ããã«ã¡ã¯ïŒ ä»æ¥ãç§ã¯ããŸããŸãªæšå¥šæ¹æ³ã«çŠç¹ãåœãŠãSurfingbirdããã°ã§ãæã«ã¯ç°ãªãçš®é¡ã®ç¢ºçã¢ãã«ã«ã€ããŠã®äžé£ã®èšäºãç¶ããŠããŸãã ããªãåã«ã
å»å¹Žã®å€ã®
éææ¥ ãã°ã©ãã£ã«ã«ãªç¢ºçã¢ãã«ã®çããµã€ã¯ã«ãæžããŸããã
æåã®éšåã¯ã°ã©ãã£ã«ã«ãªç¢ºçã¢ãã«ã®åºæ¬ã玹ä»ãã
2çªç®ã®éšåã«ã¯ããã€ãã®äŸãããã
3 çªç®ã®éšåã§ã¯ã¡ãã»ãŒãžè»¢éã¢ã«ãŽãªãºã ã«ã€ããŠããããŠ
4çªç®ã®éšåã§ã¯å€åè¿äŒŒã«ã€ããŠç°¡åã«èª¬æããŸããã ãµã€ã¯ã«ã¯ããµã³ããªã³ã°ã«ã€ããŠè©±ãçŽæã§çµäºããŸããããŸãã1幎ãçµã£ãŠããŸããã äžè¬çã«ããã®ãããµã€ã¯ã«ã§ã¯ãLDAã¢ãã«ãšããããããã¹ãã³ã³ãã³ãã®æšå¥šäºé
ãäœæããã®ã«ã©ã®ããã«åœ¹ç«ã€ãã«ã€ããŠãããå
·äœçã«èª¬æããŸãã ããããä»æ¥ã¯ãé·å¹Žã®çŽæãæããã確çè«çã¢ãã«ã§ã®ãµã³ããªã³ã°ã«ã€ããŠã話ãããããšããå§ããŸã-è¿äŒŒæšè«ã®äž»ãªæ¹æ³ã®1ã€ã§ãã
ã¿ã¹ã¯ã¯äœã§ãã
ãŸããç§ãã¡ã話ããŠããããšãæãåºãããŠãã ããã æ©æ¢°åŠç¿ã®äž»ãªããŒã«ã®1ã€ã¯ããã€ãºã®å®çã§ãã
ããã§ã
Dã¯ããŒã¿ãΞã¯ãã¬ãŒãã³ã°ããã¢ãã«ãã©ã¡ãŒã¿ãŒã
-ããã¯ãå©çšå¯èœãªããŒã¿
Dã®åœ±é¿ãåããΞã®ååžã§ãã
以åã®èšäºã®ããããã§ããã€ãºã®å®çã«ã€ããŠãã§ã«è©³ãã説æããŸããã æ©æ¢°åŠç¿ã§ã¯ãéåžžãäºåŸååžãèŠã€ããã
ãããŠãæ°ããå€æ°å€ãäºæž¬ããŸã
ã è€éãªã°ã©ãã£ãã¯ã¢ãã«ã§ã¯ãããããã¹ãŠã¯ãåã®ã·ãªãŒãºã§èª¬æããããã«ãéåžžãããŸããŸãªã©ã³ãã å€æ°ã®å€§ãããŠæ··ä¹±ããååžããããšããäºå®ã«åž°çããŸãã
ãããã¯ããåçŽã«ååžã®ç©ã«å解ãããç§ãã¡ã®ä»äºã¯
蟺çžå ãã€ãŸã å€æ°ã®äžéšãåèšããããå€æ°ã®äžéšããé¢æ°ã®æåŸ
å€ãèŠã€ããŸãã ãã¹ãŠã®ã¿ã¹ã¯ã¯ãè€éãªååžãéåžžã¯ããã€ãã®å€æ°ã®å€ã代å
¥ãããã¢ãã«ã®æ¡ä»¶ä»ãååžã®æ¡ä»¶äžã§ãããŸããŸãªé¢æ°ã®æ°åŠçæåŸ
å€ãèšç®ããããšã«ãªããŸãã ãŸããä»»æã®æç¹ã§çµåååžã®å€ãæ°ããããšãã§ãããšæ³å®ã§ããŸããããã¯éåžžãã¢ãã«ã®äžè¬çãªåœ¢åŒããç°¡åã«åŸãããå°é£ã¯ãããã®å€æ°ããŸãšããŠçµ±åããããšã§ãã
æ£ç¢ºãªçµè«ãåºãããšã¯å°é£ã§ãããæå¹ãªã¢ã«ãŽãªãºã ãåŸãããã®ã¯ããµã€ã¯ã«ã®ãªããŸãã¯å°ããªãµã€ã¯ã«ã®ãã¡ã¯ã¿ãŒã°ã©ãã®å Žåã®ã¿ã§ãã ãã ããå®éã®ã¢ãã«ã«ã¯ãå€ãã®å Žåãäºãã«å¯æ¥ã«é¢é£ãã倧éã®ãµã€ã¯ã«ã圢æããäžé£ã®å€æ°ãå«ãŸããŠããŸãã çºçããå°é£ãå
æããããã®1ã€ã®å¯èœãªæ¹æ³-å€åè¿äŒŒã«ã€ããŠå°ã話ããŸããã ãããŠä»æ¥ãç§ã¯ããäžã€ã®ãããäžè¬çãªæ¹æ³-ãµã³ããªã³ã°ã«ã€ããŠè©±ããŸãã
ã¢ã³ãã«ã«ãã¢ãããŒã
ã¢ã€ãã¢ã¯æ¥µç«¯ã«åçŽã§ãã ååãšããŠãå¿
èŠãªãã®ã¯ãã¹ãŠãè€éã§æ··ä¹±ãæãååž
p ïŒ
x ïŒã®ããŸããŸãªé¢æ°ã®æåŸ
å€ã®åœ¢ã§è¡šçŸãããããšãæ¢ã«ç¥ã£ãŠããŸãã ååžé¢æ°ã®æåŸ
å€ãèšç®ããæ¹æ³ã¯ïŒ ãã®ååžãã
ãµã³ããªã³ã°ã§ããå Žåãã€ãŸã ã©ã³ãã ãã€ã³ããåã
ååž
p ïŒ
x ïŒã«åŸã£ãŠãä»»æã®é¢æ°ã®æåŸ
å€ã¯ããµã³ããªã³ã°ããããã€ã³ãã§ã®ç®è¡å¹³åãšããŠè¿äŒŒã§ããŸãã
ããšãã°ãå¹³åïŒæåŸ
ïŒãèšç®ããã«ã¯ããµã³ãã«
xã®å¹³åããšãå¿
èŠããããŸãã
ãããã£ãŠãå®éã«ãã¹ãŠã®ã¿ã¹ã¯ã¯ãååžã«ãã£ãŠãã€ã³ãããµã³ããªã³ã°ããæ¹æ³ãåŠç¿ããããšã«ãªããŸãããã ãããã®ååžã®å€ãä»»æã®ãã€ã³ãã§èªã¿åãããšãã§ããŸãã
é£ããã¯äœã§ãã
1ã€ã®å€æ°ã®æ©èœã§è²ã£ã人ïŒã€ãŸãã倧åŠã§åºæ¬çãªåæã®ã³ãŒã¹ãåè¬ãã人ãªã誰ã§ãïŒã«ã¯ãããã§ã¯å€§ããªåé¡ã¯ãªããããããã¹ãŠã®äœããªãããšã«ã€ããŠã®äŒè©±ã¯ãç©åãæŠç®ããæ¹æ³ãç¥ã£ãŠããŸãã»ã°ã¡ã³ããããŒãã«åå²ããåå°ããªã»ã°ã¡ã³ãã®äžå€®ã§é¢æ°ãèšç®ããããã«ããé·æ¹åœ¢ãå°åœ¢ãèšç®ããã ãã§ã...ãããŠãå®éã«ã¯ã1ã€ã®å€æ°ããã®ååžãããµã³ããªã³ã°ããã®ã«è€éãªããšã¯ãããŸããã ãã€ãã®ããã«ãå°é£ã¯ãã£ã¡ã³ã·ã§ã³ã®å¢å ããå§ãŸããŸã-ãã£ã¡ã³ã·ã§ã³1ã§ãééããµã€ã0.1ã®ã»ã°ã¡ã³ãã«åå²ããããã«é¢æ°ã®10åã®å€ãã«ãŠã³ãããå¿
èŠãããå Žåããã£ã¡ã³ã·ã§ã³100ã§ã¯ãã®ãããªå€ã«ã¯
10,100ãå¿
èŠã«ãªããããã¯éåžžã«æ²ããããšã§ãã éåžžã®2-3次å
ãšã¯ãŸã£ããç°ãªããé«æ¬¡å
ã§äœæ¥ãè¡ããã®å¹æããã®ä»ã®å¹æã¯ã次å
ã®åªããšåŒã°ããŠããŸããã ä»ã®èå³æ·±ãçŽèŠ³ã«åããå¹æããããŸãããããããã€ããã®ããšã«ã€ããŠãã£ãšè©³ãã話ãã¹ãã§ãã
ãã1ã€é£ç¹ããããŸã-ç§ã¯äžã§ããã€ã§ãååžå€ãèªãããšãã§ãããšæžããŸããã å®éãéåžžãååž
p ïŒ
x ïŒã®å€ã§ã¯ãªãã
p ïŒ
x ïŒã«
æ¯äŸããé¢æ°
p * ïŒ
x ïŒã®å€ãèæ
®ããããšãã§ããŸãã ãã€ãºã®å®çãæãåºããŠãã ãã-ãããããäºåŸååžèªäœã§ã¯ãªããããã«æ¯äŸããé¢æ°ãåŸãããŸãã
éåžžããã®å Žæã§ã¯ããã§ååã§ãããšèšããŸããã確çã®æ£ç¢ºãªå€ã¯ãçµæã®ååžãæ£èŠåããŠåçŽã«èšç®ããããšãã§ããŸãïŒã€ãŸãããã€ãºã®å®çã§åæ¯ãèšç®ããŸãïŒã ãã ããããã¯ãŸãã«è€éãªååžã®ãã¹ãŠã®å€ãèŠçŽãããšããçŸåšã®è§£æ±ºæ¹æ³ãåŠãŒããšããŠããé£ããã¿ã¹ã¯ã§ãã ãããã£ãŠãå®éã«ã¯ãçã®ç¢ºçã®å€ãåœãŠã«ããããšã¯ã§ããããããã«æ¯äŸããé¢æ°p
*ã®ã¿ãåœãŠã«ããããšãã§ããŸãã
察åŠæ¹æ³ïŒãã£ãŒãã®äžã®ãµã³ãã«
äžèšã®ãã¹ãŠã®å°é£ã«ããããããããµã³ããªã³ã°ã¯äŸç¶ãšããŠå¯èœã§ãããããã¯å®éã«è¿äŒŒåºåã®äž»ãªæ¹æ³ã®1ã€ã§ãã ããã«ãããã«ãããããã«ããµã³ããªã³ã°ã¯èŠãç®ã»ã©é£ãããããŸããã ãã®ã»ã¯ã·ã§ã³ã§ã¯ããã¹ãŠã®ãµã³ããªã³ã°ã¢ã«ãŽãªãºã ãäœããã®åœ¢ã§åºã¥ããŠããåºæ¬çãªèãæ¹ã«ã€ããŠèª¬æããŸãã èãæ¹ã¯æ¬¡ã®ãšãã
ã§ããååžå¯åºŠé¢æ°pã®ã°ã©ãã®äžã®ç¹ãåçã«éžæãããšããã®X座æšã¯ååžpããååŸãããŸãã çŽèŠ³çã«ç解ããã®ã¯éåžžã«ç°¡åã§ããå¯åºŠã°ã©ããæ³åããŠããã®ãããªå°ããªåã«åå²ããŸãïŒã°ã©ãã¯matplotlibã§äœæãããŸãïŒã
ã°ã©ãã®äžã§ã©ã³ãã ãªãã€ã³ããååŸãããšãåX座æšããã®åã®é«ãã«æ¯äŸãã確çã§æºããããããšã¯æããã§ãã ãã®åã®å¯åºŠé¢æ°ã®å€ã ãã§ã
ãããã£ãŠãå¿
èŠãªååžã®å¯åºŠã°ã©ãã®äžã§ã©ã³ãã ãã€ã³ããååŸããæ¹æ³ãåŠç¿ããã ãã§æžã¿ãŸãã ãããè¡ãæ¹æ³ã¯ïŒ
å®éã«æ©èœããå®éã«ãã°ãã°é©çšãããæåã®ã¢ã€ãã¢ã¯ããããã
æ絶ãµã³ããªã³ã°ã§ãã ä»ã®ååž
q ïŒããæ£ç¢ºã«ã¯ãããã«æ¯äŸããé¢æ°
q * ïŒããããšä»®å®ããŸããããããã¯ããµã³ããªã³ã°æ¹æ³ãæ¢ã«ç¥ã£ãŠããŸãã éåžžãããã¯ããçš®ã®å€å
žçãªååž-åäžãŸãã¯æ£èŠã§ãã ããã§ãæ£èŠååžããã®ãµã³ããªã³ã°ãå®å
šã«äºçŽ°ãªäœæ¥ã§ã¯ãªãããšã«æ³šæãã䟡å€ããããŸãããããã§ã¯ã¹ãããããŸããä»ã§ã¯ã人ã
ã¯ãããè¡ãæ¹æ³ãç¥ã£ãŠãããããšãç¥ãã ãã§ååã§ãã ããã«ããã¹ãŠã®
xã«ã€ããŠå®æ°
cãç¥ã£ãŠãããšä»®å®ããŸãã
ã 次ã«ããã®æ¹æ³ã§
pããµã³ããªã³ã°ã§ããŸãã
- ååžq * ïŒ x ïŒã§ãµã³ãã«xãååŸããŸãã
- ééããäžæ§ã«ä¹±æ°uãåã ;
- p * ïŒ x ïŒãèšç®ããŸãã ãããuãã倧ããå Žåã xããµã³ãã«ã«è¿œå ãããããããå°ããå ŽåïŒã€ãŸãã uãå¯åºŠã°ã©ãp *ã«è©²åœããªãã£ãå ŽåïŒã xã¯éžè±ããŸãïŒãããã£ãŠããµã³ãã«ã«åå·®ããããŸãïŒã
以äžã¯ãåå·®ã®ãããµã³ãã«ïŒæ£èŠååžãä»ã®2ã€ã®ã¬ãŠã¹ååžã®æ··åãã¡ãžã£ãŒåããããã«éžæãããïŒã瀺ãå³ã§ãã
ã°ã©ã
cq *ã®äžã®ç¹ãã°ã©ã
p *ã®äžã«ããå Žåãã€ãŸã ãã«ãŒãŸãŒã³ã«å
¥ããŸãã ãããŠãã以äžã®å Žåãããªãã¡ ã¬ãããŸãŒã³ã«-ç§ãã¡ã¯ãããåããªãã ç¹°ãè¿ããŸãããããããªãæ©èœããã®ããçŽæçã«ç解ããã®ã¯ç°¡åã§ã
ãcq *ã°ã©ãã®äžã«ã©ã³ãã ãªãã€ã³ããåçã«åãã
p *ã°ã©ãã®äžã«ãããã€ã³ãã®ã¿ãåæã«æ®ããŸãããã®å Žåãã¹ã±ãžã¥ãŒã«
p * ã åæ§ã«ã
pã«ååã«è¿ã
qãéžæããå ŽåïŒããšãã°ã
pãéäžããŠããå Žæã倧ãŸãã«ç¥ã£ãŠããããã®é åãã¬ãŠã¹ååžã§ã«ããŒããŠããå ŽåïŒããã®æ¹æ³ã¯åã«ã¹ããŒã¹å
šäœãåäžã®æçã«åå²ãããããã¯ããã«å¹æçã§ããããšãæããã§ãã ããããã¡ãœãããæ©èœããããã«ã¯ã
cqãå®éã«
pãéåžžã«ããè¿äŒŒããŠããå¿
èŠããããŸã-éããŸãŒã³ã®é¢ç©ãèµ€ã®é¢ç©ã®10
-10ã§ããå Žåããµã³ãã«ã¯æ©èœããŸãã...
ãã®ã¢ã€ãã¢ã«ã¯ããŸããŸãªããŒãžã§ã³ããããŸããã詳现ã¯èª¬æããŸããã èŠããã«ããã®ã¢ã€ãã¢ãšãã®ããªãšãŒã·ã§ã³ã¯ããŠãããåäœã®è€éãªå¯åºŠã§ããŸãæ©èœããŸãããå®éã«ã¯é«æ¬¡å
ã§ã¯å°é£ãå§ãŸããŸãã 次å
ã®åªãã®åœ±é¿ã«ããã
qã®å€å
žçãªè©Šè¡ååžã¯ããŸããŸãªäžå¿«ãªç¹æ§ãååŸããŸãïŒããšãã°ãé«æ¬¡å
ã§ã¯ããªã¬ã³ãžã®ç®ã¯ã»ãŒå
šäœã®äœç©ãå æããç¹ã«ãæ£èŠååžã¯éåžžã«èããç®ãã«ã»ãŒå®å
šã«éäžããŸãããŒãïŒãé©åãªå Žæã®ãµã³ãã«ãååŸã§ããããã¹ãŠã倱æããããšããããããŸãã ä»ã®æ¹æ³ãå¿
èŠã§ãã
Metropolis-Hastingsã¢ã«ãŽãªãºã
ãã®ã¢ã«ãŽãªãºã ã®æ¬è³ªã¯ãåãèãã«åºã¥ããŠããŸããé¢æ°ã°ã©ãã®äžã§åçã«ãã€ã³ããåãããã§ãã ãã ããã¢ãããŒãã¯ç°ãªããŸãïŒé¢æ°
qã® ããã£ãããã§ååžå
šäœãã«ããŒããããšãã代ããã«ãå
åŽããè¡åããŸãïŒé¢æ°ã°ã©ãã®äžã§
ã©ã³ãã ãŠã©ãŒã¯ãæ§ç¯ãããããã€ã³ãããå¥ã®ãã€ã³ãã«ç§»åããæã
çŸåšã®ãŠã©ãŒã¯ãã€ã³ãããµã³ãã«ãšããŠååŸããŸãã ãã®å Žåããã®ã©ã³ãã ãŠã©ãŒã¯ã¯ãã«ã³ããã§ãŒã³ã§ããããïŒã€ãŸãã次ã®ãã€ã³ãã¯åã®ãã€ã³ãã®ã¿ã«äŸåããã¡ã¢ãªã¯ãããŸããïŒããã®ã¯ã©ã¹ã®ã¢ã«ãŽãªãºã ã¯MCMCãµã³ããªã³ã°ïŒãã«ã³ããã§ãŒã³ã¢ã³ãã«ã«ãïŒãšãåŒã°ããŸãã Metropolis-Hastingsã¢ã«ãŽãªãºã ãå®éã«æ©èœããããšã蚌æããã«ã¯ããã«ã³ãé£éã®ç¹æ§ãç¥ãå¿
èŠããããŸãã ããããä»ã¯æ£åŒã«äœãã蚌æããã€ããã¯ãªãã®ã§
ããŠã£ããžã®ãªã³ã¯ãæ®ããŠãã
ãŸã ã
å®éãã¢ã«ãŽãªãºã ã¯åå·®ã®ããåããµã³ãã«ã«äŒŒãŠããŸãããéèŠãªéãããããŸãïŒä»¥åã¯ã
qã®ååžã¯ç©ºéå
šäœã§åãã§ããããçŸåšã¯å±æçã§ãããçŸåšã®ããŸããç¹ã«å¿ããŠæéãšãšãã«å€åããŸãã åãšåæ§ã«ããã©ã€ã¢ã«ååžã®ãã¡ããªãŒãæ€èšããŸã
ã©ãã§
-çŸåšã®ç¶æ
ã ããããçŸåš
qã¯
pã®è¿äŒŒå€ã§ã¯ãªããçŸåšã®ãã€ã³ãã®è¿ãã«éäžããŠãããµã³ããªã³ã°ãããååžã®ãããªãã®ã§ããå¿
èŠããããŸããããšãã°ãåæ£ãå°ããçé¢ã¬ãŠã¹ååžãé©ããŠããŸãã æ°ããç¶æ
xã®åè£ã¯ 'ãããµã³ããªã³ã°ãããŸã
ã ã¢ã«ãŽãªãºã ã®æ¬¡ã®å埩ã¯ç¶æ
ããå§ãŸããŸã
ãŸãã次ã®ãã®ã§æ§æãããŸãã
- ååžã«ããxãéžæ ;
- èšç®ãã
ïŒæããå¿
èŠã¯ãããŸãããã ã¬ãŠã¹ååžãªã©ã®å¯Ÿç§°ååžã®å Žåãããã¯1ã«çãããããã¯é察称æ§ã®åãªãè£æ£ã§ãïŒã - 確ça ïŒ a > 1ã®å Žåã 1ïŒ ããã§ãªããã° ã
äžçªäžã®è¡ã¯ã次ã®ã¹ããããèžããšæ°ããååžã»ã³ã¿ãŒã«ç§»åããååž
pã«å¿ããŠã©ã³ãã ãŠã©ãŒã¯ãååŸããããšã§ãããã®æ¹åã§å¯åºŠé¢æ°ãå¢å ããå Žåã¯åžžã«ã¹ãããããšããæžå°ããå Žåã¯ãããæåŠããããšããããŸãïŒåžžã«æåŠããããã§ã¯ãããŸããïŒãªããªããå±æçãªæ倧å€ããæãåºããã°ã©ãå
šäœãããŸããããšãã§ããå¿
èŠãããããã§ã
p ïŒã ã¡ãªã¿ã«ãã¹ããããæåŠãããå Žåãæ°ãããã€ã³ããåã«ç Žæ£ããã®ã§ã¯ãªããåã
x ïŒ t ïŒã 2åç¹°ãè¿ããŸã-ãããã£ãŠãããé«ãå¯åºŠã«å¯Ÿå¿ããååž
pã®å±æçæ倧å€ã®åšãã§ãµã³ãã«ãç¹°ãè¿ãå¯èœæ§ãé«ãããšã«æ³šæããŠãã ããã
ç¹°ãè¿ãã«ãªããŸããããã®åçã¯ã2ã€ã®2次å
ã¬ãŠã¹ååžã®æ··åã°ã©ãã®äžã®å¹³é¢äžã移åããå
žåçãªãã®ã§ãã
ãã®ã¢ã«ãŽãªãºã ã®å®éã®åçŽãã匷調ããããã«ããã®ã°ã©ããçæããã³ãŒãã瀺ããŸãã
Pythonã³ãŒãimport numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.path as path import matplotlib.mlab as mlab import scipy.stats as stats delta = 0.025 X, Y = np.meshgrid(np.arange(-4.5, 2.0, delta), np.arange(-3.5, 3.5, delta)) z1 = stats.multivariate_normal([0,0],[[1.0,0],[0,1.0]]) z2 = stats.multivariate_normal([-2,-2],[[1.5,0],[0,0.5]]) def z(x): return 0.4*z1.pdf(x) + 0.6*z2.pdf(x) Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0) Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, -2, -2) Z = 0.4*Z1 + 0.6*Z2 Q = stats.multivariate_normal([0,0],[[0.05,0],[0,0.05]]) r = [0,0] samples = [r] for i in range(0,1000): rq = Q.rvs() + r a = z(rq)/z(r) if np.random.binomial(1,min(a,1),1)[0] == 1: r = rq samples.append(r) codes = np.ones(len(samples), int) * path.Path.LINETO codes[0] = path.Path.MOVETO p = path.Path(samples,codes) fig, ax = plt.subplots() ax.contour(X, Y, Z) ax.add_patch(patches.PathPatch(p, facecolor='none', lw=0.5, edgecolor='gray')) plt.show()
ãã®ãããå¯åºŠã°ã©ã
p ïŒ
x ïŒã®äžã§ã©ã³ãã ãŠã©ãŒã¯ãååŸããŸããã å®éãããã¯ãŸã 蚌æããå¿
èŠããããŸãããæ°åŠã«ã¯é²ãŸãªãã®ã§ãäžèšã ãã®ã©ã³ãã ãŠã©ãŒã¯ãã©ãããããç¬ç«ãããµã³ãã«ãå¿
èŠã§ããããã§ããŠã©ãŒã¯ã®æ¬¡ã®ãã€ã³ãã¯ç¢ºãã«åã®ãã€ã³ãã®é£ã«ãããç¬ç«ã®çè·¡ã¯ãŸã£ãããªãããšãããããŸãã
çãã¯ç°¡åã§ãããã¹ãŠã®ãã€ã³ããååŸããå¿
èŠã¯ãããŸããããããã€ãã®ãã€ã³ãã®ã¿ãååŸããå¿
èŠããããŸãã ããã¯ã©ã³ãã ãŠã©ãŒã¯ã§
ããããã
qã®ã»ãšãã©ãååŸÎµã«éäžãã
pãéäžããåèšååŸã
Dã«çããå Žåãç¬ç«ãããµã³ãã«ãååŸããã«ã¯ãé åºä»ããå¿
èŠã«ãªããŸãã
ã¹ãããã ç¹°ãè¿ãã«ãªããŸãããäžèšã§èª¬æãããããã€ã³ãã
nã¹ãããã§ã©ãã ãé²ãããšãã確çè«ã®ã³ãŒã¹ããå€å
žçãªåé¡ãæãåºãããšãã§ããŸãã 圌女ã¯å¹³åããŠå»ã
ããããã£ãŠãã¹ãããã®æ°ã2次ã«ãªãããšã¯è«ççã§ãã
ãããŠä»ãäž»ãªæ©èœïŒãã®2
次æ°ã¯2ã€ã®ååžã®ååŸã«
äŸåããŸããã次å
ã«ã¯ãŸã£ããäŸåããŸãã ã ã¢ã³ãã«ã«ããã«ã³ããã§ãŒã³ãµã³ããªã³ã°ã¯ãç§ãã¡ãè°è«ããä»ã®æ¹æ³ããã次å
ã®åªãã®åœ±é¿ãã¯ããã«åããŸããã ãããããŽãŒã«ãã¹ã¿ã³ããŒãã«ãªã£ãçç±ã®1ã€ã§ãã ãã ããå®éã«ã¯
Dãè©äŸ¡ããã®ã¯é£ãããããç¹å®ã®å®è£
ã§ã¯éåžžãããè¡ããŸãããŸããç¹å®ã®æ°ã®æåã®ã¹ããããããšãã°1000ãç Žæ£ãããŸãïŒããã¯ããŒã³ã€ã³ãšåŒã°ããããã¯éåžžã«éèŠã§ããéå§ç¹ã倱æããå¯èœæ§ãããããã§ãã
p ããããã£ãŠãããã»ã¹ãéå§ããåã«ãååã«é·ãæ©ããŠããããšã確èªããå¿
èŠããããŸãïŒãå
nçªç®ã®ãµã³ãã«ãååŸããŸããããã§ã
nã¯ãµã³ãã«ã®ã·ãŒã±ã³ã¹ã®å®éã®èªå·±çžé¢ã«åºã¥ããŠå®éšçã«éžæãããŸãã
ã®ãã¹ãµã³ããªã³ã°
ãããŠãä»æ¥ã®æåŸã®ãµã³ããªã³ã°ã¢ã«ãŽãªãºã ã¯ã®ãã¹ãµã³ããªã³ã°ã§ãã ããã¯å®éãMetropolis-Hastingsã¢ã«ãŽãªãºã ã®ç¹å¥ãªã±ãŒã¹ã§ãããéåžžã«äžè¬çã§ã·ã³ãã«ãªç¹å¥ãªã±ãŒã¹ã§ãã
Gibbsã«ãããµã³ããªã³ã°ã®ã¢ã€ãã¢ã¯éåžžã«åçŽã§ããéåžžã«å€§ããªæ¬¡å
ã«ããããã¯ãã«
xãéåžžã«é·ãããµã³ãã«å
šäœãäžåºŠã«éžæããã®ãé£ãããšä»®å®ãããšãããŸããããŸããã ãµã³ãã«ãäžåºŠã«ãã¹ãŠéžæããã®ã§ã¯ãªããã³ã³ããŒãã³ãããšã«éžæããŠã¿ãŸãããã 次ã«ããããã®1次å
ååžãããç°¡åã«ãªãããšã確å®ã«ãªãããããµã³ãã«ãéžæããŸãã
æ£åŒã«èšãã°ããã¯ãã«ã®ã³ã³ããŒãã³ããå®è¡ããŸã
ãåã¹ãããã§1ã€ãé€ããã¹ãŠã®å€æ°ãä¿®æ£ããé 次éžæããŸã
é
åžã«ãã
ããã¯ã座æšè»žã®1ã€ã«æ²¿ã£ãŠåã¹ãããã§ç§»åãããšããç¹ã§ãã¡ããããªã¹ãã€ã¹ãã£ã³ã°ã¹ãããŸããäžè¬çãªã±ãŒã¹ãšã¯ç°ãªããŸãã 察å¿ããç»åã次ã«ç€ºããŸãã
ã®ãã¹ãµã³ããªã³ã°ã¯ãååžã®ã¡ããããªã¹ã¢ã«ãŽãªãºã ã®ç¹æ®ãªã±ãŒã¹ã§ãã
ãåãµã³ãã«ãåãå
¥ãã確çã¯åžžã«1ã«çãããªããŸãïŒããã¯æŒç¿ãšããŠèšŒæã§ããŸãïŒã ãããã£ãŠãã®ãã¹ãµã³ããªã³ã°ã¯åæããããã¯å®éã«ã¯åãã©ã³ãã ãŠã©ãŒã¯ã§ãããããåã2次æšå®å€ãåœãŠã¯ãŸããŸãã
Gibbsãµã³ããªã³ã°ã«ç¹å¥ãªåæãç¥èã¯å¿
èŠãããŸããã äœæ¥ã¢ãã«ããã°ããäœæã§ãããããéåžžã«äžè¬çãªã¢ã«ãŽãªãºã ã§ãã ãŸãã倧ããªæ¬¡å
ã§ã¯ãäžåºŠã«è€æ°ã®å€æ°ããµã³ããªã³ã°ãããããäžåºŠã«è€æ°ã®å€æ°ããµã³ããªã³ã°ããæ¹ãå¹ççã§ããå¯èœæ§ãããããšã«æ³šæããŠãã ãã-ããšãã°ãããå
±æã®ãã¹ãŠã®å€æ°ãå¥ã®å
±æã®ãã¹ãŠã®å€æ°ã«é¢é£ä»ããããŠããå€æ°ã®äºéšã°ã©ããããããšããããããŸãïŒãŸãã¯å€ãã®å ŽåïŒããäºãã«é¢é£ããŠããŸããã ãã®ãããªç¶æ³ã§ã¯ãç¥èªèº«ã1ã€ã®å
±æã®ãã¹ãŠã®å€æ°ãä¿®æ£ããå¥ã®å
±æã®ãã¹ãŠã®å€æ°ãåæã«ãµã³ããªã³ã°ããããã«åœããŸããïŒããã¯æåéãåãããšãã§ããŸã-ãã®ãããªæ§é ã§ã¯ã1ã€ã®å
±æã®ãã¹ãŠã®å€æ°ãå¥ã®æ¡ä»¶ã®äžã§æ¡ä»¶ä»ãã§ç¬ç«ããŠãããããç¬ç«ããŠäžŠè¡ããŠãµã³ããªã³ã°ã§ããŸãïŒããã¹ãŠãä¿®æ£ããŸãã»ã«ã³ãããŒãå€æ°ãªã©ã
ãããã«
ä»æ¥ãç§ãã¡ã¯å€ãã®ããšã管çããŸãããããŸããŸãªãµã³ããªã³ã°ææ³ã«ã€ããŠè©±ããŸãããããã¯ãè€éãªç¢ºçã¢ãã«ã®è¿äŒŒæšè«ã®ããã®äž»èŠãªããŒã«ã®1ã€ã§ãã ããã«ããã®æ°ãããããµã€ã¯ã«ãããŒãã¢ããªã³ã°ãããæ£ç¢ºã«ã¯LDAã¢ãã«ïŒæœåšãã£ãªã¯ã¬å²ãåœãŠãæœåšãã£ãªã¯ã¬å²ãåœãŠïŒã«åããŠéçºããäºå®ã§ãã 次ã®ã·ãªãŒãºã§ã¯ãã¢ãã«èªäœ
ã«ã€ããŠèª¬æã ïŒ
æ¢ã«ç°¡åã«
説æããŸããã ãä»ã§ã¯ããã«è©³ãã説æã§ããŸãïŒãã®ãã¹ãµã³ããªã³ã°ãLDAã§ã©ã®ããã«æ©èœãããã説æããŸãã ãããŠãLDAãšãã®æšå¥šã·ã¹ãã çšã®å€ãã®æ¡åŒµæ©èœãé©çšããæ¹æ³ã«åŸã
ã«é²ã¿ãŸãã