ãã€ã±ã«ããããã®æçš¿ã翻蚳åŒ...ãã¹ãŠã®ããã«â Piãããã³ã¯ãã³ãµãŒãã¢ã€ã¶ãã¯ãã¥ãŒãã³irãŸã§ ãã®ç¿»èš³ã
Sylvia Torosyanã®ç¿»èš³ã«ãååããã ãããããšãããããŸãã
ãã®èšäºã§äœ¿çšãããŠãããã¹ãŠã®ã³ãŒããå«ãMathematicaããã¥ã¡ã³ãã®åœ¢åŒã§ç¿»èš³ãããŠã³ããŒãããŠãã ãã ïŒã¢ãŒã«ã€ããçŽ7 MBïŒãWolfram Researchãš
Wolfram | Alphaã§ã¯ãæ°åŠãšã³ã³ãã¥ãŒãã£ã³ã°ã倧奜ãã§ãã ç§ãã¡ã®ãæ°ã«å
¥ãã®ãããã¯ã¯ãåŒãšæ¹çšåŒããçããã¢ã«ãŽãªãºã ã§ãã ããšãã°ã
Mathematicaã¯æ°çŸäžã®ç©åïŒããæ£ç¢ºã«ã¯ãå®éã«ééããç¡éæ°ïŒãèšç®ã§ããWolfram | Alphaã¯æ°åäžã®æ°åŒãç¥ã£ãŠããŸãïŒ
ãªã€ã©ãŒã®åŒãš
Piã®BBP åŒãã
sinïŒxïŒãå«ãè€çŽ å®ç©åãŸã§ïŒ ïŒããäŸãã°ãåŒç©çè€æ°ã®
ãã¢ãºã€ãŠã®æ³åã«
ç©åœ¢ã§å€å
žååŠãœãªã¥ãŒã·ã§ã³ã¹ãããç²ååã¯
è¶
çé¢åº§æšã«ããã4次å
ã«ãããéè·é¢å®¹é ããªãã³ã«åŒDãšããŠããŸãããç¥ãããŠããåŒïŒ ç§ã¯
æ¿¡ããæºãç¬ã¬ãŒã ã
ç ã®åã®æå€§ã®é«ã ããŸãã¯
äžé¢é³¥ã®èª¿çæéã ã
æè¿ãããŸããŸãªåœ¢ç¶ããªããžã§ã¯ãã®æ°åŒã远å ããŸããã
Wolfram | Alphaããã°ã¯ãæ°åŠã®æ¹çšåŒãšäžçåŒã䜿çšããŠå®çŸ©ããã圢ç¶åœ¢æã®äŸã瀺ããŸããã äœæããã
æ²ç·ã®äžã«ã¯ã
æ¶ç©ºã®äººç©ã®ç»åã®
æ²ç·ããããŸãïŒ

ãªããžã§ã¯ãã®èŒªéã®æ²ç· ïŒ


ãããŠãç§ãã¡ã®ãŠãŒã¶ãŒã®éã§æã人æ°ã®ãã
ãå®éã®äººã
ã®ã€ã¡ãŒãžæ²ç· ïŒ


ãããã®æ²ç·ã¯ãæ°åŠçãªæå³ã§ã
ã¬ã ãã¹ã±ãŒããŸãã¯
ãã«ã«ãã·ãŒãã«äŒŒãŠãããããæ°åŠçãªç¹æ§ãããã°ã©ãã£ãã¯è¡šçŸã®èгç¹ããããè峿·±ããã®ã§ãã
ãªãã£ãŒãã®ããã°ã®èšäºãå
¬éãããåŸãååãããã¹ãã£ãŒãã³ã»ãŠã«ãã©ã ã®é¡ãè¡šãæ¹çšåŒãã©ã®ããã«äœæããŸããïŒããšå°ããããŸããããã®è³ªåã«ã€ããŠå°ãèããåŸãç§ã¯ãããæ¬åœã«ãããããšã«æ°ã¥ããŸãããåŒïŒããžã¿ã«ç»åïŒç°¡åã«ããããã«çœé»ã§ãããšæ³å®ïŒã¯ãã°ã¬ãŒå€ã®é·æ¹åœ¢ã®é
åã§ãã ãã®ãããªé
åã䜿çšããŠãè£é颿°ãããã«ã¯å€é
åŒãæ§ç¯ã§ããŸãã ãããããã®ãããªæç€ºçãªé¢æ°ã¯éåžžã«å·šå€§ã§ãæ°çŸããŒãžã®é·ãããããå®éã®ã¢ããªã±ãŒã·ã§ã³ã«ã¯é©ããŠããŸããã å®éãé£ããã®ã¯ã人ã®é¡ã«äŒŒãåæè¡šçŸãååŸããŠã1ããŒãžã«åãŸããæ§é ãåçŽã«ãªãããã«ããããšã§ãã ã¹ãã£ãŒãã³ã»ãŠã«ãã©ã ã®é¡ãè¡šãæ²ç·ã®åæè¡šçŸã¯çŽ1ããŒãžã®é·ã
ã§ãç«æ¹äœã®éåããã³ã·ã£ã«ãªã©ã®è€éãªç©çå
¬åŒã®ãµã€ãºã«å¹æµããŸãã


ãã®èšäºã§ã¯ããã®çš®ã®æ¹çšåŒãçæããæ¹æ³ã瀺ããããšæããŸãã ãèšç®ã®å®è¡æ¹æ³...ããšããèšäºã§å€§éã®
Mathematicaã³ãŒãã衚瀺ãããããšã¯é©ãããšã§ã¯ãããŸããããç°¡åãªå
¥é説æããå§ããŸãã
çŽã®äžã«éçã§çµµã®ç·ãæããç·ã ããæããšä»®å®ããŸãã ã·ã§ãŒãã£ã³ã°ãå¡ãã€ã¶ãã¯ãããŸããã æ¬¡ã«ãæ²ç·ã®è€æ°ã®ã»ã°ã¡ã³ãã§å³ãäœæãããŸãã
ããŒãªãšçŽæ°ãªã©ã®æ°åŠçæŠå¿µã«ããããããã®ç·åœ¢ã»ã°ã¡ã³ãã®ããããã«ã€ããŠæéã®æ°åŒãæžãçããããšãã§ããŸãã
ç°¡åãªäŸãšããŠãããã€ãã®æ©èœãèããŠã¿ãŸããã

ã

ããã¯ãããŸããŸãªåšæ³¢æ°ãšæ¯å¹
ã®æ£åŒŠæ³¢ã®åèšã§ãã ãã®é¢æ°ã·ãŒã±ã³ã¹ã®æåã®ããã€ãã®ã¡ã³ããŒã¯æ¬¡ã®ãšããã§ãã



ãã®é¢æ°ã·ãŒã±ã³ã¹ã®ã°ã©ãã£ã«ã«ãªæ§é ã¯ã
nãå¢å ããã«ã€ããŠã颿°ã

äžè§é¢æ°ã«ãªãåŸåããããŸãã


æ£åŒŠé¢æ°ã¯å¥æ°é¢æ°ã§ããããã®çµæãsin
ïŒ kx
ïŒåœ¢åŒã®é¢æ°ã®åèšã奿°é¢æ°ã§ãã ã³ãµã€ã³é¢æ°ã䜿çšããå Žåã代ããã«å¶æ°ã®é¢æ°ãååŸããŸãã ãµã€ã³ãšã³ãµã€ã³ã®å€ã®æ§æã«ãããããäžè¬çãªæ²ç·ã®åœ¢ãè¿äŒŒããããšãã§ããŸãã
äžèšãèŠçŽãããšãåé¡ã®ç³»åã®ä¹ç®ã

ããŸãããããããµã€ã³ãšã³ãµã€ã³ãã2ã€ã®è¡ãèšå®ããŸãã

ãããã®é¢æ°ã䜿çšãããšãããåºç¯ãªã¯ã©ã¹ã®é¢æ°ãè¿äŒŒã§ããŸãã


æ»ãããªæ²ç·
y ïŒ x ïŒã¯ãä»»æã®åºéã§ä»»æã«ããŸãè¿äŒŒã§ããããšã瀺ãããŸãã

ããŒãªãšçŽæ°ã䜿çšããŸãã ããã«ãæ»ãããªæ²ç·ã®å Žåãä¿æ°sinïŒkxïŒããã³cosïŒkxïŒã®å€ã¯ã
kã®å€ã倧ãããšãŒãã«ãªãåŸåããããŸãã
ããŠããã©ã¡ããªãã¯æ²ç·ãèããŸã

ãæ°Žå¹³æ¹åã«ç¬ç«ããæ£åŒŠãšäœåŒŠã®é¢æ°ã®ãã®ãããªéãåããã䜿çšã§ããŸã

ãããŠåçŽ

ã³ã³ããŒãã³ãã
åã³ã³ããŒãã³ãã§3ã€ã®ãµã€ã³ãš3ã€ã®ã³ãµã€ã³ã®åèšã䜿çšãããšãåãæ¥åãªã©ãããŸããŸãªåœ¢ç¶ããã§ã«ã«ããŒãããŠããŸãã

次ã®ã€ã³ã¿ã©ã¯ãã£ããªãã¢ã§ã¯ãå¯èœãªãã©ãŒã ã®ã¹ããŒã¹ãæ¢çŽ¢ã§ããŸãã 2Dã¹ã©ã€ããŒã¯ãã³ãµã€ã³ããã³ãµã€ã³é¢æ°ã®åã®å¯Ÿå¿ããä¿æ°ã倿ŽããŸãã


æ²ç·ã®ããŒãªãšçŽæ°ã®å±éãã«ããããå Žåãããšãã°ç³»åã®æåã®
nåã®ã¡ã³ããŒã§ã
4 nåã®èªç±ãã©ã¡ãŒã¿ãŒãåŸãããŸãã èãããããã¹ãŠã®æ²ç·ã®ç©ºéã§ã¯ãã»ãšãã©ã®æ²ç·ã¯ããããããªãããã«èŠããŸãããä¿æ°ã®äžéšã®å€ã§ã¯ãåè§£ã¯èŠæ
£ãã圢ç¶ãèŠãããšãã§ããå³ã®ããã«èŠããŸãã ãã ããåè§£ä¿æ°ã®ããããªå€æŽã§ãããå³ã倧ãã倿ŽããŸãã æ¬¡ã®ã€ã³ã¿ã©ã¯ãã£ããªäŸã§ã¯ãæ²ç·ã®ããŒãªãšçŽæ°ã®æåã®4Ã16 = 64ä¿æ°ã倿Žã§ããŸãã ããŒãªãšçŽæ°ã®ä¿æ°ã®ç¹å¥ãªã»ããã䜿çšããŠãããŸããŸãªèªèå¯èœãªæ°åãååŸã§ããŸãã


ããã§è€æ°ã®æ²ç·ã䜿çšãããšãé¡ã®ãããªç»åãäœæããããã«å¿
èŠãªãã¹ãŠã®ã³ã³ããŒãã³ããåŸãããŸãã æ¬¡ã®ã€ã³ã¿ã©ã¯ãã£ããã¢ã§ã¯ã2ã€ã®ç®ã2ã€ã®çåŸã錻ãšå£ã䜿çšããŸãã


å察ã®ããšãããŸãããïŒäžé£ã®ç¹ïŒéãååïŒãé
眮ããŠã倿Žå¯èœãªç·ã圢æããããŒãªãšçŽæ°ã§äžããããæ²ç·ã«è¿äŒŒããæ²ç·ãäœæããŸãã




泚ïŒè¿äŒŒæ²ç·ãå®çŸ©ããæ¹æ³ã¯ãããŒãªãšçŽæ°ã ãã§ã¯ãããŸããã ãŠã§ãŒãã¬ãããŸãã¯
ã¹ãã©ã€ã³ã䜿çšããããæ²ç·
ãã»ã°ã¡ã³ãããšã«åºåçã«ãšã³ã³ãŒããããã§ããŸãã ãŸãã¯ãååãªå¿è
ã§ã ãªãŒãã³ãŒãŒã¿é¢æ°ã® æ®éæ§ã®å©ããåããŠã
ã¯ãªãã£ã«ã«ã¹ããªããå
ã«ä»»æã®å³åœ¢ãèŠã€ããããšãã§ã
ãŸãã ã ïŒé©ããããšã«ãããŒã¹ãã®ã€ãšã¹ã®ãããªå¯èœãªïŒããªãæ»ãããªïŒç»åã¯ãã¹ããªãã0â€ReïŒsïŒâ€1
ã®ãªãŒãã³ãŒãŒã¿é¢æ°
ζ ïŒ s ïŒã®ããã€ãã®å€ã«å¯ŸããŠååšããŸããã圌ãèŠã€ããŠãã ãããïŒ
ãããã®æ°å€ãè¿äŒŒããããŒãªãšçŽæ°ã«åºã¥ããç°¡åãªå
¬åŒãèŠã€ããæ¹æ³ã瀺ãããã«ãäŸããå§ããŸããæ£ç¢ºã§æç¢ºã«å®çŸ©ãããå¢çãæã€æ°å€ã¯ãçãå
¬åŒã§ãã ããå
·äœçã«ã¯ãããç¥ãããŠããå
¬åŒã§ãããã¿ãŽã©ã¹ã®å®çã䜿çšããŸãã


æ¹çšåŒãã©ã¹ã¿ã©ã€ãºãããšãå
ã®ç»åãåŸãããŸããããã䜿çšããŸãã

EdgeDetect颿°ã䜿çšããŠãæåã®ãšããžãèšè¿°ãããã¹ãŠã®ãã€ã³ãã®ã»ãããç°¡åã«ååŸã§ããŸãã




ãšããžãå®çŸ©ãããã€ã³ããã§ããã®ã§ãããããçŽç·ïŒãŸãã¯æ²ç·ïŒã»ã°ã¡ã³ãã§æ¥ç¶ã§ããŸãã æ¬¡ã®
pointListToLines颿°ã¯ããã®æäœãå®è¡ããŸãã ã©ã³ãã ã«éžæããããã€ã³ãããéå§ããããã«æãè¿ããã€ã³ãããã¹ãŠèŠã€ããŸãïŒé«éãª
æè¿å颿°ã䜿çšïŒã ååã«è¿ããã€ã³ãããã¹ãŠèŠã€ãããŸã§ããã®ããã»ã¹ãç¶ããŸãã ãŸãã180床å転ããªãããã«ããŸãã æ²ç·ãã©ã®ããã«åœ¢æããããã芳å¯ããã«ã¯ã
ã¢ãã¿ãŒæ©èœã䜿çšããŸãã

ãã¿ãŽã©ã¹ã®å®çã®èšé²ã®ç»åã§ã¯ãå¢çç¹ãã11åã®ç¹å®ã®æ²ç·ãåŸãããŸãã


ç¹ã®ã»ãããçµã¿åãããŠãçµæã®æ²ç·ã«è²ãä»ãããšãæåã®å€åŽã®å¢çç·ãæå
aãš
bã®å
åŽã®å¢çç·ã3ã€ã®æ£æ¹åœ¢ããã©ã¹èšå·ãšçå·ã®äºæ³ãããæ²ç·ã®ã»ããã衚瀺ãããŸãã


次ã«ãæ²ç·ã®åã»ã°ã¡ã³ãã«å¯ŸããŠãã»ã°ã¡ã³ããè¿äŒŒããããŒãªãšçŽæ°ïŒxããã³yæåïŒãèŠã€ããå¿
èŠããããŸãã 颿°fïŒxïŒã®ããŒãªãšçŽæ°ã®éåžžã®å®çŸ©ã«å°ããããšãçŽæ°ã®ä¿æ°ã¯é¢æ°fïŒxïŒÃcosïŒkxïŒããã³sinïŒkxïŒã®ç©åã§ããããšãããããŸãã ãããä»ã®ãšãããæ©èœã§ã¯ãªãå€ãã®ãã€ã³ãããããŸãã ããããçµ±åå¯èœãªé¢æ°ã«å€æããããã«ãåã»ã°ã¡ã³ãã®æ²ç·ã®
Bã©ã€ã³ãäœæããŸãã æ²ç·ã®
Bã¹ãã©ã€ã³ã®ãã©ã¡ãŒã¿åããã倿°ã¯ãç©å倿°ã«ãªããŸãã ïŒãã€ã³ãéã®åºåçç·åœ¢è£éã®ä»£ããã«
B-ã¹ãã©ã€ã³ã䜿çšãããšã匷ãå£ããæ²ç·ãè¿äŒŒãããšãã«è¿œå ã®å©ç¹ãåŸãããŸããïŒ


æ°å€ç©åã䜿çšããŠããŒãªãšä¿æ°ãååŸããããã«å¿
èŠãªç©åãèŠã€ããããšãã§ããŸãããããé«éãªæ¹æ³ã¯ãé«éããŒãªãšå€æïŒ
FFT ïŒã䜿çšããŠããŒãªãšä¿æ°ãååŸããããšã§ãã
ããåè³ªãªæ²ç·ãååŸããã«ã¯ããã1ã€ã®æé ãå®è¡ããŸããæ°ãããã©ã¡ãŒã¿ãŒïŒå匧ã®é·ãïŒã䜿çšããŠãæ²ç·ã»ã°ã¡ã³ãã®ã»ããã§æ§æãããè£éã¹ãã©ã€ã³æ²ç·ãåãã©ã¡ãŒã¿ãŒåããŸãã
fourierComponents颿°
ã¯ãæ²ç·ã®Bã¹ãã©ã€ã³ã®äœæãå匧é·ã®ãã©ã¡ãŒã¿ãŒåã®ç¹°ãè¿ããå®è£
ããFTTãèšç®ããŠããŒãªãšä¿æ°ãååŸããŸãã ãŸãã
ã®ãã¹çŸè±¡ãåé¿ããããã«æ²ç·ã»ã°ã¡ã³ããéããŠãããéããŠããããæ€èšããŸãã ïŒäžèšã®äºè§åœ¢ã®è¿äŒŒã®ãã¢ã³ã¹ãã¬ãŒã·ã§ã³ã¯ããæ²ç·ãéããããã§ãã¯ããã¯ã¹ããªãã®å Žåãã®ãã¹çŸè±¡ããã瀺ããŠããŸããïŒ




é£ç¶é¢æ°ã®å Žåãæžå°çã®å¹³åå€ãæåŸ
ããŸã

ããŒãªãšçŽæ°ã®
kçªç®ã®ä¿æ°ã ãã®å¹æã¯ãåœç€Ÿãèšç®ããããŒãªãšçŽæ°ã®ä¿æ°ã«å¯ŸããŠãä¿æãããå¿
èŠããããŸãã ã€ãŸããå¹³åããŠã10çªç®ã®ããŒãªãšä¿æ°ã¯ãæåã®ããŒãªãšä¿æ°ãšæ¯èŒããŠçµ¶å¯Ÿå€ã®1ïŒ
ããå ããŸããã ããã«ããã倧ããããåŒãååŸããããªããããããŒãªãšçŽæ°ãããã»ã©é«æ¬¡ã§ã¯ãªãããªãã³ã°ããããšãã§ããŸãã 以äžã®åŒã¯ãäžèšã®æ²ç·ã®ããŒãªãšæåã®å¹³åæžå°çãèšç®ããŸã

ã ïŒ2ããããã«äžåãå€ã¯ãBã¹ãã©ã€ã³æ²ç·ã®ç¹ã®é¢æ£åã«ãããã®ã§ããïŒ


以äžã¯ãæåã®3ã€ã®æ²ç·ã®ããŒãªãšçŽæ°ã®ä¿æ°ã®çµ¶å¯Ÿå€ã䜿çšãããäž¡æ¹ã®è»žã«æ²¿ã£ã察æ°ç®çã®ã°ã©ãã§ãã åæã«ãããšãã°ããŒãªãšä¿æ°ã®2次æžè¡°ã«é¢ããäžè¬çãªåŸåã¯ã飿¥ããä¿æ°ã®å€ããå
šäœãšããŠä¿æ°ã®æžå°ã®å¹³åå€ããã倧ããå€åããããšã瀺ããŠããŸãã


ããŒãªãšä¿æ°ã«cosïŒktïŒãšsinïŒktïŒãä¹ç®ãããããã®åŒãåèšãããšãæ²ç·ã®æãŸãããã©ã¡ãŒã¿ãŒåãåŸãããŸãã
makeFourierSeriesApproximationManipulate颿°ã¯ãã·ãªãŒãºã®ã¡ã³ããŒã®æ°ã«å¿ããŠãæ²ç·ã®è¿äŒŒãèŠèŠåããŸãã

12åã®æ¥åããå§ãŸããã¿ãŽã©ã¹ã®å®çã«å¯Ÿå¿ããå³ã®å Žåãå
ã®ç»åããã°ãã圢æããããŒãªãšçŽæ°ã®ã¡ã³ããŒã®æ°ãå¢ãããŸãã


ãã®åŒãæ²ç·ã®äº€å·®ããªãã»ã°ã¡ã³ãã§æ§æãããå Žåã§ããæ¹çšåŒå
šäœã«å¯ŸããŠåæåŒãå®çŸ©ããŸãã ãããéæããããã«ã
2Ïã®åšæãæã€ããŒãªãšçŽæ°ã®ã¡ã³ããŒã®åšææ§ã䜿çšããŠã察å¿ããã»ã°ã¡ã³ãäžã®åã»ã°ã¡ã³ããæç»ããŸãã[0.2Ï]ã[4Ïã6Ï]ã[8Ïã10Ï]ã ...ãããã³ééïŒ2Ïã4ÏïŒãïŒ6Ïã8ÏïŒã...ã§ã¯ãçŽç²ã«èæ°ã®æ²ç·ã®åº§æšãåŸãããŸãã ãããã®ã»ã°ã¡ã³ãã§ã¯ãæ²ç·ãæãããšãã§ããŸãããã€ãŸããæ²ç·ã®äº€å·®ããªãã»ã°ã¡ã³ãã®ã»ãããååŸã§ããŸãã ãã®æ§é ã¯ã2ã€ã®åã®ã»ããã«ã€ããŠä»¥äžã«ç€ºãããŠããŸãã



以äžã®ã°ã©ãã¯ãäžèšã§æ§ç¯ãããè€çŽ æ°å€ãã©ã¡ãŒã¿ãŒåã®å®éšãšèéšãå¥ã
ã«ç€ºããŠããŸãã èµ€ãç·ã¯ãåºé[2Ïã4Ï]ããã®çŽç²ã«èæ°ã®ãã©ã¡ãŒã¿ãŒå€ã瀺ããŠããŸãã


æ²ç·ã®æçµçãªåŒãã§ããéãçãã·ã³ãã«ã«ãããã®ã§ã
sinAmplitudeForm颿°ã䜿çšããŠãåŒã®åèšãa cosïŒktïŒ+ b sinïŒktïŒãA sinïŒk t +ÏïŒã«
眮ãæããŸããããŒãªãšçŽæ°ã®è¿äŒŒä¿æ°ãæãè¿ãæçæ°ã«äžžããŸãã
Piecewiseã®ä»£ããã«ãæçµåŒã§
UnitStep颿°ã䜿çšããŠãæ²ç·ã®ç°ãªãã»ã°ã¡ã³ããåé¢ããŸãã å®éã®ã»ã°ã¡ã³ããæç€ºçã«ãªã¹ãããæç»ããŠã¯ãªããªããã¹ãŠã®ã»ã°ã¡ã³ããåŒã§æå®ããŸã

ã



ããã§ããã¿ãŽã©ã¹ã®å®çãå®çŸ©ããçåŒã瀺ããåçã®æçµçãªãã©ã¡ãŒã¿ãŒå{xïŒtïŒãyïŒtïŒ}ãæžãããã®ãã¹ãŠãã§ããŸããã





ãã©ã¡ãŒã¿åã®åºæ¬çãªèãæ¹ã説æããåŸããããããäŸã
Pink PantherãèŠãŠã¿ãŸãããã
Bingæ€çŽ¢ãšã³ãžã³ã§ç»åæ€çŽ¢
çµæã調ã¹ããšãã
éããåœ¢åŒ ãã®åœ¢åŒã§ãã©ã¡ãŒã¿ãŒåã«é©ããç»åãããã«èŠã€ãããŸãã
次ã®ç»åã䜿çšããŠã¿ãŸãããã


ãã³ãµãŒã®é¡ã®ãã¹ãŠã®å¢çãèŠã€ããããã«ã
EdgeDetect颿°ã䜿çšããŸãã



æ²ç·ã®ãšããžãæ¥ç¶ãããšãçŽ20ã®ã»ã°ã¡ã³ããåŸãããŸãã ïŒãªãã·ã§ã³ã®2çªç®ãš3çªç®ã®åŒæ°ã
pointListToLinesã«å€æŽããããšã«ãããããå°ãªããŸãã¯ããå€ãã»ã°ã¡ã³ããååŸããŸããïŒ


. , ;
pointListToLines . .


, , .

, , 20 , , .





, , .


.
makeSilhouetteFourierResult . : 1) ; 2) , . .

. 4 : ; -; , .












. . ,
. , , . ( .
.) , :


, , , .



, .


, 16 . .

, :


. , , . , .


50 :


, , :



:

ããã§ã人éã®é¡ãæ¶ç©ºã®äººç©ãåç©ããŸãã¯ãã®ä»ã®åœ¢ã«äŒŒãæ²ç·ãäœæããæ¹æ³ã«ã€ããŠã®ä»æ¥ã®è°è«ã¯çµããã§ããæ¬¡åã¯ãäžèšã®åŒããçããç¡éã®ã°ã©ãã£ã«ã«ãªå¯èœæ§ãšãããŸããŸãªç»åã«ãã®çš®ã®æ¹çšåŒã䜿çšããæ¹æ³ã«ã€ããŠèª¬æããŸãã