ãã®æ³šç®ãã¹ã仮説ã¯ãå®çŸ©ãããŠãããã©ãããçŸåšäžæã§ããé¢æ°Lã®åäœãšãæéã§ãããã©ãããäžæãªã°ã«ãŒãIIIã®é åºãçµã³ä»ããŸãïŒ
JTTateãæ¥åæ²ç·ã®ç®è¡ãçºææ°åŠ23ïŒ1974ïŒ
ãªãªãžãã«ãã®æ³šç®ãã¹ãæšæž¬ã¯ãå®çŸ©ãããŠããããšãçŸåšç¥ãããŠããªããã€ã³ãã§ã®é¢æ°Lã®æ¯ãèãããæéã§ããããšãç¥ãããŠããªãã°ã«ãŒãWã®æ¬¡æ°ã«é¢é£ä»ããŸãïŒ
ïŒ40幎åã®åŒçšã®é¢é£æ§ã«ã€ããŠã®ç°¡åãªãªãã¡ã¬ã³ã¹ïŒWiles and Co.ã®åŸãé¢æ°
Lã¯è€çŽ å¹³é¢å
šäœã§æ±ºå®ã§ããããšãããã£ããäžè¬çãªå Žåã®ã°ã«ãŒã
IIIã®æéæ§ã¯äžæã®ãŸãŸã§ãããïŒ
ãšã©ãŒã®å¯èœæ§ã«ã€ããŠã¯è°è«ããå¿
èŠããããŸãã å
éšã³ã³ãã¥ãŒã¿ãŒãšã©ãŒã«å¯Ÿããäºé²æªçœ®ãšããŠããã¹ãŠã®èšç®ã2åå®è¡ããããããã°ã©ã å
ã§ãã§ãã¯ãè¡ãããšãã§ããŸãã ããã«ãã³ã³ãã¥ãŒã¿ãŒã¯ã人éãšã¯ç°ãªãããšã©ãŒã倧ããããŠèŠéããããªãããã«èšèšãããŠããŸãã çµæã«ãã®ãããªãšã©ãŒããªãããšã確信ããŠããŸãã äžæ¹ãè€éãªèšç®ã¹ããŒã ãã³ã³ãã¥ãŒã¿ãŒããã°ã©ã ã«ã³ãŒãã£ã³ã°ããå Žåãããã°ã©ãã³ã°ãšã©ãŒã¯é¿ããããŸããã ãããã®ã»ãšãã©ã¯ãããã°ã©ã ããã³ã°ãããããšãã§ããªãçµæããããããããã¡ã€ã³ã®èµ·ååã§ãæ€åºãããŸãã ããããåäœããŠãããšèŠãªãããããã°ã©ã ã«ã¯ããŸããªç¶æ³ã§çºçããè«çãšã©ãŒãäŸç¶ãšããŠå«ãŸããŠããå¯èœæ§ããããŸããå®éãã»ãšãã©ã®ã³ã³ãã¥ãŒã¿ãŒã¯ç°åžžã®åœ±é¿ãåãããããããä»æ§ã«åŸã£ãŠåäœããã¯ãã®åäœãšç°ãªãå ŽåããããŸãã å®éãã¹ãããïŒiiïŒã®ããã°ã©ã ã¯äžæ£ç¢ºã§ããããšãå€æããèŠã€ããªããã°ãªããªãéåžžã«å°æ°ã®åçç©ãèŠéããŸããã
ãããã®çç±ã«ãããã³ã³ãã¥ãŒã¿ãŒã§åŸãããçµæãèªåçã«ä¿¡é Œãã¹ãã§ã¯ãªããšèããŠããŸãã å Žåã«ãã£ãŠã¯ãæ¬è³ªçã«èšç®ã«é¢äžããŠããããèµ·ãããããšã©ãŒãä¹ãåãå¯èœæ§ãäœãããããã£ãç ç²ã«ããŠãã§ãã¯ã§ããŸãã ïŒããšãã°ãè£éãªãã§åŸãããæ»ãããªé¢æ°ã®å€ã®è¡šã¯ãé£æ¥ããå€ã®å·®ãèšç®ããããšã§ç¢ºèªã§ããŸãïŒããããããã®ãããªãã§ãã¯ãå©çšã§ããªãå Žåãå¥ã®ã³ã³ãã¥ãŒã¿ãŒäžã®å¥ã®ããã°ã©ããŒã«ãã£ãŠç¬ç«ããŠç¢ºèªããããŸã§ãçµæãå®å
šã«ä¿¡é Œããã¹ãã§ã¯ãããŸããã ã³ã³ãã¥ãŒã¿ãéåžžã«åºãå©çšå¯èœã«ãªã£ããšãã«ããããé床ã®åºæºãèšå®ãããšã¯æããªãã ãããŠãäœæ°Žæºããã§ã«å
¬è¡šããã誀ã£ãçµæãä¿¡ããŠããããšã確信ããŠããŸãã
BJBirchããã³HPFSwinnerton-Dyerãæ¥åæ²ç·ã«é¢ãã泚æã IãJournalfÃŒrdie reine und angewandte Mathematik 212ïŒ1963ïŒ
ãªãªãžãã«ãšã©ãŒã®åé¡ãè°è«ããããã«æ®ã£ãŠããŸãã ãã¹ãŠã®èšç®ã2åå®è¡ããããããã°ã©ã ã«å«ãŸãããã§ãã¯ãè¡ãããšã«ããããã·ã³ãšã©ãŒã«å¯Ÿããäºé²æªçœ®ãè¬ããããšãã§ããŸãã ããã«ãæ©æ¢°ã¯ã人éãšã¯ç°ãªããèšèšãããŠãããããéåžžã¯èŠéãããªãã»ã©ã®é倧ãªãšã©ãŒãçºçããŸãã çµæã«ãã®çš®ã®æªæ€åºã®ãšã©ãŒããªãããšã«æºè¶³ããŠããŸãã äžæ¹ãèšç®ã®ç²Ÿå·§ãªã¹ããŒã ãæ©æ¢°ããã°ã©ã ã«å€æããå Žåãééããç¯ãããšã«ãªããŸãã ãããã®ã»ãšãã©ã¯ãããã°ã©ã ãå®çšŒåã§äœ¿çšãããåã«èŠã€ãããŸãã ããã°ã©ã ãåæ¢ãããããšãã§ããªãçµæãçãããã«çŸããŸãã ããããåäœãããšèããããŠããããã°ã©ã ã«ã¯ããŸããªç¶æ³ã§ã®ã¿å¹æãããè«çãšã©ãŒãå«ãŸããŠããå¯èœæ§ããããŸããå®éãã»ãšãã©ã®ã³ã³ãã¥ãŒã¿ãŒã«ã¯ãä»æ§ã瀺ããšããã«åäœããªãããšãããç°åžžããããŸãã å®éãã¹ããŒãžïŒiiïŒã®ããã°ã©ã ã¯ããã·ã³ãéåžžã«å°æ°ã®ç䟡æ§ãèŠéãããšããç¹ã§äžå®å
šã§ããã
ãããã®çç±ã«ãããã³ã³ãã¥ãŒã¿ãŒããåŸãããçµæãèªåçã«ä¿¡é Œãã¹ãã§ã¯ãªããšèããŠããŸãã å Žåã«ãã£ãŠã¯ãèšç®ã®éçšã§æ¬è³ªçã«äœ¿çšãããããšã©ãŒãçºçããå Žåã«åç¶ããå¯èœæ§ãäœãããããã£ãããããããã§ãã¯ã§ããŸãã ïŒããšãã°ãè£éã䜿çšããã«æ»ãããªé¢æ°ã®ããŒãã«ãèšç®ãããå Žåãå·®åã«ãã£ãŠãã§ãã¯ã§ããŸããïŒãããããã®çš®ã®ãã§ãã¯ãå©çšã§ããªãå Žåãçµæã¯ç¬ç«ããŠåçŸããããŸã§å®å
šã«ä¿¡é Œãããã¹ãã§ã¯ãããŸãããå¥ã®ãã·ã³ã䜿çšããå¥ã®ããã°ã©ããŒã«ãã£ãŠã ã³ã³ãã¥ãŒã¿ãŒãéåžžã«åºãå©çšå¯èœã«ãªã£ãŠããä»ããããäžåœãªæšæºãèšå®ãããšã¯æããªãã ããäœãåºæºããã§ã«å
¬è¡šããä¿¡ããããŠããå€ãã®èª€ã£ãçµæã«ã€ãªãã£ãŠããããšã«æºè¶³ããŠããŸãã
ç«ã®äžã§ã¯ã仮説ã®å®åŒåã¯ãããŸããã ããªã€ã©ãŒç©ãããããã¢ã«ãã£ãã¯ç¶ç¶ããªã©ã®ç¥èã®ããè¡šçŸïŒèšèªã®èŠ³ç¹ãšæå®ãããæŠå¿µã®èŠ³ç¹ïŒã¯ãClay Instituteã®Webãµã€ããã
5ããŒãžã®PDFãèªãããšãã§ããŸãã ã«ããã®äžã§ã¯ãäžè¬çãªæ°åŠçæèã®çºå±ãããŒã-ã¹ãŠã£ããŒãã³-ãã€ã¢ãŒä»®èª¬ã§ããæ¹åã説æããè©Šã¿ãããã€ããããŸãã ãŸããKDPVã«è¡šç€ºãããŠãããããªå€§ããªæ°åã1ç§æªæºã§ã«ãŠã³ãããæ¹æ³ã
2ã€ã®å€æ°ãæã€æ¹çšåŒã®åççãªè§£ãèŠã€ããããšã§ãã
ç·åœ¢ããã³äºæ¬¡æ¹çšåŒ
æãåçŽãªã±ãŒã¹ã¯ç·åœ¢æ¹çšåŒã§ãïŒ
a x +
b y +
c = 0ïŒããã§
a ã
b ã
cã¯æçæ°ã§ãïŒã ããã§ã®è§£æ±ºçã¯ç°¡åã§ããa=
b = 0ã®çž®éããã±ãŒã¹ãé€å€ãããšãå€æ°ã®1ã€ã¯ä»»æã®åççãªå€ãåãããšãã§ãããã1ã€ã¯æåããäžæã«èšç®ãããŸãã
次ã®ã±ãŒã¹ã¯äºæ¬¡æ¹çšåŒã§ãã ãã§ã«ããŸããŸãªã±ãŒã¹ããããŸããããã¹ãŠãæ確ãªã±ãŒã¹ïŒ
y -x²= 0ã
y² -x²= 0ïŒã暪åããšãæ®ãã®å€æ°ã¯ç·åœ¢å€åã«ãã
a x²+
b y² +
cã®åœ¢ã«æžå°ã
ãŸã = 0ããã
㧠ã
a ã
b ã
cã¯éãŒãã®æçæ°ã§ãã 3ã€ã®ç¹åŸŽçãªäŸãèŠãŠã¿ãŸãããã
æããã«ãæåã®äŸã«ã¯åççãªè§£ããããŸããããªããªããå·ŠåŽã¯åžžã«1以äžã§ããããŒãã«çããã§ããªãããã§ãã å¥ã®èšãæ¹ãããã°ãæåã®äŸã«ã¯å®éã®è§£ãããªããæçæ°ã¯å®æ°ã®ãµãã»ããã§ãããããåççãªè§£ããããŸããã
2çªç®ã®äŸã«åççãªè§£æ±ºçããªãããšã¯ããã»ã©æçœã§ã¯ãããŸããã
xãš
yãæå°å
¬åæ¯ã«ããŸã
ãx =
k /
n ã
y =
m /
nãšããŸããããã§ã
k ã
m ã
nã¯æŽæ°ã§ãããéåäœã§ã¯çžäºã«åçŽã§ãïŒã€ãŸãã3ã€ãã¹ãŠãåæã«åå²ããæ°ã¯ãããŸããïŒ ã ãã®åŸãæ¹çšåŒã¯ã«å€æãããŸã
ã
3ãæ³ãšãããšèããŠãã ããã3ãæ³ãšããæŽæ°ã®2ä¹ã¯0ãŸãã¯1ã®ããããã§ãã 3ãæ³ãšãã2ã€ã®2ä¹åã¯ãäž¡æ¹ã®æ°å€ã3ã§å²ãåããå Žåã«ã®ã¿ãŒãã«ãªããŸãããããã£ãŠã
kãš
mã¯3ã§å²ãåããå¿
èŠããããŸãã
次ã«ãã¢ãžã¥ãŒã«9 =3²ãååŸããŸãã å·ŠåŽã¯9ã§å²ãåããã®ã§ã3 n²ã¯9ã§å²ãåããå¿
èŠãããã
nã¯3ã§å²ãåããå¿
èŠããããŸãããããã£ãŠã
k ã
m ã
nã¯æŽæ°ã§çžäºã«åçŽã§ãå
ã®æ¹çšåŒã«ã¯æç解ããããŸããããããŠçŽæãããã
3çªç®ã®æ¹çšåŒã«ã¯ãç°¡åã«ç€ºãããã®ãœãªã¥ãŒã·ã§ã³ãããã€ããããŸããããšãã°ã
x = 1ã
y = 0ã§ãã äºæ¬¡æ¹çšåŒã®1ã€ã®è§£ãããã£ãŠããå Žåããã£ãªãã¡ã³ãã¹ã«é¡ãæ¹æ³ã§ãã¹ãŠãèŠã€ããããšã¯é£ãããããŸããïŒç¹ïŒ1,0ïŒãéãçŽç·ã¯æ£ç¢ºã«ä»ã®1ã€ã®ç¹ã§åãšäº€å·®ãããã®ç¹ã¯è§ãçŽæ¥ä¿æ°ã¯åççã§ãã ç¹ã«åã®å Žåãè§åºŠä¿æ°ã
-tã§è¡šããšãçŽç·ã®åœ¢åŒã¯
y =ïŒ1-
x ïŒ
tã«ãªããåãšã®2çªç®ã®äº€ç¹x²+
y² = 1ã®åº§æšã¯
-ããã¯ã3çªç®ã®äŸã®äžè¬çãªè§£æ±ºçã§ãïŒãã€ã³ãïŒ1,0ïŒèªäœãé€ããããã¯ããæå³ã§
ïŒ
ããã»ã®åç
æŽæ°ãŸãã¯æçæ°ã®ä¿æ°ãå«ãæ¹çšåŒã«åãæ°ã®ã¹ãä¹ãäžãããšããèãæ¹ã¯ãéåžžã«æçã§ãã ç¹å¥ãªæ§é ã
p ãp²ãããã³ä»ã®ãã¹ãŠã®æ¬¡æ°
pãæ³ãšããŠèµ·ããããšã ãã«é¢å¿ããããä»ã®ç®è¡ããããã£ãç¡èŠãããšããŸããããã¯ãã
pé²æ° ããšåŒã°ã
ãŸã ïŒWikipediaãžã®ãªã³ã¯ããããŸããããããæã«ã¯ã²ã©ãèšèãããã«åºããããŸãïŒ; å®æ°ã®ãããªpé²æ°ã¯æçæ°ãå«ã¿ãä»ã®å€ããè¿œå ããŸãïŒããšãã°ã2ã®å¹³æ¹æ ¹ã¯ã¢ãžã¥ã7ãš7ã®ãã¹ãŠã®æ¬¡æ°ã§æœåºãããããã7é²æ°ã®äžã«ãããŸã;äžæ¹ã 4ãæ³ãšããŠã3ãæ³ãšããŠãæœåºã§ããªãããã2é²ããã³3é²ã®æ°ã«ã¯å«ãŸããŸããïŒã 2çªç®ã®äŸã«é¢ããåŒæ°ã¯ãæåéã3é²ã®æ°å€ã«åŒãç¶ãããŸãã2çªç®ã®äŸã«ã¯3é²ã®è§£ã¯ãªããæçæ°ã¯3é²ã®ãµãã»ããã§ãããããåççãªè§£ããããŸããã
å€ãã®å Žåã1ã€ã®çŽ æ°ã§ã®äœæ¥ã¯ç°¡åã§æ¥œãããã®ã§ãã æçµçã«ãçŽ æ°ãæ³ãšãããã¹ãŠã®ãªãã·ã§ã³ãæŽçããããšãã§ããŸãã äžæ¹ãè€æ°ã®çŽ æ°ãæ±ãããšã¯ã¯ããã«è€éã«ãªãåŸåããããŸã-
ãŽãŒã«ãããã åé¡ãšåååé¡ã¯ãã®ããšã®æ確ãªèšŒæ ã§ãã
å®æ°ãšpé²æ°ã«æž¡ããšã解決çããªãããšã蚌æããã®ã«åœ¹ç«ã¡ãŸãã éã«
ãããã»ã®åçã§ã¯ããã¹ãŠã®pã«å¯ŸããŠå®æ°è§£ãšpé²è§£ãããå Žåãå¿
ç¶çã«åççãªè§£ãååšãããšããããšã§ãã ïŒãã¡ãããç¡éã«å€ãã®çŽ æ°ãããããã¹ãŠã®ãã¹ããé
延ããå¯èœæ§ããããŸãããããã
pãååãåæ¯
a ã
b ã
c ãããã³2以äžãåå²ããªãå Žåãåžžã«pé²è§£ããããé€æ°
abcäºæ¬¡çžåã®æ³åã䜿çšããŠè§£ã®ååšãå¹æçã«æ€èšŒããŸããïŒ
æ®å¿µãªãããããã»ã®åçã¯ãããé«æ¬¡ã®æ¹çšåŒã«ã¯åœãŠã¯ãŸããŸããã ããšãã°ãæ¹çšåŒ3
x 3 +4
y 3 + 5 = 0ã«ã¯ãã¹ãŠã®pã«å¯ŸããŠå®æ°è§£ãšpé²è§£ãããããåççãªè§£ããªãããšã蚌æã§ããŸãã
æ¥åæ²ç·
y ïŒx²-1ïŒ=
x 3 -1ã
y² =
x 3 + x²ã®ãããªç°ãªãçž®éããå ŽåãããäžåºŠé€ãã°ã3次ã®æ¹çšåŒã¯ãå±1ã®æ²ç·ãå®çŸ©ããŸãïŒããã¯å®çŸ©ã§ã¯ãªããå±ã®ä»ã®æ²ç·ããããŸã1ïŒã æ²ç·äžã«ç¹ããªãå ŽåããããŸãïŒæ¹çšåŒã®è§£ïŒã ç¹ãããããããã®ãããããéžæãããŠããå Žåã
æ¥åæ²ç·ãååŸãããŸãã æ¥åæ²ç·ã®å Žåãéžæãããã€ã³ããç¡éã«éä¿¡ããããã«å€æ°ããã€ã§ãå€æŽã§ããæšæºåœ¢åŒ
y² =
x 3 +
a x +
b ã
a ã
bæçåŒïŒããã³æŽæ°ã§ãããå€æ°ã®å¥ã®å€æŽã«ãã£ãŠåæ¯ããã€ã§ãåãé€ãããšãã§ããŸãïŒã®æ¹çšåŒãååŸã§ããŸãæ¥åæ²ç·ïŒæçæ°ä»¥äžïŒã®ã¿ã次ã«æ¥ãã§ãããã
éå
¬åŒã«èšãã°ãæ£ç¢ºã«ããã»ã®åçãåäžã®æ¥åæ²ç·ãšé¢é£ãããšã³ãã£ãã£ã«å¯ŸããŠã©ã®ããã«éåããããã¯
ãããŒã-ã·ã£ãã¡ã¬ãŽã£ããæ²ç·ã®
ã°ã«ãŒãã«ãã£ãŠç¹åŸŽä»ã
ãããããŒãã®ãã¬ãŒã³ããŒã·ã§ã³ã¯äŒçµ±çã«ããªã«æå
IIIã§ã»ãšãã©ã®æåãè±èªã®èšäºã§ã瀺ãããŠããŸãã ããã¯æéã§ãããšä»®å®ãããŸãã Birch-Swinnerton-Dyer仮説ã«ã¯ããã®ã°ã«ãŒãã®é åºãå«ãŸããŸãã
äºæ¬¡æ¹çšåŒãšã¯ç°ãªãã1ã€ã®ç¹ãèŠã€ããŠïŒãããŠç¡éã«éä¿¡ããåŸïŒããã¹ãŠãå§ãŸããŸãã æ¥åæ²ç·äžã®ç¹ãè¿œå ã§ãã
ããšã¯ããç¥ãããŠããŸãã 1ã€ã®ãã€ã³ããååŸãããããèªåèªèº«ã«è¿œå ãå§ãããšïŒ
P ã
P +
P = 2
P ã
P +
P +
P = 3
P ã...ïŒã2ã€ã®ãªãã·ã§ã³ãå¯èœã§ãïŒç¹å®ã®ã¹ãããæ°ã®åŸãç¡éã«ãªã¢ãŒãã«ãªããŸãïŒãã®åŸã次ã®ã¹ãããã§åã³
Pãäžããããããã»ã¹ãã«ãŒãããŸãïŒããŸãã¯çµæã®ãã¹ãŠã®ãã€ã³ããç°ãªããŸãïŒãããŠ
-P ã
-2Pãªã©ãåãã®ãçã«ããªã£ãŠããŸãïŒã æåã®å Žåããã®ç¹ã¯
ãããç¹ãšåŒã°ããŸãã åäžã®æ²ç·ã®å Žåã11ãé€ã1ãã12ãŸã§ãå¯èœã§ãïŒåžžã«ååšããç¡éé ç¹ã¯ãããç¹ã§ããããŸãïŒã Mordell â Weilã®å®çã¯ãæ²ç·äžã®ä»»æã®ç¹ã
n 1 P 1 + ... +
nã®åœ¢åŒã§äžæã«èšè¿°ãããããã«ãåžžã«æéæ°ïŒãããã0ïŒã®ç¬¬2ã¿ã€ãã®ç¹
P 1 ã...ã
P rãèŠã€ããããšãã§ãããšè¿°ã¹ãŠããŸãã
r P r +
Q ãããã§
Qã¯ãããç¹ã
n iã¯æŽæ°ã§ãã æ°å€
rã¯
ãæ²ç·ã®
ã©ã³ã¯ãšåŒã°ããŸãã ããšãã°ãKDPVã«æãããæ²ç·
y² =
x 3 +877
xã«ã¯ãã©ã³ã¯1ãš2ã€ã®ãããç¹ããããŸãã æ²ç·ã®ïŒåççãªïŒç¹ã¯ã
n PãŸãã¯
n P +ïŒ0,0ïŒã®ããããã§ããããã§ã
P座æšã¯å³ã§çœ²åãããŠããŸãã
ãã¹ãŠã®ãããç¹ãèŠã€ããã®ã¯æ¯èŒçç°¡åã§ãã ããšãã°ãæŽæ°ä¿æ°
aããã³
bã®å Žåããã¹ãŠã®ãããç¹ïŒç¡éé ã®ãã®ãé€ãïŒèªäœã¯æŽæ°åº§æšãæã¡ã
y座æšã¯ãŒããŸãã¯
y²ã4
a 3 +27
b²ãé€ç®ããŸãã ã©ã³ã¯ã®èšç®ããã³ãã€ã³ã
P iãçæããããã®æ€çŽ¢
ã¯ãã¯ããã«è€éã§ãã
äœããç解ããæã§ã
åçŽã«
x座æšã®ååãšåæ¯ãæé ã«èª¿ã¹ãæç
yãåŸããããã©ããããã§ãã¯ããããšã«ãããæ²ç·äžã®ç¹ãæ€çŽ¢ã§ããŸãã æ²ç·ã®æŽæ°ä¿æ°ã®å Žåãåæ¯
xã¯æ£ç¢ºãªæ£æ¹åœ¢ã§ãããåæ¯
yã¯åãæ°ã®ç«æ¹äœã§ããå¿
èŠããããŸãïŒKDPVã®åæ¯ã¯78841535860683900210ã®2ä¹ããã³ç«æ¹äœã§ãïŒã ãã ããKDPVæ²ç·ã¯ããããèŠããšèœã®ãããªèããæå¶ãããããã«ç¹å¥ã«éžæãããŸãïŒ
Pã¯ïŒ0,0ïŒãã«ãŠã³ããããæå°ã®åæ¯ãæã€ç¹ã§ãïŒã
ååãšããŠã
n- descentïŒ
nã¯2以äžã®æ£ã®æŽæ°ïŒã®äžè¬çãªæé ããããŸããããã«ãããTate-Shafarevichã°ã«ãŒãã«
n次ã®èŠçŽ ããªãã
rã®äžéãšäžéãååŸããŠã
rãèšç®ãã
r åã®ç¬ç«ç¹ãèŠã€ããããšãã§ããŸããäžè¬çãªã±ãŒã¹ã§ããã€ãã®ç¬ç«ç¹ãèŠã€ããŸãã ïŒåŸè
ã®å Žåãäžéãç¹°ãè¿ãããšãã§ããŸã
ãnãšããŠãããçŽ æ°ã®æ¬¡æ°ã®å¢å ãéžæããŸããTate-Shafarevichã°ã«ãŒããæéã®å ŽåãæéæéåŸã«åæããŸããïŒããããå®éã«ã¯ãããã¯éåžžã«äžäŸ¿ã§ãã BirchãšSwinnerton-Dyerã¯ã2ã€ã®èšäºã®æåã®èšäºã§ãå®éã®ç®è¡ã®ç¯å²ãè¶
ããªã2éäžæ³ãææ¡ããŸããã æ£ç¢ºãªèª¬æãå¿
èŠãªå Žåã¯ã
mwrankã®ãœãŒã¹ã
ç¹ã«mwrank1.ccã調ã¹ãŠ ã
y² =
x 3 +877
xã®çµæãããã€ã瀺ããŸãã
æåã®æ®µéã§ãã¡ãœããã¯
å次æ²ç·-ãã©ãŒã ã®æ²ç·ãæ€çŽ¢ããŸã
ã-å
ã®æ²ç·ãžã®ãããã³ã°ããããç¹å®ã®ç¯å²ã§
a ã
b ã
cããœãŒã
ã ã
dãš
eãèšç®ãã
dãš
eãæŽæ°ã§ããããšã確èªããå®ç¹ãŸãã¯pé²ç¹ãæããªãå次æ°ãåé€ããŸãå°ãªããšãããã€ãã®
p ã
æåã®æ®µéã®åŸãããã€ãã®ååæ°ãåçã«ãªãããšããããŸãïŒ
Xã®ç·åœ¢ã®åæ°å€åã«ãã£ãŠäºãã«ééããŸãïŒã 2çªç®ã®æ®µéã§ã¯ãã¡ãœããã¯åç䟡ã¯ã©ã¹ãã1ã€ã®å次ãæ®ããŸãã ãã®åŸã2
m + k -1 4次ãæ®ããŸããåææ²ç·äžã«æ¬¡æ°2ã®0.1.3ãã€ã³ãïŒ
y = 0ã§ç¹åŸŽä»ããããïŒãããå Žåãä¿æ°2
kã¯1.2ãŸãã¯4ã§ã
ãmã¯ã©ã³ã¯ã æ²ç·
y² =
x 3 + 877
xã«ã¯ã次æ°2ã®ãã€ã³ãã1ã€ãããã©ã³ã¯ã¯1ã§ããããã3ã€ã®å次æ°ãååŸãããŸãã
æåã®ãã®ïŒ
ïŒHabr圢åŒã¯ããã¹ãŠã®ä¿æ°ã®åŒãæžãåºãããšã奜ã¿ãŸããããããã§ã座æšå€æã®ãã¹ãŠã®ä¿æ°ã¯
a ã
b ã
c ã
d ã
eãä»ããŠèšç®ãããŸããããšãã°ã12321ã¯d²-8e
c / 3ãšããŠååŸãããŸãã ïŒ
第äºïŒ
第äžïŒ
ïŒ
aãæ£ç¢ºãªæ£æ¹åœ¢ã§ãããã©ããã«å¿ããŠã0ãŸãã¯2ã€ã®ç¡éé ç¹ã4次ã«ååšããå¯èœæ§ããããŸããæåã®2ã€ã®4次ã«
ã¯ã 2ã€ãããäž¡æ¹ãšãïŒ0,0ïŒã«ãªããŸãã
ããããéåžžã®ãã€ã³ãã«æžãããŸããïŒ
3çªç®ã®æ®µéã§ããã®ã¡ãœããã¯ã2çªç®ã®æ®µéã®åŸã«æ®ã£ãŠãã4次æ°ã®åççãªãã€ã³ããæ€çŽ¢ããŸãã å
ã®æ²ç·ã®
x-座æšã®ååãšåæ¯ã¯ãå次ã®ååã®
X-座æšã®4çªç®ã®æ¬¡æ°ã«ã»ãŒçãããªããŸãïŒæ¥åæ²ç·ã®
nãä¹ç®ãããšã
n²ã®æŒç®ã«ãªãã2次å
ã®å Žåã¯æ¬¡æ°4ã«ãªããŸãïŒã ãã€ã³ããèŠã€ãã£ãå Žåãããã䜿çšããŠãå
ã®æ²ç·äžã®ãã€ã³ããèšç®ã§ããŸãã ãã€ã³ããèŠã€ãããªãã£ãå Žåãåé¡ãçºçããŸããããã¯ããã€ã³ããå®éã«ååšããªãïŒããã³Tate-Shafarevichã°ã«ãŒãã®éèŠãªèŠçŽ ãããïŒããæ€çŽ¢ãäžååã ã£ãããšãæå³ããŸãã çè«çãªè§£æ±ºçã¯ãé«æ¬¡ã®éäžãåæã«éå§ãã倧ããªååãšåæ¯ãæã€ãã€ã³ããæ€çŽ¢ããããšã§ãã è¯ãå®çšçãªè§£æ±ºçã¯äžæã§ãã
æ²ç·
y² =
x 3 + 877
xã®å Žåãå次æ²ç·äžã®åº§æšã¯å
ã®æ²ç·ã®ç¹ã®åº§æšãããå°è±¡çã§ã¯ãããŸããããçŽæ¥åæããã«ã¯å€§ããããŸãã ãã ããå次ã®
ããã«äžããããšãã§ããŸãã ïŒæåã®4次ãããã«åŠçããããšã¯å°é£ã§ãããå¿
èŠã§ã¯ãããŸããã1ã€ã®çæç¹ã§ååã§ããïŒå³åŽã¯2次ã§ãããã€ãŸãX²ã§è¡šãããŸãã ããã¯ãåææ²ç·ã«2次ãã€ã³ããããå Žåã«åžžã«çºçããŸãïŒ
y = 0ã®å ŽåïŒã ãã¢ïŒX²ã
Y ïŒãå€æ°ãšããŠäœ¿çšãããšã2次æ¹çšåŒãåŸãããŸãããããã¯æ¢ã«è§£ãããšãã§ããŸãã
ããã«ãX²ã®åŒã®ååãšåæ¯ã®å
¬çŽæ°ãé€ç®ããå¿
èŠããããŸã
; ãããã®åã¯ãäž¡æ¹ãšã "
d Ãsquare"ã®åœ¢åŒã®å Žåã«ã®ã¿åã«ãªããŸããããã§ã
dã¯å¹³æ¹ãªãã®é€æ°3508ã§ããã€ãŸããæ°å1,2,877,1754ã®1ã€ã§ãïŒåæ¯ã¯åžžã«æ£ã§ãããããè² ã®
dã¯é€å€ãããŸãïŒã ååã¯ã2é²ïŒç¹ã«æçæ°ïŒæ°ã®æ£ç¢ºãªäºä¹ã«ã¯ã§ããŸããã
d = 2ãè©ŠããŸãã
ã åŸããã
uã®åŒãååã«ä»£å
¥ããååãäºéã®æ£æ¹åœ¢ã§ããããšãèŠæ±ãããšãæ°ããå次åŒãåŸãããŸã
ã
ãã§ã«åæã«å©çšã§ãããã€ã³ãããããŸãïŒ
ã
ååäœæ°ã®æ€çŽ¢ã¯ããã©ã€ã ãšãã©ã€ã ã®çŽ¯ä¹ãæ³ãšããæ¹çšåŒãèæ
®ãããšããåãèãæ¹ã䜿çšããŠããã«åæžã§ããŸãã æŽæ°
k ã
mãæ€çŽ¢ãããšãã
æ£ç¢ºãªäºä¹ã§ãåçŽ æ°
pã«å¯ŸããŠãp²å¯èœãªæ®åºã®ãã¢ïŒ
k ã
m ïŒã®çŽååã¯ã
pãæ³ãšããéå¹³æ¹ãäžããŸãã ïŒ2ãš3ã®ä»£ããã«ããããã®æ¬¡æ°16ãš9ãèŠãæ¹ãè¯ãã§ãã倧ããª
pã®å Žå ã次æ°ãå¢ãããŠãäœãäžããããŸãããïŒãããã£ãŠãäŸãã°16 * 9 * 5 * 7ã®å°äœã®ãã¢ã¯åèšã®çŽ1/16ã§ãå¯èœãªãã¢ã®æ°ã ãè¯ããæ®åºãæã€ãã¢ïŒ
k ã
m ïŒã®ã¿ãæ€çŽ¢ããã ãã§ååã§ãã åè¿°ã®mwrankã¯ãåæ§ã®èæ
®äºé
ã䜿çšããŠãFDPCãæã€ãã€ã³ã
Pã1ç§æªæºã§èŠã€ããŸãã
ããŒãã»ã¹ãŠã£ããŒãã³ã»ãã€ã¢ãŒäºæ³
æåã®èšäºãæ¥åæ²ç·ã«é¢ãã泚æã ããŒããšã¹ãŠã£ããŒãã³ã»ãã€ã¢ãŒã¯ãæ°åã®æ¥åæ²ç·ã®ã©ã³ã¯ã«é¢ããçµ±èšãåéããŸããã 2çªç®ã®èšäºãæ¥åæ²ç·ã«é¢ãã泚æã IIããèç©ãããçµ±èšãåæããæãæ¥ãŸãããã¿ã€ãã«ä»®èª¬ãããã§ææ¡ãããŠããŸãã
æçæ°ã®æ¥åæ²ç·ã䜿çšãããšãåé¡ãçºçããå ŽåããããŸããç¹ã®åº§æšãæ¥éã«å¢å ãããããã©ã³ã¯ãèšç®ããæé ã§åžžã«çããåŸããããšã¯éããŸããã äžæ¹ãæŽæ°ä¿æ°ã®æ¹çšåŒãããå Žåãç°ãªãçŽ æ°ãæ³ãšããŠãããèæ
®ããããšãã§ããŸãã å°ããªçŽ æ°ãæ³ãšããç¹ã®æ°ã¯çŽæ¥èšç®ããã®ã¯ç°¡åã§ããããã®æ°ãåççãªç¹ãšã©ã®ãããªé¢ä¿ã«ãããã¯æ確ã§ã¯ãããŸããã
åçŽ æ°ã«ã€ããŠããã®çŽ æ°ãæ³ãšããæ²ç·äžã®ç¹ã®æ°ãæ°ãããšãæŽæ°ã®ç¡ééåãåŸãããŸãã ãã®ã»ãããç¹å®ã®æ¹æ³ã§è€çŽ å€æ°ã®åäžã®é¢æ°ã«ãæ¥çã
ãããš ãäŒçµ±çã«æå
Lã§ç€ºãããæ¥åæ²ç·
ã®ããã»-ã¯ã€ã«ãŒãŒã¿é¢æ°ãåŸãããŸãã äžåºŠã«ãã¹ãŠã®çŽ æ°ãæ³ãšããåäœã«é¢ããæ
å ±ãå«ãŸããŠãããããããã«ã€ããŠäœãã蚌æããããšã¯å°é£ã§ãã ïŒãã®ç¹ã§ã¯ããªãŒãã³ãŒãŒã¿é¢æ°ã«äŒŒãŠããŸãããªãŒãã³ãŒãŒã¿é¢æ°ã®ç¹æ§ã«é¢ãããªãŒãã³ä»®èª¬ã¯ãããã¬ãã¢ã åé¡ãã®ãã1ã€ã§ããïŒã©ã³ã¯ïŒãŒãŒã¿é¢æ°ã®ããããã£ã䜿çšããæéã¢ãžã¥ãŒã«ã«é¢ããæ²ç·ã®åäœã«ãã£ãŠã®ã¿èšç®ãããŸãã