Habréã®ä»¥åã«ãæ°ã®äžå€éã«ââé¢ããèè
ã®ç 究ãå
¬éãããŸããïŒ
ãã¡ã ïŒã ããã«ä»¥åã®[1]ã§ã¯ãæ°å€ã®ããã深床ã«åŒ±ãäŸåããããŸãã¯äŸåããªãããããã£ã確ç«ããããã«ãèªç¶ãªäžé£ã®æ°å€ãšåäžã®æ°å€ãã¢ãã«åããå
ã®æŠå¿µã«é¢ããæ
å ±ãæäŸãããŸããã 以åã¯ãèè
ã圌ã®äœåã§äœ¿çšããŠããèŠå®ã®çå®æ§ã蚌æããå®çã¯æ瀺ãããŠããŸããã§ããã äœåã«å¯Ÿããã³ã¡ã³ãã®åæã¯ãèªè
ããã®ãããªäœåã声æã«ã©ãã»ã©ä¿¡ããããªãã»ã©é¢é£ããŠãããã瀺ããŸããã
ãã®ãããªæšå®ã«å¯Ÿããäžä¿¡ã®éçã¯ãã§ãããã§ãã 泚æïŒç䌌ç§åŠçãªãã³ã»ã³ã¹ã 空ãã空ãžã®èŒžè¡âŠâãžâã¯ãããããããªãç§ã«ãšã£ãŠã¯ç¢ºãã«èå³æ·±ãããã«æããŸã...ã ãããã¯ãäœåã«å¯Ÿãã圌ãã®èªèãããã«ã€ããŠã®æèŠãè¡šæããèªè
ã®ããå°æ°ã®æèŠã§ãã äœåã«ã泚ç®ããã ãããããšãããããŸãã ã¡ãªã¿ã«ããããã®æèŠãšè©äŸ¡ã¯ãç¡é¢å¿ãªãŸãŸã§ã¯ãªãä»ã®å€ãã®èªè
ã«ãã£ãŠæ¿èªãããŸããã 圌ãã¯ããªãã®æ³šæã«ãæè¬ããŸãã ã ãããããã¯ç§ã«f-äžå€éãšãã®èšŒæã«é¢ããå®çãäžããããšãä¿ããŸããã
f-äžå€éïŒèšç®ãããææ°ãæã€æ°å€ã®æ°ããç¹æ§ïŒã«é¢ããã¹ããŒãã¡ã³ãã®çå®ã®äžèšã®èšŒæãå¯èœã§ãããèªè
ã®æèŠããããã«ä¿®æ£ãã圌ãã®ããããæ©æ¥ãªåææšå®ã®æ£ç¢ºæ§ã«ã€ããŠçåãæèµ·ããããšãæ¬åœã«æãã§ããŸãã ç¹å®ã®äœåã«å€å€§ãªæéãšåŽåãè²»ãããåèè
ã¯ãäœåãæéã®çµéãšãšãã«ã»ãŒèªæã§ãããšèªèããŸããäœåãçããââãããã«åªåããªãããã¬ãŒã³ããŒã·ã§ã³ãè¡ããšãå€ãã®ãããã©ã«ããã®è©³çŽ°ãå«ãŸããä»ã®äººãç解ã§ããªãããã«ãªããŸãã
ã¢ãããŒããšãã®æ°èŠæ§ã«ã€ããŠ
ãã®ããŒãããã³å
¬éãããŠããä»ã®äœåã®ããŒãã¯ãã»ãã¥ãªãã£ãç¹ã«æå·åä¿è·ã䜿çšããããã¹ãŠã®ã¬ãã«ã§ã®æ
å ±ã»ãã¥ãªãã£ã«çŽæ¥é¢é£ããŠããŸãã åºçç©ãåçæ°åŠã®ã¬ãã«ã§æ°åŠçãªé¢ä¿ãåŒçšããŠãããšããäºå®ã¯ãåé¡ãããã»ã©è€éã«ããããããã¢ã¯ã»ã¹ããããããããããã®ã§ã¯ãããŸããã èè
ã¯ãããå€ãã®Habrovskèªè
ããã¬ãŒã³ããŒã·ã§ã³ãå©çšã§ããããã«ããæ確ã«ããããšãç®æããŠããã ãã§ãã ç§ã®ä»äºã¯ãä»ã®å€ãã®åé¡ãšå¯æ¥ã«é¢é£ããŠããç¹å®ã®éèŠãªã»ãã¥ãªãã£åé¡ïŒ
ãã ïŒã解決ããããã®ãŸã£ããæ°ããã¢ãããŒãã«é¢ãããã®ã§ãã èè
ã¯ãçŸåšäžçã¬ãã«ã§çºå±ããŠããå æ°å解ã®åéã®æ¹åæ§ã¯è¡ãæ¢ãŸãã§ãããšèããŠãããå®è·µïŒçå®ã®åºæºïŒã¯ãããè£ä»ããŠããŸãã
å æ°å解åé¡ãèªç¶æ°ç³»åïŒNRFïŒãå
šäœãšããŠã®æ°äœç³»ã§ã®æ°ããèŠæ¹ãå¿
èŠã§ãã NRFã®çè«ãšåå¥ã®åæå¥æ°èªç¶æ°ïŒSNPïŒãå¿
èŠã§ãããããã®ãªããžã§ã¯ãã®ã¢ãã«ã¯ãçŸä»£ã®æ
£è¡ã®èŠä»¶ãšèŠä»¶ãèæ
®ããå¿
èŠããããŸãã ä»æ¥ããã®ãããªãã®ãã³ããŒããå Žæã¯ãããŸããã èè
ã¯ããã®èœåãšèœåãæ倧éã«æŽ»çšããŠãä»è
ã®æ³šæãããããŸã§ã®ãšããé ãããŠãããã®ãç¬èªã«äœæããäžé£ã®åºçç©ã§åœŒãçºèŠããããšãäžè¬ã®äººã
ãšå
±æããŠããŸãã ãã®çŸè±¡ã®çç±ã¯éåžžã«å€æ§ã§ãããä»ããã§ããããè°è«ããæã§ã¯ãããŸããã
ç§èªèº«ã¯ããã°ã©ããŒã§ã¯ãªãã®ã§ãããã°ã©ããŒã®äžãã仲éãèŠã€ããããšæã£ãŠããŸãã èè
ã®èšäºã§ã¯ãæ°ããçµæãšã¢ãããŒãã«é¢ããè³æãå°éã§é
åžãããŠããŸãã ãã®æ°ããææãªæ¹åæ§ãèå³æ·±ããšæã人ã®ããã«ãHabréã§ã®ç§ã®ä»äºã®å
容ã«ç²Ÿéããæ©äŒããããŸãã å®çŸ©ã®æ°ããæŠå¿µã«ã¯ãïŒå·Šããã³å³ïŒå¥æ°ã®ã¯ã©ã¹ãçé«ç·ãéççé«ç·ãåçé«ç·ãLDPééããããã®é·ããçªå·ä»ããå¢çãæ°å€ã®fäžå€éãè€åå¥æ°ã®ééããã³çªå·ä»ãã¢ãã«[3ã 4]ããããã®ãªããžã§ã¯ãã®ç¹æ§ãèšç®ããããã®åŒã ãããã®æ°ããæŠå¿µãšè¡šèšæ³ã®å°å
¥ã¯ãèªç¶æ°ã«é¢ããŠå®åŒåãããæ°ããç¯å²ã®åé¡ã®è§£æ±ºçãæäŸããŸãããã®äž»ãªãã®ã¯ãæ°å€ã®å æ°å解ã§ãã
ä»æ¥ãèªç¶æ°ãŸãã¯æŽæ°ã«é¢ããäžèŠåçŽãªè³ªåã«ã¯ãçããèŠã€ããå ŽæããããŸããã 質åã®äŸã«ã¯æ¬¡ã®ãã®ããããŸãã
Nãæåã«å æ°å解ããã«ãSNPS Nãæ³ãšããæéæ°å€å°äœç°ã®èªæã§ãªãç³ã¿èŸŒã¿ããã³ã¹ãçæ§ã決å®ããæ¹æ³ã¯ïŒ èŠçŽ ã®åèšåæãªãã§ããã®ãããªãªã³ã°ã§ã¢ãžã¥ãæ¯èŒã®æ ¹ãèŠã€ããæ¹æ³ã¯ïŒ Nãå æ°å解ããã«åäžã®æ£æ¹åœ¢ã«ãã£ãŠå€ãçæãããäºæ¬¡å°äœã®åéé
ãèŠã€ããæ¹æ³ èè
ã¯ãããã®è³ªåãä»ã®è³ªåã«å¯Ÿããåçãåå¥ã«èŠã€ããªããã°ãªããŸããã ç§ã¯ãèå³ã®ããèªè
ãããå®åŒåããã質åã®å
容ããã®ä»ã®å¯èœæ§ã«ã€ããŠã®ãã£ãŒãããã¯ãåŸ
ã£ãŠããŸãã 質åã®æ¬è³ªãæããã«ããã«ã¯ä»ã®åçæ°åŠãå¿
èŠã§ãããä»ã®ãšãããããã§è§Šããããšã¯æããã«ææå°æ©ã§ãã
ã¢ãããŒãã®æ ¹æ
ã¹ãããã·ã§ããNã®ééã®æ¥µç«¯ãªçé«ç·ã®çªå·ã®è¡šèšãå°å
¥ããŸããå°ããçªå·s-éå§ã倧ããçªå·f-çµäºã æããã«ãå·ŠïŒN
l interval3ïŒmod4ïŒïŒã®å¥æ°ãè¡šããã«ãã«ãŒãééã®å·Šå¢çã¯ãããå°ããs-thã«ãŒãã®å·Šå¢çïŒsïŒ=ïŒ2s-1ïŒ
2ãšäžèŽãããã®ãã«ãã«ãŒãééã®å³å¢çã¯å³å€æ°ã®fãæã€èŒªéã®å·Šååã®å¢çãã€ãŸã R
n ïŒfïŒ=ïŒ2fïŒ
2 ã
å³ïŒNâ¡1ïŒmod4ïŒïŒã®å¥æ°Nãè¡šããã«ãã«ãŒãééã®å·Šå¢çã¯ãå°ããæ¹ã®sçªç®ã®åè·¯
ïŒsïŒ=ïŒ2sïŒ
2ã®å³ååã®å·Šå¢çãšäžèŽããNã®ééã®å³å¢çã¯çªå·fã®å€§ãã茪éã®å³å¢çãã€ãŸã R
n ïŒfïŒ=ïŒ2f + 1ïŒ
2 ã åãå
¥ããããæå®ã¯ããããã°ããŸãããæå³çã«æ£åœåãããç解ãšèšæ¶ã«äŸ¿å©ã§ãã
èªç¶ãªå¥æ°ã®åææ°Nã®çªå·ä»ãã¢ãã«ã®ä»¥åã®äœæ¥ïŒ
ãã ïŒã§ãã€ãŸã å¶éåè·¯ã®ååã§ã¯ã茪éã®é·ãããk
d / 2 +Σt
i k
iã®åœ¢åŒã®æ°å€ã«åãæ¿ããŠãæ°å€ã®åèšãååŸããŸããããã§ãt = m-1ãi = 1ïŒ1ïŒtã§ãã
å®ç1 ïŒè€åå¥æ°ã®äžå€éãåäžééïŒã é·ãNãæ°å€è»žã®é£ç¶ãã茪éã§æ§æãããééã®å¢çãèªç¶æ°ã®2ä¹ã§ããLFDã®ä»»æã®ééã¯ãåèšk
d / 2 +Σt
i k
i = k
p ïŒNïŒ/ 2ã«å¯Ÿå¿ããŸããããã§ãt = m- 1ãi = 1ïŒ1ïŒtãçé«ç·ã®ééã圢æããæ°ãããã³Nã®å¶éçé«ç·ïŒfäžå€åŒïŒã®æ°ã®ååã«çããk
d / 2ãè£ãåçé«ç·ã®æ°ã®åå
蚌æïŒèªç¶ãªå¥æ°ã®å³N
pãšå·ŠN
lã®åææ°ã«å¯ŸããŠå¥ã
ã«å®è¡ããŸãã 蚌æã®èãæ¹ã¯æ¬¡ã®ãšããã§ãã äžæ¹ã§ã¯ãæ°Nã¯ãæãäžè¬çãªåœ¢åŒã®å¹³æ¹å·®ïŒåºéã®å¢çç¹ïŒãšããŠè¡šãããããšã瀺ãããŠããŸãã äžæ¹ãçé«ç·ãšååè·¯ã®æ°ã®åèšãèšç®ãããŸããããã¯ãåææ°N = N
pãŸãã¯N = N
lã®éççé«ç·ã®æ°ã®ååã«çããããããšã«ããããã®åŸã®å¢çã®å€æãæ°Nã«çããåèšã®æ¥µå€èŠçŽ ã®å¢çç¹ã®å·®ãæžãããŸãã
æ£ããæ°N = N
pããå§ããŸãã çªå·ä»ãã¢ãã«ã®åèšã®å¥æ°ã®åææ°ã®ã¢ãã«ã§ä»¥åã«å°å
¥ããã極端ãªèŒªéã®æ°ãè¡šèšæ³sãšfã«çœ®ãæããŸãã [2ãpã160]ã«ããNRFã»ã°ã¡ã³ãã®èŠçŽ ã®åèšã®åŒã䜿çšããŸãã
s / 2 +ïŒs + 1ïŒ+ïŒs + 2ïŒ+ ... + f => 1/2ïŒf + s +1ïŒïŒfs-1 + 1ïŒ+ s / 2 => 1/2ïŒ f
2 + sf + f -sf -s
2 -sïŒ+ s / 2 = 1/2ïŒf
2 + fs
2 ïŒã
æçµåŒããåŠç¿ããæ°N
pã®åºéã®å¢çã®å·®ã«å¯Ÿå¿ãã圢åŒãã€ãŸãïŒ2f + 1ïŒ
2- ïŒ2sïŒ
2ã«å€æããŸãã ããã¯ãèŠã€ãã£ãåŒãæ°N
pã®å¶é茪éã®æ°ã®ååãã€ãŸãk
p ïŒNïŒ/ 2 =ïŒN
p -1ïŒ/ 8 = 1/2ïŒf
2 + fs
2 ïŒãšåçã«ããããšã§å®çŸãããŸãã
çåŒã®äžå€®ããã³å³åŽã¯ãééã®æ°ãè¡šãå¢çã®å·®ã®åœ¢åŒã«å€æãããŸã
N
p = 4f
2 + 4f + 1-4s
2 =ïŒ2f +1ïŒ
2- ïŒ2sïŒ
2 ã
ããã§ãã±ãŒã¹N = Nnã®èšŒæãå®äºããŸããã
ããã§ãN = N
Lã®å Žåã®èšŒæãå®è¡ããŸã
ã 以åã®ããã«ãçªå·ä»ãã¢ãã«ã®åèšã®æ¥µç«¯ãªèŒªéã®æ°ãè¡šèšæ³sãšfã«çœ®ãæããŸãã ãã®å Žåã次ã®ãã®ããããŸãã
s +ïŒs + 1ïŒ+ïŒs + 2ïŒ+ ... +ïŒf-1ïŒ+ f / 2 => 1/2ïŒf-1 + sïŒïŒfsïŒ+ f / 2 => 1/2 ïŒf
2 + sf-f-sf-s
2 + sïŒ+ f / 2 = 1/2ïŒf
2 -s
2 + sïŒ
æçµåŒã®å€æãå®è¡ãã調æ»ããæ°N = N
lã®å¢çã®å·®ã®åœ¢åŒãã€ãŸãïŒ2fïŒ
2- ïŒ2s-1ïŒ
2ã®åœ¢åŒã«å€æããŸãã ããã¯ãèŠã€ãã£ãåŒããæ°å€N
lã®æ¥µé茪éã®æ°ã®ååãã€ãŸãk
p ïŒNïŒ/ 2 =ïŒN
l + 1ïŒ/ 8 = 1/2ïŒf
2 + s-s
2 ïŒãšåçã«ããããšã§å®çŸãããŸãã
çåŒã®äžå€®ããã³å³åŽã¯ãééã®æ°ãè¡šãå¢çã®å·®ã®åœ¢åŒã«å€æãããŸã
N
l = 4f 2-4s-1-4s
2 =ïŒ2fïŒ
2- ïŒ2s-1ïŒ
2 ã
ããã§ã±ãŒã¹N = Nã®èšŒæãå®äºããå®çãå®å
šã«èšŒæãããŸããã
蚌æã®åºç€ã¯ããã«ããµãŒãããééã®å¢çã®èšç®ã§ãããä»»æã®ééã§ã®ãã®ãããªå¢çã®å·®ã¯ãé·ããNã«çããééã§åãçµæã«ãªãããšã瀺ããŠããŸããå®çã蚌æããå¥ã®æ¹æ³ã¯ãæ°k
p ïŒNïŒ/ 2 ïŒk
ij +1 = k
iïŒj + 1ïŒ ïŒã®åœ¢åŒã§ããŒãã£ã·ã§ã³ã®åéšåã«å¶éãããŠããéšåm
iã®æ°ã ãã®ã¢ãããŒãã§ã¯ãåå²æ°ã®åœ¹å²ã¯ãæ°å€Nã®fäžå€ék
p ïŒNïŒ/ 2ã«ãã£ãŠæããããŸããå®éãåå²Nèªäœã¯ããã€ãã®æ¹æ³ã§éšåïŒèŒªéïŒã«åå²ã§ããŸãããåå²ã®éšåã¯èª²ããããèŠä»¶ïŒå€ã®å¶éïŒãæºãããŸãã
å®ç2 ïŒè€åå¥æ°ã®äžå€éãå€ãã®ééïŒã äžå®ã®é·ãNãšçŸåšã®æ°å€i = 1ïŒ1ïŒ...ãæã€ãã¹ãŠã®ãã«ãã³ã³ã¿ãŒééã¯ãæ°å€è»žã®ç°ãªãé åã«ããè€åå¥æ°èªç¶æ°Nãè¡šããç°ãªãããªãã£ã®èªç¶æ°ã®æ£æ¹åœ¢ãå¢çãšããŠ
ãé
ã®ç°ãªãæ°m
iã®åèšã«å¯Ÿå¿ããŸãïŒæ°k
ijã® ïŒé£ç¶ããŠæ¬¡ã
ãšç¶ã茪éïŒk
ij +1 = k
iïŒj + 1ïŒ ïŒãšãåèšã®å€ãäžå®ã§æ°Nã®ã¿ã«äŸåãããããª1ã€ã®æ¥µç«¯ãªå茪é
k
di / 2 +Σt
j k
ij = k
p ïŒNïŒ/ 2ãããã§t = m
i -1ãj = 1ïŒ1ïŒtãi = 1ïŒ1ïŒ...
å®ç1ã䜿çšããŠããã®ãããªåèšãçŽæ¥æ§æããããšã«ããã蚌æãå®è¡ãããŸãã
å®çã¯ãããã€ãã®äºå®ã«é¢ããèšè¿°ãå®åŒåããŸãã
-ãŸããSNCH Nã«ã¯ãïŒi> 1ïŒNRFã®ããŸããŸãªéšåã®SNL Nééãè¡šã1ã€ä»¥äžããããŸãã
-第äºã«ããããã®ééã®ããããã¯ãåè·¯ã®é£ç¶ã·ãŒã±ã³ã¹ïŒçªå·k
ij ïŒã«å¯Ÿå¿ãããã®æ°ã®åèšãšå
åè·¯çªå·k
di / 2ã¯ãç°ãªãæ°m
iãšä»ã®ééã®åèšããã®é
ã®æ§æãå«ã¿ãŸã;
-第äžã«ããã¹ãŠã®åºéã®å¢çã¯ãç°ãªãããªãã£ã®èªç¶æ°ã®ç°ãªãå¹³æ¹ã®ãã¢ã§ãã
-4çªç®ã«ãééãè¡šããã¹ãŠã®é·ãã¯åãã§ãNã«çããã察å¿ããåè·¯çªå·ã®åèšãäžå®ã§ãããLFã®ééã®äœçœ®ã§ã¯ãªããæ°Nã®fäžå€éã®å€ã«ãã£ãŠã®ã¿æ±ºå®ãããŸãã
-5çªç®ã«ãç°ãªãéã®ãã¹ãŠã®é
ïŒæ¥µç«¯ãªåã«ãŒãæ°ãé€ãïŒã¯NRFã»ã°ã¡ã³ããè¡šããå°ããªé
ãã次ã®å€§ããªé
ãžãšå調ã«å¢å ããŸãïŒk
ij +1 = k
iïŒj + 1ïŒ ïŒã
èšãæãããšã茪éã®æ°ãšSNCH Nã®è¿œå ã®ååè·¯ã®æ°ã®åèšã®å€ã¯ãé
ã®æ°ãã€ãŸãLFDã®ééã®äœçœ®ã«å¯ŸããŠäžå€ã§ãã ééã®å¢çã®å€ãåèšã®é
ã®å€ã
äŸ1 SNCH N = N
l = 231ã®å Žåãå³åŽã®æ¥µç«¯ãªååè·¯ã æ°å€231ã¯ãå¶é茪éã®æ°k
p ïŒN = 231ïŒ= 58ã«å¯Ÿå¿ããŸããsncã®fäžå€éã¯k
p ïŒNïŒ/ 2 = 29ã§ãã å¶éã«ãŒãæ°ã®ååã fäžå€éã®éšåã®å¶éã«åŸã£ãŠã29çªã®ããŒãã£ã·ã§ã³ã圢æããå¿
èŠããããŸãã
æåã«ãçé«ç·æ°ã®åèšã«ãã£ãŠsné¢æ°ã®snäžå€éNã®è¡šçŸãæžãåºããŸãã ãã®ãããªéã¯3ã€ãããŸãã
29 = 3 + 4 + 5 + 6 + 7 + 8/2;
29 = 7 + 8 + 9 + 10/2;
29 = 19 + 20/2ã
次ã
ãšç¶ã茪éã®æ°ãšã倧ããªæ°ã®èŒªéã®å·Šååã«å¯Ÿå¿ãã極å€èŒªéã®æ°ã®ååãåèšããããããè¡šçŸãããæ°Nã¯ãäºãã«é£æ¥ãã茪éãšååã®é·ãã®åèšãšããŠç°¡åã«æ±ºå®ãããŸãïŒ
-æåã®ããŒãã£ã·ã§ã³ã®å ŽåãN = 8â¢3 + 8â¢4 + 8â¢5 + 8â¢6 + 8â¢7 + 8â¢8/2 -1 = 24 +32 +40 +48 +56 +32 -1 = 231;
-2çªç®ã®ããŒãã£ã·ã§ã³ã®å ŽåãN = 8â¢7 + 8â¢8 + 8â¢9 + 8â¢10/2-1 = 56 + 64 + 72 + 40-1 = 231;
-3çªç®ã®ããŒãã£ã·ã§ã³ã®å ŽåãN = 8â¢19 + 8â¢20/2-1 = 152 + 80-1 = 231ã
ãã®ãããªèšç®ã¯ãæ°å€231ãLFDã§2ã€ã®ãã«ã茪éééã«ãã£ãŠè¡šçŸå¯èœã§ããã3çªç®ã®ééã1ã€ã®å®å
šãªèŒªéãšãå³åŽã«é£æ¥ããå¶é茪éã®1ã€ã®ååã®èŒªéã§æ§æãããããšã瀺ããŠããŸãã ååºéã®é·ãã¯ããã®å¢çã®å·®ïŒiïŒ-ïŒiïŒã«çãããããªãã¡ãæ°Nã¯3ã®å·®ïŒi = 1ïŒ1ïŒ3ïŒã®ç°ãªãæ£æ¹åœ¢ã®ãã¢ïŒåºéã®å¢çïŒã§è¡šãããŸãã
ããã«ãçé«ç·ãšååè·¯ã®å¢çãå®å
šãªæ£æ¹åœ¢ã§ãããçé«ç·ãšååè·¯ã®å¢çã®åŒã䜿çšããŠãå代衚åºéã®å¢çèŠçŽ ã®å€ã決å®ããŸãã
æåã®ééã§ã¯ã29 = 3 + 4 + 5 + 6 + 7 + 8/2ã«ãªããŸãã G
p1 ïŒ8/2ïŒ=ïŒ2â¢8ïŒ
2 = 256;
1 ïŒ3ïŒ=ïŒ2â¢3-1ïŒ
2 = 25; ããã³
ïŒi = 1ïŒ
- ïŒi = 1ïŒ=ïŒ16ïŒ
2- ïŒ5ïŒ
2 = 256-25 = 231 =ïŒ16 + 5ïŒïŒ16-5ïŒ= 21â¢11 = 231
2çªç®ã®ééã§ã¯ã29 = 7 + 8 + 9 + 10/2ã§ãã G
n2 ïŒ10/2ïŒ=ïŒ2â¢10ïŒ
2 = 400;
2 ïŒ7ïŒ=ïŒ2â¢
7-1 ïŒ
2 = 169; ããã³
ïŒi = 2ïŒ
- ïŒi = 2ïŒ=ïŒ20ïŒ
2- ïŒ13ïŒ
2 = 400-169 = 231 =ïŒ20 + 13ïŒïŒ20-13ïŒ= 33â¢7 = 231
3çªç®ã®ééã§ã¯ã29 = 19 + 20/2ã§ãã G
p3 ïŒ20/2ïŒ=ïŒ2â¢20ïŒ
2 = 1600;
3 ïŒ19ïŒ=ïŒ2â¢
19-1 ïŒ
2 = 1369;
ïŒi = 3ïŒ
- ïŒi = 3ïŒ=ïŒ40ïŒ
2- ïŒ37ïŒ
2 = 1600-1369 = 231 =ïŒ40 + 37ïŒïŒ40-37ïŒ= 77â¢3 = 231 ã
1ã€ã®snc Nã®3ã€ã®åºéã®ããããã«å¢çïŒæ£æ¹åœ¢ã®ãã¢ïŒããããããNã®ç°ãªãå æ°å解ãç°¡åã«ååŸã§ããŸãã
ããŒããŒã®ãããã1ã€ã®ééããããŸã-æ£æ¹åœ¢ããã®éã«è€åå¥æ°N = 231ããããŸãããã®ããŒããŒ-çªå·231ã®éç茪éã®å¢çã¯éåžžã«åçŽã§ãïŒå·Š
4 ïŒk = 58ïŒ=ïŒïŒ
231-1 ïŒ/ 2ïŒ
2 =ïŒ115ïŒ
2 = 13225ãå³
4 ïŒk = 58ïŒ=ïŒïŒ231 + 1ïŒ/ 2ïŒ
2 =ïŒ116ïŒ
2 = 13456ãå¶éåè·¯ã®ååè·¯ééã®é·ãã¯
N =
4 ïŒk = 58ïŒ
-4 ïŒk = 58ïŒ=ïŒïŒ231 + 1ïŒ/ 2ïŒ
2 -ïŒïŒ231-1ïŒ/ 2ïŒ
2 =ïŒ116ïŒ
2- ïŒ115ïŒ
2 = 13456-13225 = 231ã
ãããã«
èæ
®ãããææã¯ãNRFããã³SNCH Nãã¢ãã«åããããã®æ¢åã®åŸæ¥ã®ã¢ãããŒããšã¯ç°ãªãæ°èŠæ§ã§ãã æ°å€ã®äŸã¯ããªãã·ã§ã³ã®åæãæé€ããæ©èœãåããã¢ã«ãŽãªãºã ã«ç°¡åã«å€æã§ãããããŒãã£ãŒãã瀺ããŠããŸãã 質åãéããŠïŒããã°ã©ã ãäœæããŠïŒå¿
èŠãªã®ã¯ãç¹å¥ãªããŒãã£ã·ã§ã³ïŒãŸãã¯ïŒfäžå€éã®å¯äžã®ç¹å¥ãªããŒãã£ã·ã§ã³ãååŸããããšã ãã§ãã ãã®åé¡ã解決ããæ¹æ³ãææ¡ãããŠããŸãïŒ
ãã ïŒã
æåŠ
[1] Vaulin A.E.ãPilkevich S.V. ãèªç¶æ°åã®åºæ¬æ§é ã-ã€ã³ããªãžã§ã³ãã·ã¹ãã ã 第7ååœéã·ã³ããžãŠã ã®è°äºé²ã ãšãã K.A. Pupkovaã-M .: RUSAKIã2006.-pã384-387
[2] Bronstein I.N.ãSemendyaev K.A. VTUZ._Mã®ãšã³ãžãã¢ããã³åŠçåãæ°åŠãã³ãããã¯ïŒGITTLã1954ã-608s
[3] Hall M. Combinatoricsã -MãïŒããŒã«ã1970 .-- 424 pã
[4] Andrews G.ããŒãã£ã·ã§ã³çè«ã -MãïŒScience GRFMLã1982幎ã -256ç§