
äºéžã©ãŠã³ãã§ã®æŠãã¯æ¿ããã£ãã ãã®çµæã50人ã®æ匷ã®ããã°ã©ããŒã決åã«å°éããŸããã ãããã«ã€ããŠã¯åŸã§è©³ãã説æããŸãã
ã¿ã¹ã¯A.ã¿ã¹ã¯ã®åæã¢ã€ãã¢ïŒã¢ã³ãããã
å®è£
ïŒã¢ã³ãã¬ã€ã»ã³ããã
åæïŒã¢ã³ãã¬ã€ã»ã³ããã
ã¿ã¹ã¯ã§ã¯ã解æã®åèšæéãæå°éã«ãªãããã«ã解æã¿ã¹ã¯ã®èšç»ãäœæããå¿
èŠããããŸãã ã¿ã¹ã¯ã¯ãæåãã
mçªç®ã®é ã«ãœãŒãããå¿
èŠããããŸãã 1ã€ã®ã¿ã¹ã¯ã®è§£ææéã¯
tç§ã§ãã ã¿ã¹ã¯ãåæããju審å¡ã®äº€ä»£
-cç§ã åã審æ»å¡ãé£ç¶ããŠè€æ°ã®ã¿ã¹ã¯ã解æããå Žåã亀æã¯å¿
èŠãããŸããã åju審å¡ã¯ãã©ã®ã¿ã¹ã¯ãåŠçãããã®ããã©ã®ã¿ã¹ã¯ãåŠçããããªãã®ããããã£ãŠããŸãã
ãã®åé¡ã¯ã貪欲ãªã¢ã«ãŽãªãºã ã«ãã£ãŠè§£æ±ºãããŸãã æåããåé¡ã®æ倧æ°ã解決ã§ããju審å¡ãéžæããŸãã 圌ã«
kåã®åé¡ã解決ããæ¹æ³ãæããŠãã ããã 次ã«ã
kthããå§ããŠãæ倧æ°ã®åé¡ã解決ããæ¹æ³ãç¥ã£ãŠãã人ãéžæããŸãã ãã¹ãŠã®ã¿ã¹ã¯ãæŽçããããŸã§ãã®æ¹æ³ãç¶ããŸãã 次ã«ãåé¡ã®çãã¯
mã»t + qã»cã§ã ãããã§ã
qã¯è¡ããã眮æã®æ°ã§ãã
ãªããããæè¯ã®çãã§ããïŒ ããæç¹ã§ãæ倧æ°ã®ã¿ã¹ã¯ã§ã¯ãªãåæãããju審å¡ãéžæããŠã¿ãŸãããã ããããã圌ããã£ãšå解ããæ¹æ³ãç¥ã£ãŠããŠããã£ãšå解ããæ¹æ³ãç¥ã£ãŠãã誰ãã«çœ®ãæãããããšããäºå®ãããçãã¯æ¹åããããšãã§ããã ãã§ãã
ãã®ãœãªã¥ãŒã·ã§ã³ã¯ã
OïŒnã»mïŒã§æ©èœããŸããåçããã°ã©ãã³ã°ã䜿çšããŠç°¡åãªãœãªã¥ãŒã·ã§ã³ãäœæããããšãã§ããŸãã
dp [
i ] [
j ]ã¯ã
iã¿ã¹ã¯ãéã¢ã»ã³ãã«ããã
içªç®ã®å¯©æ»å¡ãéã¢ã»ã³ãã«ãããå Žåã«è²»ããããæå°æéã«çãããªããŸãã ãã®é
åã¯ã
OïŒn 2 mïŒãšããŠç°¡åã«ã«ãŠã³ãã§ããŸãã
åé¡B. é ãã¢ããŸã³ã§ã¢ã€ãã¢ïŒ Vitaly Aksenov
å®è£
ïŒ Demid Kucherenko
åæïŒããããã»ã¯ãã§ã¬ã³ã³
ãã®åé¡ã§ã¯ã次ã®æ¡ä»¶ãæºãããã
nåã®é ç¹ã§æ§æãããæåã°ã©ããäœæããå¿
èŠããããŸãã
- ã°ã©ãã«ã¯ãµã€ã¯ã«ããããŸããã
- æ倧ã§1ã€ã®ãšããžãåé ç¹ã«ã€ãªãããŸãã
- ã°ã©ãã«ã¯ãçºä¿¡ãšããžãååšããé ç¹ãæ£ç¢ºã«å«ãŸããŠããå¿
èŠããããŸãã
- ã°ã©ãã«ã¯ãå
¥ã£ãŠãããšããžãååšããbåã®é ç¹ãæ£ç¢ºã«ãªããã°ãªããŸããã
ãŸããçãããäžå¯èœãã§ããã±ãŒã¹ãåæããŸãã ãããã®æ¡ä»¶ã®å°ãªããšã1ã€ãåœãŠã¯ãŸãå Žåã§ãã
- åšãããæ¯èŠªã®æ¹ãå€ãã
- n -1ãããå€ãã®æ¯èŠªãããŸãïŒãã¹ãŠãæ¯èŠªã«ãªãããšã¯ã§ããŸããïŒã
- n -1ãè¶
ããåšã
ãã®ãããªã°ã©ããäœæã§ããå Žåã¯ããŸããšããžã®ãã§ãŒã³ãäœæ
ããŸãã ãããã£ãŠã+ 1ã®å¥³æ§ãé¢äžããæ¯èŠªãšåšãããŸãã ãã®åŸãåšãæ£ç¢ºã«
bã«ãªãããã«ãæ¯èŠªã®åšãè£å®ããŸãã äžéšã®å¥³æ§ã¯æ¯èŠªã§ãåšã§ããªãå¯èœæ§ããããŸãããããã¯èª²é¡ã®æ¡ä»¶ãšççŸããŸããã
åé¡C. å®éšå®€ã®ç©çåŠã¢ã€ãã¢ïŒ Vitalik Aksenov
å®è£
ïŒ Artem Vasiliev
åæïŒã¢ã«ãã§ã ã»ãŽã¡ã·ãªãšã
ãã®åé¡ã§ã¯ã2ã€ã®å®¹åšã®æ°Žãå·æ°Žãšæž©æ°Žãšæ··åããããšã«ãããã©ã®æž©åºŠã®æ°ŽãåŸãããããå€æããå¿
èŠããããŸãã ç¹å®ã®æž©åºŠã§ããã®ãããªããã€ãã®èŠæ±ã«çããå¿
èŠããããŸããã
äœç©
c iã®å®¹åšããã®å·æ°Žãšäœç©
h jã®å®¹åšããã®æž©æ°Žãæ··åããå Žåãæ°Žæž©ã®åŒãèšè¿°ããŸã
ïŒT = p / q =ïŒCã»c i + Hã»h j ïŒ/ïŒc i + h j ïŒãã®åŒã¯ã
ïŒHã»q-pïŒ/ïŒp-Cã»qïŒ= c i / h jãšãªãã®ã§ãåé¡ã次ã®ããã«çž®å°ããŸããïŒæ¢çŽåæ°ãšååãšåæ¯ã®ã»ãããäžããããååãéžæããããšãå¯èœã§ãåæ¯ãäžããããåæ°ãåŸãããããã«ïŒ
ãã¹ãŠã®
c i / xã®ã»ããã§ããè¡šèš
A xãå°å
¥ããŸããããã§ã
c iã¯
xã§å²ãåããŸãã åæ§ã«ã
B yã¯ãã¹ãŠã®
h i / yã®éåã§ããã
h iã¯
yã§é€ç®ãããŸãã 次ã«ã
A pãš
B qã亀差ããå Žåã«ã®ã¿ãæ¢çŽåæ°
p / qãè¡šãããšãã§ããŸãã ãã¹ãŠã®ã»ãã
A xããã³
B yã®åèšãµã€ãºã¯
O ïŒ
M log
M ïŒã§ããããšã«æ³šæããå¿
èŠããããŸããããã§ã
Mã¯è¡ç®¡ã®äœç©ã®å¶éã§ãïŒãã®åé¡ã§ã¯ã
Mã¯10
5ã§ã ïŒã
A xãš
B yããœãŒãããããªã¹ããšããŠè¡šç€ºãããå Žåã
OïŒM / maxïŒxãyïŒïŒã§1ã€ã®ã¯ãšãªãå®è¡ã§ããŸãã
A xãš
B yããããã»ãããšããŠè¡šããšããªã¯ãšã¹ãããšã«
O ïŒ
M / 64ïŒã®è§£ãåŸãããŸãã
åãåæ°ã®åçãæ°åæ°ããªããšãæéã®è§£æ±ºçãåŸãããŸãã ãã®å Žåããœãªã¥ãŒã·ã§ã³äœæ¥æéã®ããæ£ç¢ºãªæšå®å€ã蚌æããããšãã§ããŸãã æšå®å€
OïŒïŒM + kïŒsqrtïŒMïŒïŒã蚌æããŸããããããã§ã
kã¯ã¯ãšãªã®æ°ã§ãã
pãš
qã®æ倧å€ã
sqrtïŒMïŒãã倧ããå Žåãå°ããæ¹ã®ã»ããã®ãã¹ãŠã®èŠçŽ ã調ã¹ãããšã§ã
OïŒsqrtïŒMïŒïŒã§ã¯ãšãªãå®è¡ã§ããŸãã ä»ã®ãã¹ãŠã®ã¯ãšãªã®å®è¡æéã®åèšãæšå®ããŠã¿ãŸãããã
OïŒM / xïŒã§å®è¡ãããã¯ãšãªã¯2
x以äžã§ãã ãã¹ãŠã®xãåèšããxã
sqrtïŒMïŒãã倧ãããªãããšãèæ
®ããŠãæšå®å€
OïŒïŒM + kïŒsqrtïŒMïŒïŒãååŸããŸã解ã®åèšæéïŒ
OïŒïŒM + kïŒsqrtïŒMïŒïŒ ã
ã¿ã¹ã¯D. ã®ãããã®å»ºèšã¢ã€ãã¢ïŒãã³ã©ã€ã»ãŽã§ãã«ãã³ã
å®çŸïŒãã³ã©ã€ã»ãŽã§ãã«ãã³ã
åæïŒãã³ã©ã€ã»ãŽã§ãã«ãã³ã
ã¿ã¹ã¯ã§ã¯ã次ã®ãããªé åã®æ°ãèšç®ããå¿
èŠããããŸãã
- a 2ã»i -1â€a 2ã»i
- a 2ã» iâ¥a 2ã»i + 1
1ãã
n â 2ãŸã§ã®ãã¹ãŠã®
iã«ã€ããŠããã®ãããªé åã
éžæ¯ãšåŒã³ãŸãã
ãã®ãããªé åã®æ°ã¯ãé£æ¥ããæ°ãããå¥æ°ã®äœçœ®ã«ããé åã®æ°ã«çããããšã«æ³šæããŠãã ããã å
šåå°å¯Ÿå¿ïŒ
b i = n-a i ã ãã®ãããªé åãæžå°ããéžæ¯ãšåŒã³ãŸãã ããã¯ãåé¡ã解決ããããã«ããã«åœ¹ç«ã¡ãŸãã
æããã«ã眮æã®é·ãã0ãŸãã¯1ã®å Žåãçãã¯1ã§ãã
0ãã
nãŸã§ã®ãã¹ãŠã®é·ãã®çããããã£ãŠãããšä»®å®ãããšã
n +1ã®çããèŠã€ãããŸãã ãã³ã®ãªæ³¢ã·ãŒã±ã³ã¹ã®ç·æ°ãèæ
®ããŸãã å¢å æ°ãååŸããã«ã¯ãå¢å æ°ãæžå°æ°ã«çãããããã·ãŒã±ã³ã¹ã®ç·æ°ã2ã§é€ç®ããå¿
èŠããããŸãã
n +1ã2ã»
kã«çœ®ããæåã«é·ãã2ã»
k -1ã®éžæ¯ãå¢ããã次ã«é·ãã
n -2ã»
k +1ã®éžæ¯ãå¢ãããŸãã æåã®2ã»
k -1ã®äœçœ®ã«ã€ããŠã¯ã
nåã®æ°åã®ãããããéžæã§ããŸãã åèšã§ãæ°
n + 1ãäœçœ®2ã»
kã«ããé·ã
n + 1ã®é åã®æ°ãååŸããŸã
ãans 2ã» k -1ã»
ans n -2ã»k +1ã»
Binom ïŒ
n ã2ã»
k -1ïŒ ã
n +1ã2ã»
k +1ã®äœçœ®ã«çœ®ããšãæåã«é·ãã2ã»
kã®éžæ¯ãæžå°ãã次ã«
n -2ã»
kã®é·ããå¢å ããŸãã æåã®2ã»
kããžã·ã§ã³ã«ã€ããŠã¯ã
nåã®æ°åã®ãããããéžæã§ããŸãã åèšã¯ãé·ã
n + 1ã®é åã®æ°ãååŸããŸãããã®æ°
n + 1ã¯ãäœçœ®2ã»
k + 1ã§ïŒ
ans 2ã»kã»
ans n -2ã»kã»
Binom ïŒ
n ã2ã»
k ïŒã
åèšãé·ã
n +1ã®ã®ãããæ¯åã®ç·æ°ïŒ
ans n +1 = â
n k = 0 ans kã»
ans n â kã»
BinomïŒnãkïŒ ã
ã¿ã¹ã¯E. 絊äžã¢ã€ãã¢ïŒã¢ã³ãããã
å®çŸïŒããã«ã»ã¯ããã³ã
åæïŒããã«ã»ã¯ããã³ã
ãã®åé¡ã§ã¯ãæåã°ã©ããäžããããŸãã ãã¹ãŠã®rib骚ã¯3ã€ã®éšåã«åé¡ã§ããŸãã
- ãã®rib骚ã®æäžéšã§ã®çµŠæãšããŒãã¹ã®é
眮ã§ã¯ããªãŒããŒã·ããã®æ¡ä»¶ãæºããããŸãã
- ãªãŒããŒã·ããã®æ¡ä»¶ãæºããããã«ã¯ããã®rib骚ã®äž¡æ¹ã®é ç¹ã§ããŒãã¹ã§çµŠæãå€æŽããããããããã§å€æŽããªãããšãå¿
èŠã§ãã
- ããã¥ã¢ã«ã®æ¡ä»¶ãæºããã«ã¯ããã®rib骚ã®é ç¹ã®1ã€ã§æ£ç¢ºã«ããŒãã¹ã§çµŠäžãå€æŽããå¿
èŠããããŸãã
æåã®ã¿ã€ãã®ãã¹ãŠã®ãšããžãšã2çªç®ãš3çªç®ã®ã¿ã€ãã®ãšããžã®åãã«ã€ããŠã¯å¿ããŠãã ããã ãã®åŸã2çªç®ã®ã¿ã€ãã®ãšããžã«æ²¿ã£ãŠäºãã«å°éå¯èœãªé ç¹ãçµåããŸãã ãã®åŸãããã¥ã¢ã«ã®èŠä»¶ãæºããããšãã§ãããã©ããã確èªããã¿ã¹ã¯ã¯ãçµæã®ã°ã©ãã2è²ã§çè²ã§ãããã©ããã確èªããããšã«ãªããŸãã
絊äžãšããŒãã¹ã亀æããå¿
èŠãããé ç¹ã®æå°æ°ãååŸããã«ã¯ããã®æ€çŽ¢ã詳现ã«å€æŽããŸãã 次ã®æ¥ç¶ãããã³ã³ããŒãã³ãã2è²ã§è²åãããåŸã1è²ãšä»ã®è²ã§ãã€ã³ããããé ç¹ïŒ2çªç®ã®ã¿ã€ãã®ãšããžã«æ²¿ã£ãŠçµåããåã®å
ã®ã°ã©ãïŒã®æ°ãã«ãŠã³ãããå¿
èŠã«å¿ããŠè²ä»ããå転ããŸãã
ã¿ã¹ã¯F. ããããã¢ã€ãã¢ïŒ Boris Minaev
å®è£
ïŒããªã¹ãããšããã¢ã«ãã ãŽã¡ã·ãªãšã
åæïŒããªã¹ã»ãããšããã¢ã«ãã ã»ãŽã¡ã·ãªãšã
ãã®ã¿ã¹ã¯ã§ã¯ããã£ãŒã«ãã®ããã»ã«ããå¥ã®ã»ã«ãžã®ç°ãªããã¹ã®æ°ãç¹å®ã®ã¹ãããæ°ã§èšç®ããå¿
èŠããããŸãã åæã«ãã¢ã¯ã·ã§ã³ãå®è¡ããããããã¯ãæåŸã®ã¿ãŒã³ããåã«æçµã»ã«ã«ã¢ã¯ã»ã¹ããããšã¯ã§ããŸããã ãŸããããããã¯ç¡éå¹³é¢ã®4åã®1ã ããæ©ãããšãã§ããŸãã
æåã«ãæåŸã®ç§»åã®åã«æçµã»ã«ã«ã¢ã¯ã»ã¹ã§ããªããšããæ¡ä»¶ãªãã§ãããã»ã«ããå¥ã®ã»ã«ã«ç§»åããæ¹æ³ãèŠã€ããŸãã ãã®åé¡ã¯åº§æšã«ãã£ãŠåå¥ã«è§£æ±ºã§ãã1ã€ã®åº§æšã§è¡ããã移åã®æ°ãšå¥ã®åº§æšã§è¡ããã移åã®æ°ãå埩åŠçã§ããŸãã äžæ¬¡å
ã®å Žåã®åé¡ã解決ããã«ã¯ïŒ ããããã¯æåã«åº§æš
x 1ãæã¡ãæåŸã«åº§æš
x 2ãæã€å¿
èŠããããŸãã
a = |
x 2 -
x 1 |ãåèš
tã®ç§»åãè¡ãããŸããã ãã®å ŽåãããŸããŸãªã¡ãœããã®æ°ã¯ãïŒ
t -
a ïŒ/ 2ã®
tã®çµã¿åããã®æ°ã«çãããªããŸãïŒ
t -
aã¯éè² ã§å¶æ°ã§ãªããã°ãªããŸããïŒã ãã ãã移åäžã¯ãããããæ£ã®åº§æšããæãŠãªãããšãèæ
®ããå¿
èŠããããŸãã ãããè¡ãã«ã¯ãã»ã«ããååŸããæ¹æ³ã®æ°
-x 1ãx 2ãçµæããæžç®ããŸãã ããã¯ã座æšã®éœæ§ã®èŠä»¶ã«éåãã
x 1ããã®ãã¹ãš
-x 1ããã®ãã¹ãŠã®ãã¹ãšã®éã§1察1ã®å¯Ÿå¿ã瀺ãããšãã§ããããã§ãã äºãã«å¯Ÿå¿ãããã¹ã«ã¯ãæåã®éšåïŒã»ã«0ã«å
¥ããŸã§ïŒãšå
±éã®2çªç®ã®éšåããããŸãã
äºæ¬¡å
åé¡ã®èå¯ã«æ»ããŸãããã ããã»ã«ããå¥ã®ã»ã«ãžã®å座æšã«æ²¿ã£ãŠç§»åããæ¹æ³ã®æ°ããã§ã«æ°ãããšä»®å®ããŸãïŒååºå®ç§»åè·é¢ã«å¯ŸããŠïŒã 2次å
åé¡ã®åæ§ã®å€ãèšç®ããã«ã¯ãå座æšã«è²»ããããæéãæŽçããæ¢ã«èšç®ãããé
åã®å¯Ÿå¿ããå€ãä¹ç®ããå¿
èŠããããŸãããŸããã©ã®åããã©ã®åº§æšã«å¯Ÿå¿ããããéžæããããŸããŸãªæ¹æ³ã®æ°ãæããŸãã ãããã®å€ããã°ããèšç®ããã«ã¯ãããŒãªãšå€æã䜿çšã§ããŸãã å€é
åŒã®ä¹ç®ã®åé¡ã軜æžããã«ã¯ãçµã¿åããã®æ°ã®åŒã«ååšãããã®ãåãé€ãå¿
èŠããããŸãã ãããè¡ãã«ã¯ãéä¹ã䜿çšããŠèšè¿°ããŸãã é
ãã°ã«ãŒãåãããšãå
ã®é
åã®
içªç®ã®èŠçŽ ã
i ïŒã§é€ç®ããçµæã®å€é
åŒãä¹ç®ãã
içªç®ã®æ¡ã®å€ã«
i ïŒãä¹ç®ã§ããããšãããããŸãã åé¡ã§ã¯ãé«éããŒãªãšå€æãå®è¡ã§ããããã«ããã¹ãŠã®æäœãå®è¡ããå¿
èŠãããã¢ãžã¥ãŒã«ãéžæãããŸããã
次ã«ããããããæåŸã®åããŸã§æçµã»ã«ã«å
¥ãããšãã§ããªããšããäºå®ãèæ
®ããæ¹æ³ãæ€èšããŸãã åçããã°ã©ãã³ã°ã䜿çšããŠçããæ€èšããŸãã
tæªæºã®ç§»åã§ã»ã«ã«å°éããæ¹æ³ã®æ°ã¯ãã§ã«æ°ããããŠããŸãã
t移åã®ãããã®å€ãèšç®ããã«ã¯ã
t移åã§ãããè¡ãæ¹æ³ã®ç·æ°ãèæ
®ãã
tã®åã«æçµã»ã«ã«å
¥ããã¹ãŠã®ã¡ãœãããããããæžç®ããŸãã ãããè¡ãã«ã¯ããããããæåŸã®ã»ã«ã«ã¢ã¯ã»ã¹ããæåã®åãã®çªå·ãæŽçãã察å¿ãããŠã§ã€ã®æ°ã«ã»ã«ãåºããŠã§ã€ã®æ°ïŒ
x 2 ãy 2 ïŒãæããŠæ®ãã®æéã«æ»ããŸãã åæã«ãããããã¯æçµã»ã«ã«å¿
èŠãªåæ°ã ãã¢ã¯ã»ã¹ã§ããŸãïŒ2çªç®ã®éšåïŒã
ãããŸã§ã«æŠèª¬ãããœãªã¥ãŒã·ã§ã³ã¯
t 2ã§æ©èœããããšã«æ³šæããŠãã ããã ããé«éãªãœãªã¥ãŒã·ã§ã³ãåŸãã«ã¯ãé¢æ°ãçæãããšããç¹ã§çç±ãå¿
èŠã§ãã
fïŒxïŒ= f 0 x 0 + f 1 x 1 + ... + f t x t + ...ãè¡šã
ãŸã ãããã§ã
f iã¯çãã§ãããåââé¡ã§ã¯ãããŸããã åæ§ã«ã
ã«ãŠã³ãïŒxïŒ -ãã¹ã®æ°ã®çæé¢æ°ãå®çŸ©ããŸããæåŸã®ã¿ãŒã³ã®æçµã»ã«ãžã®æåã®ãšã³ããªã®æ¡ä»¶ãèæ
®ããã«ã
ãµã€ã¯ã«ïŒxïŒ -æçµã»ã«ããããèªäœãžã®ãã¹ã®æ°ã®çæé¢æ°ãå®çŸ©ããŸãã
f iã®ååž°é¢ä¿ãããçæé¢æ°ãžã®é¢ä¿ãå°åºã§ããŸãïŒ
fïŒxïŒ= countïŒxïŒ-fïŒxïŒcycleïŒxïŒ ãwhence
fïŒxïŒ= countïŒxïŒ/ïŒcycleïŒxïŒ+ 1ïŒ= countïŒxïŒïŒcycleïŒxïŒ+ 1ïŒ -1 ã
fãèšç®ããã«ã¯ãå³åŽã®åæ°ã®æåã®
t + 1ã¡ã³ããŒãã«ãŠã³ãããå¿
èŠããããŸãã ããã¯ã
ãµã€ã¯ã«ïŒxïŒ + 1ã¢ãžã¥ã
x t + 1ã®éæ°ãèšç®ãã
ã«ãŠã³ãïŒxïŒã«çµæãä¹ç®ããããšã§å®è¡ã§ããŸãã
x t + 1ãæ³ãšããéå€é
åŒã¯ãé«éããŒãªãšå€æã䜿çšããŠæé
O ïŒ
t log
t ïŒã§ååŸã§ããŸãã åèšå®è¡æéïŒ
O ïŒ
t log
t ïŒã