èšäºãMathematicaïŒNBïŒããã¥ã¡ã³ã ã CDFãã¡ã€ã«ããŸãã¯PDFãšããŠããŠã³ããŒãããŸã ã翻蚳ã«ååããŠããã
ããªã«ã»ã°ãŒã³ã³ã«æ·±ãæè¬ããŸãã
ãã®èšäºã§ã¯ã
ã¢ã«ããã¹ãšåŒã°ããå€ä»£ããç¥ãããŠãã人ç©ã®ç¹æ§ã®ããã€ããäœç³»çã«ãã§ãã¯ããŸãã ãã®äœåã®èè
ã«ãã£ãŠæç€ºãããããã€ãã®æ°ããçºèŠãšäžè¬åãå«ãŸããŠããŸãã
ã¯ããã«
Mathematicaãæã€èšç®äžã®å©ç¹ã«åæ©ä»ããããŠããã°ããåã«ãéåžžã«è峿·±ã幟äœåŠå³åœ¢ã§ããã¢ã«ããã¹ã®ç¹æ§ã®ç ç©¶ãéå§ããããšã«ããŸããã ãã以æ¥ãç§ã¯ãã®æ³šç®ãã¹ãç©äœã«é¢ããèšå€§ãªæ°ã®æç®ã®ããã«çããé©ãã¹ãçºèŠãšèšç®äžã®åé¡ã®å€ãã«æéãåããŸããã The PrisonerïŒ1960幎代ã®ãã¬ãã·ãªãŒãºïŒã®ã«ã«ããããŒãã¡ãŒã·ã³ã°ãã€ã¯ã®åºãæåãªPunch and Judyã®ãã³ããã£ãããããã³1ã€ã®éå匧ã®é°éœã®ã·ã³ãã«ã«äŒŒãŠããããšãæãåºããŸãã åçãèŠãŠ 1.çŸåšãã¢ã«ãã¡ãã¹ã®åïŒã¢ã«ããã¹ã«å«ãŸããåïŒã®å°éã«ã¿ãã°[1]ãšãæ°åŠãšèšç®ç§åŠã®åéå€ã«ããã¢ã«ããã¹ç¹æ§ã®éèŠãªã¢ããªã±ãŒã·ã§ã³ããããŸã[2]ã
ã¢ã«ãã¡ãã¹ïŒçŽå
å212幎ã«ããŒãã®å
µå£«ã«ãã£ãŠæ®ºãããïŒããããïŒçŽå
å320ïŒãã¯ãªââã¹ãã£ã³O.ã¢ã¢ïŒ1835-1918ïŒããã¯ã¿ãŒããïŒ 1882-1960ïŒãã¬ãªã³ãã³ã¯ãªãïŒ1908-1997ïŒãããŒãã£ã³ã¬ãŒãããŒïŒ1914-2010ïŒã æè¿ãã¯ã¬ã€ãã³ãããžãããŒã¿ãŒãšã€ã¯ã¢ã«ããã¹ã®ç¹æ§ãæ±ã£ãŠããŸãã åãããŒãã¹ã»ã·ã§ãŒã奥æåãæž¡èŸºé
ä¹ãªã©ã
ã¬ãªã³ã»ãã³ã¯ãã¯ãéå»30幎éã«èª°ããã¢ã«ããã¹ã«æ³šç®ããç·ã§ãã ã·ã§ããã¯1979幎ã«ãã³ã¯ãã®æ³šç®ãã¢ã«ããã¹ã«åŒãä»ããããã€ãã®æ°ããã¢ã«ãã¡ãã¹ã®ãµãŒã¯ã«ãéããŸããã 圌ã¯20ããŒãžã®åçš¿ãMartin Gardnerã«éããMartin Gardnerã¯ãããBankoffã«éãããããã1996幎ã«Dodgeåçš¿ã®ã³ããŒã®10ããŒãžã®æçãéããŸããã Bankoffã®æ»ã«ãããDodgeãããã€ãã®æ°ããçºèŠãçºè¡šãããŸã§ãèšç»ãããŠããã³ã©ãã¬ãŒã·ã§ã³ã¯äžæãããŸãã[3]ã 1999幎ã«ããããžã¯ã圌ãæã£ãŠãããã¹ãŠã®ææãæŽçãããã¹ãŠãå±±ã«å
¥ããŠ5ã10幎ããããšèšããŸããã ãã®äœæ¥ã¯ãŸã é²è¡äžã§ãã é©ãããšã§ã¯ãªããã
The Art of Computer Programmingã®ç¬¬4å·»ã§ã¯ãéèŠãªäœæ¥ã«ã¯å€ãã®æéãå¿
èŠã§ãããšè¿°ã¹ãŠããŸãã
å³ 1. èªè»¢è»ã®ãããŒãã¡ãŒãžã³ã°ã人圢ã®ãã³ããšãžã¥ãã£ãç©ççãªã¢ã«ããã¹ãã¢ã«ããã¹ïŒã®ãªã·ã£èªã§ãéŽå±ã®ãã€ããïŒã¯ãéŽå±ã䜿çšãããã€ãã®åã«äŒŒãŠããããšããåœåãããŸããïŒå³1ïŒã ã¢ã«ããã¹ã¯ã3ã€ã®ååãšå
±éã®ããŒã¹ã©ã€ã³ã«å²ãŸããå¹³åŠãªé åã§ãïŒå³2ïŒã ã¢ã«ãã¡ãã¹ã¯æããã¢ã«ããã¹ã®æ°åŠçç¹æ§ãç ç©¶ãå§ããæåã®äººã§ããã ãããã®ç¹æ§ã¯ãåœŒã®æ¬
Liber assumptorum ïŒãŸãã¯
Lemmasã®æ¬ ïŒã®4ãã8ã®å®çã«èšè¿°ãããŠããŸãã ãããããã®äœåã¯ã¢ã«ãã¡ãã¹ã«ãã£ãŠæžãããã®ã§ã¯ãªãã§ãããã
ç念ã¯ãã¢ã«ãã¡ãã¹ãç¹°ãè¿ãèšåãããã¢ã©ãã¢èª
ã®Lemmasã®æ¬ã®ç¿»èš³ã®åŸã«çãããã圌ã®èè
ã«ã€ããŠã¯äœãèšãããªãã£ãïŒãããããã®æ¬ã¯åœç©ã§ãããšããæèŠããã[4]ïŒã
ã¬ã ã®æ¬ã«ã¯ãæåãªã¢ã«ãã¡ãã¹ã®
ãããã ã®åé¡ãå«ãŸããŠã
ãŸã [5]ã
ãã®èšäºã¯ãã¢ã«ããã¹ã®ããã€ãã®ç¹æ§ãäœç³»çã«æç€ºããããšãç®çãšããŠãããç¶²çŸ
çã§ã¯ãããŸããã ç§ãã¡ã®ç®æšã¯ããããã®ããããã£ããã¬ãŒãã³ã°èšäºã®åœ¢åŒã§æç€ºããããã®çµ±äžãããèšç®æ¹æ³è«ãéçºããããšã§ãã ãã¹ãŠã®ããããã£ã¯ç¹å®ã®é åºã§é
眮ããã蚌æ ãšãšãã«æç€ºãããŸãã ãã®èšŒæ ã¯ãåçã®èšç®ãããã¹ããŒãã¡ã³ãããã¹ãããããšã§å®çŸãããŸããã ãã®äœæ¥ã®éçšã§ãèè
ã¯ããã€ãã®çºèŠãè¡ããããã€ãã®äžè¬åãè¡ããŸããã
æå€§ã®ååã
äžéšã®å匧 ã2ã€ã®å°ããªåå-
å·ŠåŽã® å匧ãš
å³åŽã®å匧 ããŸãã¯åã«åºå¥ããå¿
èŠããªãå Žåã¯åã«
åŽé¢ã®å匧ãšåŒã³ãŸãã 䜿çšããŸã

ãããŠ

ããããããããã®ååŸã瀺ããäžéšã®åŒ§ã®ååŸã¯

ã 2ã€ã®ãã€ã³ãé
ã®ç·ã¯æ¹åä»ããããŠãããããããã€ã³ãããå¥ã®ãã€ã³ããŸã§äŒžã³ãŠããŸããã2ã€ã®ãã€ã³ããå«ãçŽç·ã¯ç¡éã§ããããã®2ã€ã®ãã€ã³ãã®å€åŽã«ãããŸãã 衚èšã®å€å
žçãªäžæ£ç¢ºã-䜿çš

ãã€ã³ããæ¥ç¶ããã»ã°ã¡ã³ãèªäœãšããŠæå®ãã

ãããŠ

ãããã³ã³ã³ããã¹ãã«å¿ãããã®é·ãã çŸä»£ã®è¡šèšæ³ã¯ãæžãããã«æç€ºããŸã

ã»ã°ã¡ã³ãã®é·ãã瀺ããŸãã
ãã®é¢æ°ã¯ãã¢ã«ããã¹ãèšå®ããŸãã

ã ãããã¢ã«ããã¹èªäœãæãããšãã§ããŸãã

å³2. ã¢ã«ããã¹ãç©ä»¶1ã¢ã«ããã¹ã®åšå²ã¯æå€§ã®åã®åšå²ã«çããã
ç©ä»¶2ã¢ã«ããã¹ã®é¢ç©ã¯çŽåŸã®ããåã®é¢ç©ã«çãã

ã
ããã¯ãè£é¡
åž³ã®è£é¡4ã§ãïŒå³3ïŒ[7ã8]ã
ãããã®2ã€ã®ç¹æ§ã¯ã2ã€ã®çåŒã§æ§æããã以äžã«ç€ºãè«çæ§é ãèšç®ããããšã§ç°¡åã«èšŒæã§ããŸãã

drawpoints颿°ã¯ãæå®ããããã€ã³ãã赀䞞ã§è¡šç€ºããŸãã


å³ 3. çŽåŸã®åã®é¢ç©
ïŒã©ãžã«ã«åïŒã¯ã¢ã«ããã¹ã®é¢ç©ã«çãããã©ãžã«ã«ãµãŒã¯ã«
ã飯ã®èŒªã 3ã¯ã¢ã«ããã¹ã®
éæ¿ãªãµãŒã¯ã«ãšåŒã°ãã
ã©ãžã«ã«è»žãšåŒã°ã
ãŸã ïŒãã®çšèªã¯
äžè¬åã§èª¬æãããŸãïŒã ããããã£3-11ããã³25-26ã説æããããã«å¿
èŠãªãã€ã³ããã©ã€ã³ãåã座æšãæå®ããŠååã倿ŽããŸãïŒå³4ïŒã

å³ 4. ããããã£3-11ããã³25-26ã«èšèŒãããŠãã座æšãç·ãããã³åã®æå®ãç©ä»¶3è¡

ãããŠ

åçŽã§ãããç¹ã§æšªåŒ§ã暪åã

ãããŠ

åŽé¢ã®ã¢ãŒãã«å
±éã®æ¥ç·ã§æ¥ç¶ããŸãã
ç·ã®åçŽæ§ã蚌æãã

ãããŠ

ããã¯ãã«ã®ã¹ã«ã©ãŒç©ãèšç®ããŸã

ãããŠ

ã


çµæã䜿çšããŠãç·ã®åŸé
ãååŸããŸã


ã
å®ç1ã§ã®å·ŠåŒ§ãžã®æ¥ç·ã®æ¹çšåŒ

ïŒ

ãããŠãå³åŒ§ãžã®æ¥ç·ã®æ¹çšåŒ

ïŒ
PQ颿°ã¯ã¿ãããã€ã³ãã®åº§æšãèŠã€ããŸã

ãããŠ

å®ç1ã«åŸã£ãŠãå匧äžã®äœçœ®ãšæ¥ç·ã®åŸæè§ãæå®ãã4ã€ã®æ¹çšåŒç³»ãè§£ãããšã«ããã
ãã®èšäºã«ã¯ã
PQã«å ããŠããã€ã³ããšæ°éã®è¡šèšæ³
VWS ã
HK ã
U ã
EF ã
IJr ã
LMãå«ãŸããŠããŸãã
dSq颿°ã¯ãäžãããã2ç¹éã®è·é¢ã®2ä¹ãèšç®ããŸãã



ããããã£4ãã€ã³ã

ãããŠ

éæ¿ãªãµãŒã¯ã«ã«ããŸãã
以æ¥

ã¯ã©ãžã«ã«ã®åã®çŽåŸã§ãããè·é¢ã®çåŒã蚌æããã ãã§ãã

ãããŠ

ãšããŠå®çŸ©ãããŠããã©ãžã«ã«åã®äžå¿ã«

ã

ç©ä»¶5è¡ãã

ç¹ã§äžã®åŒ§ã暪åã

ãããŠ

ã ãããã

ãããŠ

ãäžå¿ãšããåã®äžã«æšªããã

ããã³ååŸ

ã
ãã€ã³ãã®åº§æšãååŸããŸã

ãããŠ

ãäžã®åŒ§ãšç·äžã®äœçœ®ãå®çŸ©ããæ¹çšåŒç³»ãè§£ã

ã



ããã¯ãè·é¢5

ãããŠ

åã«

ããã®è·é¢ã«çãã

åã«

ã

ç©ä»¶6çŽæ¥

ãŸã£ããã«å¹³è¡

ã
ããã¯ãã¯ãã«è¡ååŒãšåçã§ã

ãããŠ

ïŒãããã®ãã¯ãã«ç©ïŒã¯ãŒãã§ãã

ç©ä»¶7çŽæ¥

ç·ã«åçŽ

ã
ããã¯ããã¯ãã«ã®ã¹ã«ã©ãŒç©ãšåçã§ã

ãããŠ

ãŒãã«çããã


äžå¿ã«ããåã瀺ããŸã

ããã³ååŸ

ã©ããã£ãŠ

ã
ç©ä»¶8ã«ããã«

ã

ãããŠ

ã

-åã®çžäºã«éã®ç¹ã®ãã¢ã衚ã

ã
ãã€ã³ãããŒãã€ã³ã

åšã

ïŒåæã«

ïŒãã®ãããªç¹ã§ã

ãã®å¹³çãæãç«ã€

[9]ã
åè»¢é¢æ°ã¯ãã®èããå®è£
ããŠããŸãã

ãããã£ãŠãããããã£8ã¯ã

ã®ä»£ããã«

ã

ç©ä»¶9ãªã¿ãŒã³ãã€ã³ãã®åãæ¢çŽ¢ãã

ã äžããããç¹ã®åã«å¯ŸããŠ

ã

ã

æ»ãç¹ãšäžèŽããŸãã ç·å

ã¢ãŒã¯ã®éã§ã

ãããã³ã»ã°ã¡ã³ã

-ã¢ãŒã¯å転

ã ã¢ãŒã¯

ãããŠ

ãŸããçžäºã«éã§ãã éæ¿ãªåã¯ç·ã®éã§ã

ã
ç©ä»¶10çŽæ¥

ãããŠ

ã©ãžã«ã«åã«æ¥ç·ããããŸãã
ãã®ã¹ããŒãã¡ã³ãã¯ã察å¿ããå匧ïŒã€ãŸãããããã®æ¥ç·ïŒãã©ãžã«ã«åïŒäº€å·®ç¹ã§ã®æ¥ç·ïŒã«åçŽã§ãããšããäºå®ã«äŒŒãŠããŸãã
ããããã£8ã«ãããšãå匧ã¯çŽåŸã®ããåã«åçŽã§ã

ãªã¿ãŒã³ãã€ã³ãã®ãã¢ãééããå Žå[10,11]ã
ç©ä»¶11
-é·æ¹åœ¢ã
ããã¯ãBankoffã®é©ãã®1ã€ã§ã[12,13,14]ã 4ã€ã®ãã€ã³ããã¹ãŠãéæ¿ãªåäžã«ããå Žåãããã蚌æããã ãã§ååã§ãã

äºå

ã


ã¹ã©ã€ããŒã䜿çšããæ¬¡ã®ãã¢ïŒ
æäœé¢æ°ã䜿çšããŠå®è£
ïŒã¯ãããããã£3ã11ã瀺ããŠããŸãã ãã€ã³ã
P ã
Q ã
H ã
Kãæå®ããæãç°¡åãªæ¹æ³ã¯ããããã«å¯Ÿå¿ããæ°åŒãã³ããŒããŠè²Œãä»ããããšã§ãã


å
æ¥å
次ã«ãåŽé¢å匧ãšäžéšååŒ§ã«æ¥ããåãèããŸã-
å
æ¥å 
ã¿ãããã€ã³ãä»ãã®ã¢ã«ããã¹

ã

ããããŠ

ïŒå³5ãåç
§ïŒ[15ã16]ã ãŸããã¢ãŒã¯ã®é ç¹ããããã§ç€ºããŸã

ãããŠ

ããã«å¿ããŠã

å³ 5. å
æ¥å
ãå³ã«ç€ºãããŠãã座æšãç·ãç¹ã¯ããããã£12ã15ã«è¡šç€ºãããŸããè£ç¶Žæžã®6çªç®ã®æã«ã¯ã次ã®ããã«è¡šèšãããå
æ¥åã®ååŸ
ãå«ãŸããŠããŸãã

ã 颿°
u 
äžå¿åº§æšãèšç®ããŸã

å
æ¥åãšãã®ååŸ

ã



ã¿ãããã€ã³ã座æš

ã

ããããŠ

ã¢ã«ããã¹åŒ§ã®äžå¿ãšå
æ¥åãçµã¶ç·ã®äº€ç¹ã«ãã£ãŠæ±ºå®ãããŸãã


ç©ä»¶12ãã€ã³ã

ã

ããããŠ

äžçŽç·äžã«ãããŸãã ãã€ã³ã

ã

ããããŠ

äžçŽç·äžã«ãããŸãã è¡

ãããŠ

ç¹ã§äº€å·®ãã

å
æ¥åäžã«ãããŸãã
æåã®2ã€ã®ã¹ããŒãã¡ã³ãã¯ãå
±ç·æ§ãæ€èšŒããããã®è¡ååŒåºæºã䜿çšããŠèšŒæã§ããŸãã


ããã

ç·ã®äº€ç¹ã«ãªããŸã

ãããŠ

ã ãã®ç¹ããã®è·é¢ã

çãã

ã3çªç®ã®ã¹ããŒãã¡ã³ãã蚌æããŸãã

ç©ä»¶13ãã€ã³ã

ã

ã

ããããŠ

äžå¿ã«ããåã®äžã«æšªããã

ã åæ§ã«ããã€ã³ã

ã

ã

ããããŠ

äžå¿ã«ããåã®äžã«æšªããã

ã



Manipulateã䜿çšããæ¬¡ã®ãã¢ã¯ãããããã£13 [17]ã瀺ããŠããŸãã [
ãã³ã¯ãªãå ]ãªãã·ã§ã³ã§ã¯ãå匧ã®äžå¿ãçµã¶äžè§åœ¢ã«å
æ¥åã衚瀺ãããŸãã ããã¯ããããã£23ã瀺ããŠããŸãã

ç©ä»¶14ããã

-å
æ¥åã®çŽåŸãå¹³è¡

ããããŠ

-æåœ±

ã«

ã ç·åéã®é·æ¹åœ¢

ãããŠ

-æ£æ¹åœ¢ã
ãã®ããããã£ã¯ã次ã®
Manipulateã®ãã¢ã§èª¬æãããŠãããæ¬¡ã®åŒã§ç°¡åã«æ€èšŒã§ããŸãã

ç©ä»¶15ããã

ãããŠ

-ç·ã®äº€ç¹

ãããŠ

ãµã€ãã¢ãŒãä»ãã ãããã

-æ£æ¹åœ¢ã¯ãããããã£14ã«èšèŒãããŠããæ£æ¹åœ¢ãšã»ãŒåããµã€ãºã§ãã
ãŸãããã€ã³ããååŸããŸã

ãããŠ

察å¿ããç·ãšå匧ã®äº€ç¹ãšããŠãçµæã
replaceEF倿°ã«ä¿åããŸãã



è³ç£15ã蚌æãã

å転ã«ãã£ãŠåŸããããã¯ãã«ã«çãã

åšã

90°ãšäœã

å€äœã«ãã£ãŠåŸããããã¯ãã«ã«çãã

ãéããŠ

ã


æ€èšäž

ãããŠ

次ã®ã°ã©ãã¯ã2ã€ã®æ£æ¹åœ¢ã®ãµã€ãºãæ¯èŒããŠããŸãã

Manipulateã䜿çšãããã¢ã§ã¯ãããããã£14ãš15ã瀺ããŠããŸãã


åå
ã©ãžã«ã«è»žã«æ¥ãã2ã€ã®ç°è²ã®åãšãå³ã®æšªæ¹åããã³äžæ¹åã®å匧ãèããŠã¿ãŸãããã 6.ãããã¯
åå ããŸãã¯
ã¢ã«ãã¡ãã¹ã®åãšåŒã°ããŸãã æ¬¡ã®æ³šç®ãã¹ãç¹æ§ã«é¢é£ããŠããããã¯ããç ç©¶ãããŠããŸãã ãããã®ç°åžžãªæ©èœã®å€ãã¯ãããããã£ã®ãªã¹ãã§åŒ·èª¿ãããŠããŸã[3ã18ã19]ã

å³ 6. ååãç©ä»¶16ã©ãžã«ã«è»žã«æ¥ãã2ã€ã®åãArbelosã®äžéšãšåŽé¢ã®ã¢ãŒãã¯åãååŸãæã£ãŠããŸãã
ãã®ããããã£ã¯
ãã¬ã³ãæžã® 5çªç®ã®ã¹ããŒãã¡ã³ããšããŠäœ¿çšãããŸãã ãã®6ã€ã®æ¹çšåŒã®ã·ã¹ãã ãè§£ããŠãååŸã®å€ãèŠã€ããããããçããããšã確èªãããããã®äžå¿ã®åº§æšãèŠã€ããŸã

ã

ã


ãããã®4ã€ã®ãœãªã¥ãŒã·ã§ã³ã¯ãã»ã³ã¿ãŒããã¢ã§ã°ã«ãŒãåããŸãã

ã

ã

ã

ã©ãã§

ãããŠ

ãããã³ã°ã§ã

ãããŠ

ã¢ã«ããã¹ã®çŽåŸ; æåŸã®åŒã®ã¿ãæå¹ã§ãã ãŸããååãå®éã«åãååŸã§ããããšã瀺ããŠããŸã

ã ååŸãååãšåãé·ãã®åã¯ã
ã¢ã«ãã¡ãã¹ãšåŒã°ããŸãã ããªãã¯ããªãæç¢ºãªé¡æšãæãããšãã§ããŸã

æ³åããã

ãããŠ

-ïŒé»æ°ïŒæµæã ãããã

-äžŠåæ¥ç¶ã«ãã£ãŠåŸãããæµæ

ãããŠ

; ããã¯

ã
IJr颿°ã¯ãäžå¿ã®åº§æšãšååã®ååŸã®é·ããèšç®ããŸãã
ç©ä»¶17ã¢ã«ããã¹ã®é¢ç©ã¯ãååã«ãŸãããæå°ã®åã®é¢ç©ã«çãããªããŸãã
ãäžå¿ãšããäž¡æ¹ã®ååã«æ¥ããåãèããŸã

ããã³ååŸ

ã æ¬¡ã«ã次ã®2ã€ã®å€ããããŸãã

ã



ã®æ¥µå€ãèŠã€ããã«ã¯

ãäž¡æ¹ã®æ¹çšåŒã®å°é¢æ°ããŒãã«çãããã

ã


ãããã£ãŠãååã«æ¥ããæå°ããã³æå€§ã®åã®äžå¿ã¯ãã©ãžã«ã«è»žäžã«ãããŸãã ããã«ããããã®äžå¿ã¯ããã®è¡šçŸã®è§£ããå°ããã1ã€ã®ãã€ã³ãã«ãããŸãã


ãããã£ãŠãããããã£2ã䜿çšãããšãååãå«ãåã®äžã§æãå°ããæå€§ã®æ¥ç·åãããããã£17ãæºããããšã蚌æããŸããæ¬¡ã®
Manipulateã®ãã¢ã§ã¯ãååã«æ¥ããå
ã瀺ããŸãã

å·ŠåŽã®ã¢ãŒãã


次ã®ã°ã©ãã¯ãååã«æ¥ãã2ã€ã®åã®ååŸããã©ãžã«ã«è»žäžã®äžå¿ãšæ¯èŒããŠããŸãã



å³ 7. ããããã£18ã24ã«è¡šç€ºããããã€ã³ããšã»ã°ã¡ã³ãã®æå®ãç©ä»¶18å·Šã¢ãŒã¯ãšååãžã®äžè¬çãªæ¥ç·ïŒæ¥è§Šç¹-

ïŒãã€ã³ããééãã

ã åæ§ã«ãå³åŒ§ãšå察ã®å
±éæ¥ç·ïŒæ¥ç·ã®ç¹-

ïŒãã€ã³ããééãã

ïŒå³7ãåç
§ïŒã
ã¿ãããã€ã³ããèšç®ã§ããŸã

ãããŠ

ã



å®ç1ã䜿çšããŠãäž¡æ¹ã®ã¹ããŒãã¡ã³ãã蚌æããŸãã

ç©ä»¶19é·ã

é·ãã«çãã

ã é·ã

é·ãã«çãã

ã
äž¡æ¹ã®ã¹ããŒãã¡ã³ããåæã«èšŒæããŸãã


ãããããã€ã³ã

ã

ããããŠ

ãäžå¿ãšããåã®äžã«æšªããããªãã§ãã ãã

ãããã³ãã€ã³ã

ã

ããããŠ

ãäžå¿ãšããåã®äžã«æšªããããªãã§ãã ãã

; ããã§ãªãå Žåãæ¬¡ã®åŒã¯ãŒãã«ãªããŸãã

ç©ä»¶20è¡

è¡ãåå²ããŸã

ååã«ã è¡

è¡ãåå²ããŸã

ååã«ã
ã»ã°ã¡ã³ãã®é·ã

-瞊座æš

ãããã³ã»ã°ã¡ã³ãã®é·ã

-瞊座æš

ãåŸæè§ã確èªããŠããããã®ã»ã°ã¡ã³ãã®äžå¿ãæå®ãããç·äžã«ããããšã確èªããã ãã§ååã§ãã

ç©ä»¶21çŽåŸããªã³ã®2ã€ã®éãå

éãæãã

ããã³æ¥ç·

ãããŠ

ã¢ã«ãã¡ãã¹ã§ãã
ãããã®åã¯ããã³ã¯ãã«ãã£ãŠçºèŠããã4çªç®ãš5çªç®ã®ã¢ã«ãã¡ãã¹ã®åã§ã[20]ã ãã®ããããã£ã確èªããã«ã¯ã次ã®çµæ[21]ã䜿çšããŸãã
å®ç2ãã€ã³ãããã®è·é¢

ç¹ãéãç·ã«

ãããŠ

ãããŸãïŒ

ãã®åãã®è·é¢ã¯ãäžè§åœ¢ãæ£ã®å Žå

åæèšåãã«äº€å·®ãããã以å€ã®å Žåã¯è² ã«äº€å·®ããŸãã ãã®ãããã³ã°ã¯ã
dAB颿°ãå®è£
ããŸãã

ããã

ãããŠ

-ããããããã€ã³ãã®å·ŠåŽã«ããéãåã®äžå¿ãšååŸ

ïŒå³7ïŒã 次ã®ã·ã¹ãã ãè§£ããšã䟡å€ãèŠã€ãããŸã

ã


åæ§ã«ãå³ã®éãåã®ååŸãèšç®ã§ããŸã

çãã

ã


ãããã£ãŠãåè¿°ã®ããã«ãäž¡æ¹ã®åã¯ã¢ã«ãã¡ãã¹ã§ãã
Manipulateã䜿çšããæ¬¡ã®ãã¢ã«ã¯ãååãš2ã€ã®ä»ã®åãå«ãŸããŠããŸãã

ç©ä»¶22ç¹ãéãå

ã

ããããŠ

å³ 5ãããã¯ãã³ã¯ãªãåãšåŒã°ããã¢ã«ãã¡ãã¹åã§ãã
ã¢ã«ãã¡ãã¹ã¯å
ã®ååãçºèŠããŸããã ãã³ã¯ãªãã¯ã1950幎ã«çºèŠããã3çªç®ã®åã§åœŒããè£ã£ã[22]ã äžå¿åº§æš

ãã³ã¯ãªãåã¯ãããã®è·é¢ãèšç®ããããšã§ååŸã§ããŸã

ãã€ã³ããž

ã

ããããŠ

ã

ç©ä»¶23ãã³ã¯ãªããµãŒã¯ã«-ãµã€ãã¢ãŒãã®äžå¿ãšã»ã³ã¿ãŒã®æ¥ç¶ã«ãã£ãŠåœ¢æãããäžè§åœ¢ã«å
æ¥

ã¢ã«ããã¹ã«å»ãŸããåã
å®ç2ã䜿çšããŠããã®è·é¢ãèšç®ãã

äžè§åœ¢ã®èŸºã«å¯ŸããŠããã®ããããã£ã蚌æããŸãïŒ
dABã¯æ¹åä»ããããè·é¢ãèšç®ãããããç·ãèšè¿°ããåŒæ°ã®é åºã¯éåžžã«éèŠã§ãïŒã

ç©ä»¶24ååš

åã®æ¥ç·

ã

ãšäžéšã®åŒ§-ã¢ã«ãã¡ãã¹ã
ãã®æ¹æ³ã§å€ãèšç®ã§ããŸã

ãããŠ

ã


ååš

-瞊座æšã®å¯äžã®ãã®

-ããžãã£ãã ããã«æ³šæããå¿
èŠããããŸã

-æ¥é²çãªè»žã§ã¯ãããŸããã

ç©ä»¶25ãµãŒã¯ã«

ãããŠ

ã©ãžã«ã«è»žã®æ¥ç·ãšéé

ãããŠ

ãããã£ãŠããããã¯ã¢ã«ãã¡ãã¹ã§ãïŒå³4ãåç
§ïŒã

ç©ä»¶26ååš

ç·ã®æ¥ç·

ãããŠç¹ã®äžã®åŒ§

-ã¢ã«ãã¡ãã¹ïŒå³4åç
§ïŒã
ç¹ãäžå¿ãšããå

ããã³ååŸ

æ¥ç·

ãªã©ã®è·é¢

åã«

çãã

ãããã³æ¹çšåŒã¯æ¬¡ã®åœ¢åŒãåããŸãã

åãéãã®ã§

ã

å以æ¥

äžéšã¢ãŒã¯ã®æ¥ç·ã

ããã§ã¯ãæç€ºçãªåŒã䜿çšããŠ

ã

ããããŠ

ãããã®3ã€ã®å¹³çãæºãããŸãã

ç©ä»¶27äžéšã®å匧ã®äžå¿ãšå·Šã®é ç¹ãæ¥ç¶ãã2ã€ã®ã»ã°ã¡ã³ãïŒèµ€ã§ããŒã¯ïŒãæ€èšããŸã

ãããŠå³

ã¢ã«ããã¹ã¢ãŒã¯ã ãããã®ã»ã°ã¡ã³ãã¯çãããåçŽã§ãã æ¥ç·å

ãããŠ

ãã€ã³ãã§

ãããŠ

ãããã®ã»ã°ã¡ã³ããšäžéšã¢ã«ãã¡ãã¹åŒ§ã«ïŒå³8ãåç
§ïŒã
ãã®ããããã£ã¯ã1998幎ã®å€ã«çºèŠãããŸãã[23]ã

å³ 8. ããããã£27ããã®2çµã®ã¢ã«ãã¡ãã¹åãåŸæåå
ååãšã¯ç°ãªãã¢ã«ãã¡ãã¹ã®åãã€ãŸããã³ã¯ãªãåãããããã£21-27ã«è¡šç€ºãããããšã瀺ãããŸããã
éã¢ã«ãã¡ãã¹ååããããŸã-ã¢ã«ããã¹ã®ç¹å®ã®é åã«çŸããååã®ååŸãšã¯ç°ãªããåãååŸã®åã®ãã¢ã
åŸæååã®çºèŠã¯ãååã®åãå€åŽããã³äžéšã®å匧ã«è§Šããããšã«å ããŠãäºãã«è§Šããããšãã§ããã©ãžã«ã«è»žã«è§Šããå¿
èŠããªããšããä»®å®ããçããŸããã
ãããã®åãåãååŸã§ããå¿
èŠããªãå Žåãæããã«ç¡éã®æ°ã®è§£ããããŸãã ã¢ã€ãã¢ã¯ããã§ããïŒããããçããååŸã§ãããšããä»®å®ããå§ãããšãæçµçã«ããããã©ãžã«ã«è»žã«è§ŠããŠããããšãããããŸãã ããã¯ééã£ãŠããããšã倿ããŸããã ãã€ã³ãã«äžå¿ãããåãèãã

ãããŠ

ãããŠåãååŸã§

ã 䟡å€

5ã€ã®æ¹çšåŒãããªãã·ã¹ãã ãè§£ãããšã§åŸãããŸãã


ãããã®åŒã«ã¯ã笊å·ãç°ãªãå¹³æ¹æ ¹ãå«ãŸããŸãã ããžãã£ãã«ãŒãã¯åå²ããŸã

éžè±ããŸãã


æ®ãã¯åæããŸãã


èŠçŽãããšãæãã®ååã¯æ¬åœã«çããããããã®åèšååŸ

çãã

æ¬¡ã®æ®éã®ååãšæãã®ååã®ååŸã®æ¯èŒã¯ãããããéåžžã«ãããã«ç°ãªãããšã瀺ããŠããŸãã


ãã®ãããåŸæååã®äžå¿ã®åº§æšãååŸã§ããŸãã



以äžã®
Manipulateãã¢ã¯ãæãã®ååãšããªãã·ã§ã³ã§ãã©ã¡ãŒã¿ãŒã倿Žããçµæã®ååã瀺ããŠããŸãã

ã


æ±å
ãã®ã»ã¯ã·ã§ã³ã§ã¯ãã¢ã«ããã¹ã®ãžãªã¡ããªãäžè¬åããã¢ãŒã¯ã亀差ããã3次å
ããŒãžã§ã³ãæ€èšããŸãã
æåã®äžè¬åã®ã³ã³ããã¹ããå®çŸ©ããããã«ã2ã€ã®åã®ã©ãžã«ã«è»žã®æŠå¿µãå°å
¥ããŸããã©ãžã«ã«è»ž
ããã

-ãã€ã³ããããã³

-ãµãŒã¯ã«

ã æ
床ã®çšåºŠ

ã«

ãããŒããã£ã¹ãçªå·ã«ãã£ãŠæ±ºå®

ã çšåºŠ

ããžã·ã§ãã³ã°ããŒããŸãã¯ãã¬ãã£ã

å€ãäžãŸãã¯å

ããããã[12]ã ããã

; ãã€ã³ããå±ããå Žå

æ¹çšåŒãæºãã

ãã®åŸã次æ°ã決å®ã§ããŸã

ã³ã³ãã¥ãŒãã£ã³ã°ã«ãã

ã åãããšãåŸãããå Žå

åãçŽç·ã«çž®éããå Žåããã®å Žåã¯èšå·

ã©ãã瀺ããŸã

ããã¯æ¯èŒçãŸã£ããã§ãïŒãã®äžããã®äžããŸãã¯ãã®äžã«ããããã
ããã¯ããã€ã³ãã®æ¬¡æ°ã®éåžžã«è峿·±ãç¹æ§ã§ãã åãšããã€ãã®ç¹ãäžããŠã¿ãŸããã

ã ééããä»»æã®è¡ãéžæããŸã

ç¹ã§äº€å·®ããå

ãããŠ

ã ãã®åŸã補å


ã®ã¿ã«äŸåããŸã

ééããç·ã®éžæã«äŸåããŸãã

ã ãã®ä»äºã¯åŠäœã«çãã

ã
以äžã®
Manipulateã®ãã¢ã§ã¯ãååšãäœçœ®ã®ãµã€ãºã倿Žããããã®4ã€ã®ãã±ãŒã¿ãŒããããŸãã

ç·ãåŸããŸã

ã


ç°ãªãç¹ã«äžå¿ãæã€2ã€ã®åãæå®ããŸãã ãããã®
ã©ãžã«ã«è»žã¯ ãååã«é¢ããŠåãæ¬¡æ°ãæã€ãã¹ãŠã®ãã€ã³ããå«ãçŽç·ãšããŠå®çŸ©ãããŸãã ãã®å£°æã®èšŒæ ã¯[10]ã«ãããŸãã
å®ç32ã€ã®åãç¹ã§äº€å·®ããå Žå

ãããŠ

ãã®éæ¿ãªè»žã¯å
±éã®å²ç·ã§ã

ã 2ã€ã®åãæ¥è§Šããå Žå

ãã®å Žåããããã®ã©ãžã«ã«è»žã¯ã

ã
çµæ1äžå¿ãåãç·äžã«ãªã3ã€ã®åãæå®ããŸãã ãã®å Žåããããã®ã©ãžã«ã«è»žã¯ãã¢ã¯ã€ãºå¹³è¡ã«ãªããäžèŽããŸããã
å®ç42ã€ã®åã®åºè»žã¯ããããã«æãããæ¥ç·ãåãé·ããæã€ç¹ã®è»è·¡ã§ãã
以äžã®
Manipulateã®ãã¢ã§ã¯ã2ã€ã®å
ã瀺ããŠããŸãã 1ã€ã¯åºå®ãããŠãããä»ã®åã®ãµã€ãºãšäžå¿ã¯ããã±ãŒã¿ãŒãç§»åããã¹ã©ã€ããŒã®äœçœ®ã倿Žããããšã§å€æŽã§ããŸãã å¥ã®ã¹ã©ã€ããŒã䜿çšããŠãã©ãžã«ã«è»žäžã®èµ€ãç¹ã®äœçœ®ã倿ŽããŠãå®ç4ã説æã§ããŸãã


äºæ¬¡å
ãšäžæ¬¡å
ã®ã¢ã«ããã¹ã®äº€å·®ç¹
ãã®ãã¢ã¯ã2ã€ã®äžè¬åã瀺ããŠããŸãã

ç©ä»¶28å
æ¥åã¯ãå€åŽããã³äžéšã®ã¢ãŒãã®ã©ãžã«ã«è»žã«æ¥è§Šããäžè¬åãããã¢ã«ããã¹ã®åã¢ãŒã¯ã¯åãååŸãæã£ãŠããŸãã
ããã

-ããŒã¹éã®
ã®ã£ããã®é·ãïŒã€ãŸããäžéšã¢ãŒã¯ã®çŽåŸã¯

ïŒãšããŸããã

-ã©ãžã«ã«è»žãšè»žã®äº€ç¹ã®æšªåº§æš

ãéå§ç¹ãã¢ã«ããã¹ã®æ¥µå·Šç¹ã«ãããšä»®å®ããŸã[10]ã
å®ç5åã

ãããŠ

亀差ããªãå Žåããããã®ã©ãžã«ã«è»žã¯ã»ã°ã¡ã³ããšäº€å·®ããŸã


ãã®æç¹ã§

ãã®ããã«

ã
ãã®å®çã䜿çšããŠãå€ãèšç®ããŸã

ã


äžè¬åã倱ãããšãªããæã
ã¯ãããä»®å®ããããšãã§ããŸã

ã

ããããŠ

ïŒ

è² ã®å€ãåãå ŽåããããŸãïŒã å
æ¥åãæ¬¡ã®ããã«åŒã³åºããŸã

ãããŠ

ã ãããã®ãã©ã¡ãŒã¿ã®å€ã¯ã次ã®ããã«ååŸãããŸãã


次ã«ãå°ãªããšãããã€ãã®äžå¿ãç¡èŠããããšãã§ããŸãããååŸã¯ãããã®å Žåãåãã«ãªããŸãã
èšèã®ãªã蚌æ
å®éãããã«ã¯ã¢ã«ããã¹ã®3ã€ã®ããããã£ããããŸãã ã©ã®ããããã£ãé¢ä¿ããŠããããæšæž¬ã§ãããã©ãããã³ã³ãããŒã«ã詊ããŠã¿ãŸããã[24,25]ã
æåã®
æäœã§ã¯ããµã€ãã¢ãŒããç§»åã§ããŸãã


2çªç®ã®
æäœã§ã¯ããµã€ãã¢ãŒãã®ã¿ãããã€ã³ããäžå¿ã«ç·ãå転ã§ããŸãã


æåŸã«ã3çªç®ã®
Manipulateã¯ãååã®ç¡éã®ãã¡ããªãŒãç¹åŸŽãšããŠããŸãã


åç
§è³æ
[1] F.ãŽã¡ã³ã©ã¢ãŒãšã³ã ãã¢ã«ãã¡ãã¹ã®ãµãŒã¯ã«ã®ãªã³ã©ã€ã³ã«ã¿ãã°ãïŒ2014幎1æ22æ¥ïŒ
home.planet.nl/~lamoen/wiskunde/arbelos/Catalogue.htm[2] S.ã¬ã«ã·ã¢ã»ãã£ãŒããã«ã ã Wolframãã¢ã³ã¹ãã¬ãŒã·ã§ã³ãããžã§ã¯ãâ Wolfram WebãªãœãŒã¹ã®ãå¹³é¢å¿åå転ãã
demos.wolfram.com/PlanarStressRotation ã
[3] CW DodgeãTãSchochãPY Wooãããã³P. Yiuãããããã®ãŠããã¿ã¹ã¢ã«ãã¡ãã¹ã®åãã
Mathematica l Magazineã
72 ïŒ3ïŒã1999ããŒãžã 202-213ã
www.jstor.org/stable/2690883[4] HP BoasããReflection on the Arbelosãã
American Mathematical Monthly ã
113 ïŒ3ïŒã2006ããŒãžã 236-249ã
[5] HDDörrieã
åçæ°åŠã®100ã®å€§ããªåé¡ïŒãã®æŽå²ãšè§£æ±ºç ïŒD. AntinãtransãïŒããã¥ãŒãšãŒã¯ïŒDover Publicationsã1965ã
[6] J.Rangel-Mondragónã Wolframãã¢ã³ã¹ãã¬ãŒã·ã§ã³ãããžã§ã¯ãâ Wolfram WebãªãœãŒã¹ã®ãååž°æŒç¿IIïŒãã©ããã¯ã¹ãã
demos.wolfram.com/RecursiveExercisesIIAParadox ã
[7] RB Nelsenããèšèã®ãªã蚌æïŒã¢ã«ããã¹ã®é åãã
Mathematics Magazine ã
75 ïŒ2ïŒã2002 pã 144ã
[8] A.ã¬ãã©ã Wolfram Demonstrations Project â A Wolfram Web Resourceã®ãArea ofââ the Arbelosãã
demos.wolfram.com/AreaOfTheArbelos ã
[9] J.Rangel-Mondragónããèšç®äžã®éãŠãŒã¯ãªãã幟äœåŠã§éžæãããããŒãã ããŒã1.é幟äœåŠã®åºæ¬çãªç¹æ§ãã
The Mathematica Journal ã2013幎
ã www.mathematica-journal.com/2013/07/selected-themes-in-computational-non-euclidean-geometry-part-1[10] D. Pedoeã
GeometryïŒA Comprehensive Course ããã¥ãŒãšãŒã¯ïŒDoverã1970ã
[11] M.ã·ã¥ã©ã€ããŒã Wolfram Demonstrations Project â A Wolfram Web Resourceã®ãOrthogonal Circle Inversionãã
demos.wolfram.com/OrthogonalCircleInversion ã
[12] MGãŠã§ã«ãããã¢ã«ããã¹ããä¿®å£«è«æã1949幎ã«ã³ã¶ã¹å€§åŠæ°åŠéš
[13] L.ãã³ã¯ãªãããThe Marvelous Arbelosã
ãæ°åŠã®è»œãåŽé¢ ïŒRK GuyãšRE Woodrowç·šïŒãã¯ã·ã³ãã³DCïŒã¢ã¡ãªã«æ°åŠåäŒã1994幎ã
[14] GLã¢ã¬ã¯ãµã³ããŒãœã³ããã¬ãªã³ãã³ã¯ãªããšã®äŒè©±ãã
The College Mathematics Journal ã
23 ïŒ2ïŒã1992ããŒãžã 98-117ã
[15] S.ã«ãã€ã Wolfram Demonstrations Project â A Wolfram Web Resourceã®ãTangent Circle and Arbelosãã
demos.wolfram.com/TangentCircleAndArbelos[16] G.ãã«ã³ãã¹ããŒãšC.ãŠã«ãã©ã ã Wolframãã¢ã³ã¹ãã¬ãŒã·ã§ã³ãããžã§ã¯ãâ A Wolfram WebãªãœãŒã¹ã®ããã¯ããŠã®ç®ã®å®çãã
demos.wolfram.com/TheoremOfTheOwlsEyes ã
[17] PY WooããArbelosã®å
æ¥åã®åçŽãªæ§æãã
Forum Geometricorum ã1ã2001ããŒãžã 133-136ã
forumgeom.fau.edu/FG2001volume1/FG200119.pdf[18] B.ã¢ã«ããŒãã Wolframãã¢ã³ã¹ãã¬ãŒã·ã§ã³ãããžã§ã¯ãâ A Wolfram WebãªãœãŒã¹ã®ãã¢ã«ãã¡ãã¹ã®ååã®åã
demos.wolfram.com/ArchimedesTwinCirclesInAnArbelos ã
[19] J.Rangel-Mondragónã Wolfram Demonstrations Project â A Wolfram Web Resourceã®ãTwins of Arbelos and Circles of a Triangleã
demos.wolfram.com/TwinsOfArbelosAndCirclesOfATriangle ã
[20] H.奥æããæªãã ã¢ã«ããã¹ã®åååã®è©³çްãã
ãã©ãŒã©ã 幟äœåŠ ã11ã2011ãppã 139-144ã
forumgeom.fau.edu/FG2011volume11/FG201114.pdf[21] EWãŽã¡ã€ã¹ã·ã¥ã¿ã€ã³ã Wolfram
MathWorldããã®ããã€ã³ãã©ã€ã³è·é¢â 2次å
ãâ Wolfram WebãªãœãŒã¹ã
mathworld.wolfram.com/Point-LineDistance2-Dimensional.html[22] L.ãã³ã¯ãªãããã¢ã«ãã¡ãã¹ã®ååã®åã¯æ¬åœã«ååã§ããïŒãã
Mathematics Magazine ã
47 ïŒ4ïŒã1974 ppã 214-218ã
[23] F. Powerããã¢ã«ããã¹ã®ã¢ã«ãã¡ãã¹ã®èŒªãã
ãã©ãŒã©ã Geometricorum ã5ã2005ãppã 133-134ã
forumgeom.fau.edu/FG2005volume5/FG200517.pdf[24] AV Akopyanã
å³ã®å¹ŸäœåŠ ãCreateSpace Independent Publishing Platformã2011ã
[25]奥æH.ããã³æž¡èŸºM.ããã¢ã«ãã¡ãã¹ã®åã®ç¡ééåã®ç¹æ§ãã
ãã©ãŒã©ã 幟äœåŠ ã7ã2007ãppã 121-123ã
forumgeom.fau.edu/FG2007volume7/FG200716.pdf