ã¯ããã«
å€ãã®ã²ãŒã ãç¹ã«RPGã§ã¯ãçµ±èšãéåžžã«éèŠã§ãã æ»æãé²åŸ¡ãæµæããã¡ãŒãžãé§ã®è²«éããã¹ãªã©ã¯ãæµã«äžãããããã¡ãŒãžããŸãã¯æµããåãããã¡ãŒãžã«åœ±é¿ããŸãã ã»ãšãã©ã®å Žåããã¬ã€ã€ãŒã¯ãããå€ãã®ãããè¯ãããšããæŠè¡ã«åŸãããšã奜ã¿ãŸãã ãã®ã¢ãããŒãã¯ãããèãæããããã£ã©ã¯ã¿ãŒéçºæŠç¥ã§ã¯ãªããã²ãŒã ã®è©³çŽ°ãªåæã®æ¬ åŠãæ inessããŸãã¯ç¹å®ã®ææšã«å¯Ÿãããçµ±èšãã®åœ±é¿ã®ç¹å®ã®æ§è³ªïŒç¹å®ã®èšç®åŒïŒã«é¢ããæ
å ±ã®æ¬ åŠã«ãã£ãŠåŒãèµ·ããããå¯èœæ§ãé«ãã§ãã ããã«ãå€ãã®å Žåãã²ãŒã ã®äœæè
ãèããŠããããã«ããã¹ãŠã®ç¹æ§ãåæã«å¢ããããšã¯äžå¯èœã§ããããããäœãã©ãã«æå
¥ãããããéžæããããšãç¹ã«éèŠã§ãã
次ã«ãããã€ãã®ãã©ã¡ãŒã¿ãŒãä»ã®ãã©ã¡ãŒã¿ãŒã«äŸåããããã®æ瀺çãªå
¬åŒãååŸã§ããæ¹æ³ã«ã€ããŠèª¬æããŸãïŒããšãã°ãç¥æ§ã«å¯Ÿããåªæã®åããŸãã¯ä¿è·ã®éã«å¯Ÿãããã¡ãŒãžæžå°ã®å²åïŒã ãã®æ¹æ³ã¯ã1ã€ã®ãã©ã¡ãŒã¿ãŒãå€æŽããããã«å¿ããŠ2çªç®ã®ãã©ã¡ãŒã¿ãŒã®å€åã芳å¯ããæ©äŒãããå Žåã«é©çšã§ããŸãã ããã«ããã®æ¹æ³ã¯ã2çªç®ã®ãã©ã¡ãŒã¿ãŒã®å¹³åå€ãæåã®ãã©ã¡ãŒã¿ãŒã«å³å¯ã«äŸåããå Žåã«ãé©çšã§ããŸããã2çªç®ã®ãã©ã¡ãŒã¿ãŒèªäœã¯ã©ã³ãã å€æ°ã§ãã
ãã®æ¹æ³ã¯ãç¥æ§ãããããã®åªæã®ãã¯ãŒãèšç®ããäŸãšãArcheAgeã²ãŒã ã®ç·ä¿è·éãããã¬ã€ã€ãŒãåãããã¡ãŒãžã®æžå°ã®å²åã«ãã£ãŠèª¬æãããŸãã å®éããã®æ¹æ³ã®åºç€ã¯æå°äºä¹æ³ã§ããããã¯éåžžã«åºãç¥ãããŠãããããŸããŸãªåéã§éåžžã«é »ç¹ã«äœ¿çšãããŠããŸãã èšç®ã«ã¯ãWolfram MathematicaïŒä»»æã®ããŒãžã§ã³ïŒã䜿çšãããŸãã å®éã«ããã®èšäºã®äž»ãªäŸ¡å€ã¯ãé¢å¿ã®ããæ³åãåŸãããã«äœãããå¿
èŠããããã段éçã«èª¬æããããšã§ãã MNCããã³Wolfram Mathematicaã«ç²ŸéããŠãã人ã¯ãäŸã«çŽæ¥ã¢ã¯ã»ã¹ã§ããŸãã
æå°äºä¹æ³ïŒOLSïŒ
MNEã¡ãœããã¯ãæç®ã§éåžžã«è©³çŽ°ã«èª¬æãããŠããŸããããã®æ¬è³ªãäžè¬çãªçšèªã§ã®ã¿èª¬æããŸãã ããéãå¥ã®éã«äŸåããäžè¬çãªåœ¢åŒãæããŠãã ããã ã©ãããã°äžè¬çãªèŠè§£ãèŠã€ããããšãã§ããŸãããåŸã§èª¬æããŸãã çŸæç¹ã§ã¯ãããšãã°ãy = a * x ^ 2 + b * x + cãšãã圢åŒã®äŸåé¢ä¿ãåããŸãã ããã§ãyã¯1ã€ã®éã§ãxã¯å¥ã®éã§ãã ããã«ãaãbãcã¯ããã€ãã®ãã©ã¡ãŒã¿ãŒã§ãã ãŸããããéã®å¥ã®éãžã®äŸåãå®å
šã«é²ããã«ã¯ãäŸåã®ã¿ã€ãèªäœãããã£ãŠããããããããã®ãã©ã¡ãŒã¿ãŒãæ£ç¢ºã«æ±ºå®ããå¿
èŠããããŸãã
æãåçŽãªã±ãŒã¹ã§ã¯ã芳枬ãå®éšããŸãã¯ãã®ä»ã®ãœãŒã¹ãããããéã®å€ãå¥ã®éã®ç¹å®ã®å€ã§èŠã€ããããšãã§ããŸãã å®å
šãªæ¹çšåŒç³»ãæ§æãã3ã€ã®æªç¥ã®ãã©ã¡ãŒã¿ãŒaãbãcã«é¢ããŠããã解ãããã«ããã®ãããªãã¢ã3ã€ãããŸãã ããã«ãå Žåã«ãã£ãŠã¯ã²ãŒã ã§ããã§ååã§ãã
äŸåé¢ä¿é¢æ°ã«å¥ã®çšèªãã€ãŸãã©ã³ãã å€æ°ãè¿œå ããããšãäºæ
ã¯è€éã«ãªããŸãã y = a * x ^ 2 + b * x + c + Random_Valueã ãã¡ãŒãžã®åæ£ãªã©ãã²ãŒã ã®éçºè
ã«ãã£ãŠå
·äœçã«å°å
¥ã§ããŸãããå¥ã®çç±ããããŸãã å®éãç¹å®ã®é¢æ°ã®æ£ç¢ºãªå€ã¯ãã²ãŒã ã¡ãã¥ãŒã®åºåãã£ãŒã«ãã®ãµã€ãºãããå€ãã®æ¡ãã¬ã³ãŒãã«æã€å ŽåããããŸãã ãã®å Žåãäžžããããå€ã衚瀺ãããæ£ç¢ºãªå€ãã²ãŒã ã€ã³ã¿ãŒãã§ãŒã¹ã®ãã£ãŒã«ãã§èªã¿åããå€ããã倧ããããŸãã¯å°ãããšã¯èšããŸããã ãããã£ãŠãäžžãã«ãããã©ã³ãã ãªå€ãè¿œå ãããŸãïŒè² ãšæ£ã®äž¡æ¹ãå¯èœã§ãããå¹³åã¯ãŒãã§ãïŒã
ã©ã³ãã å€æ°ããæ£ç¢ºãªãäŸåé¢æ°y = a * x ^ 2 + b * x + cã«è¿œå ãããå Žåãå®éã«èŠ³æž¬ãããyã®æž¬å®å€ã¯æ²ç·a * x ^ 2 + b * x + cã«ååšããŸãããªãã·ã§ã³ããããŸããã åæ£ïŒå¹³åæ£åžïŒãã©ã³ãã å€ãå€ãããªãå Žåããã©ã¡ãŒã¿ãŒabããã³cãããã£ãŠããŠãã座æšå¹³é¢ã§ããŒã¯ãããå®éã«èŠ³æž¬ãããå€ã¯æ²ç·a * x ^ 2 + b * xã«éåžžã«è¿ããªããŸãã äžéšã®ãã€ã³ãã¯ããã®æ²ç·ã«è©²åœããå ŽåããããŸãã ããæç¹ã§ã®ã©ã³ãã å€æ°ãåã«å€ãŒããä»®å®ããå¯èœæ§ã¯ååã«ãããŸãã ãããããã®å Žåãç§ãã¡ãç¥ã£ãŠããç¹ã§ããããã®äžã«ãªãå Žåãã©ã®ããã«ããŠé¢æ°ã®ãã©ã¡ãŒã¿ãŒãèŠã€ããããšãã§ããŸããïŒ æå°äºä¹æ³ã¯ããã€ã³ãããæ²ç·ãŸã§ã®è·é¢ãæå°ã«ãªãããã«ãã©ã¡ãŒã¿ãŒãéžæããããšã§ãïŒ ãããMNCã®äž»ãªæ¬è³ªã§ãã
ããã§ããã€ã³ãããã«ãŒããŸã§ã®è·é¢ã¯ãã«ãŒãã®æãè¿ããã€ã³ããŸã§ã®è·é¢ã§ã¯ãªãããã€ã³ãå€ïŒãã€ã³ãã¯å€æ°å€ã®ãã¢âé¢æ°ã®èŠ³æž¬å€ïŒãšããã€ã³ããšåãå€æ°ã®é¢æ°ã®ãæ£ç¢ºãªãå€ãšã®å·®ãæå³ããããšãæ確ã«ãã䟡å€ããããŸãã äžè¬çã«ãçæ³çãªå Žåããã®å·®ã¯ãç¹å®ã®ãã€ã³ãã§ã®åãRandom_Valueã®ç¹å®ã®å€ã«çãããªããŸãã ãŸãã芳枬å€ãšãæ£ç¢ºãªãå€ã®éã®æ£ç¢ºã«ãã¹ãŠã®å·®ã®åèšãæå°ã§ããããšãå¿
èŠã§ããããšãæ確ã«ãã䟡å€ããããŸãã æ®å¿µãªãããä»ã®ãã¹ãŠãããè¯ãèŠããããã«ãæ³å®ããããæ£ç¢ºãªãæ²ç·ç¹ãããã¯ããã«é
ããæããäžå¿«ãªãç¹ãæšãŠãããšããããšããã°ãã°ãããŸãã ãã¡ããã枬å®ã誀ã£ãŠå®è¡ãããããšãå®å
šã«ç¢ºä¿¡ããŠããªãéãããããè¡ãããšã¯ã§ããŸããã ãã1ã€ã®éèŠãªãã€ã³ã-ãã®å Žåã®è·é¢ã¯ãå³å¯ã«æ£ã®å€ãšããŠæž¬å®ãããŸãã 芳枬ããããã€ã³ããå¿
èŠä»¥äžã«é«ããäœããã¯é¢ä¿ãããŸãããäž»ãªããšã¯ã©ãã ãé ãã«ãããã§ãã
äŸåé¢ä¿ã®äžè¬çãªåœ¢åŒã¯ãåè¿°ã®ãšãããy = a * x ^ 2 + b * x + c + Random_Valueã§ãã ããã«ã芳枬ãããxãyã®äž¡æ¹ã®éã®ãã¢ã®èŠ³æž¬å€ãããããŸãã å¿
èŠãªã ãèžæ°ã枬å®ã§ããŸãããã§ããã°å€ãã»ã©è¯ãã®ã§ãïŒ ïŒããã¯ãããã§ãããæç®ãèªãã§ãã ããïŒã 芳枬å€ãšãæ£ç¢ºãªãå€ã®å·®ãèŠã€ããã«ã¯ãy_measureã®æž¬å®å€ãša * x_measure ^ 2 + b * x_measure + cãæžç®ããå¿
èŠããããŸãã ã€ãŸããå€æ°ã¯æ£ç¢ºã«æ¢ç¥ã§ãããæ£ç¢ºãªãã©ã¡ãŒã¿ãŒabc a * x_measure ^ 2 + b * x_measure + cã䜿çšãããšãé¢æ°ã®ãæ£ç¢ºãªãå€ã§ãããšèããããŸãã æ¢ã«è¿°ã¹ãããã«ãåŸãããå·®ãã絶察å€ãååŸããããã«ã¢ãžã¥ãŒã«ãååŸããå¿
èŠããããŸãïŒå®éããæ£ç¢ºããšã¯ããã¹ãŠã®ãã€ã³ãã«æãè¿ãæ²ç·ãæå³ããããšã«æ³šæããå¿
èŠããããŸãã Really_Exactã¯ãæ°ããããšãã§ãããã®ã«æºè¶³ããŠãããŸãŸã§ãã
ãã®ã€ãã³ãã®é çªã«æ
£ããŠããªãå Žåã¯ãæ
£ããå¿
èŠããããŸãã çæ³ããªãå Žåã¯ãæåã®ãã®ã䜿çšããŸããïŒããããã¢ãžã¥ãŒã«ã䜿çšããã®ã¯äžäŸ¿ã§ãããã¢ãžã¥ãŒã«ã§ã¯ãªãçµæã®å·®ã2ä¹ããæ¹ãç°¡åã§ãã ãããŠãå·®ã®ãã¹ãŠã®äºä¹ãåèšããŸãã çµæã®éã¯ãå€ãã®é
ãå«ã1ã€ã®éåžžã«é·ãé¢æ°ã«ãªããŸãããåèšã§3ã€ã®å€æ°ã®ã¿ã§ãã ãã®é¢æ°ãæå°ã«ãªããããªabcå€ãèŠã€ããã ãã§ãã ããã¯ãããã€ãã®å€æ°ã®é¢æ°ã®æ¥µå€ãèŠã€ããããšãšåçã§ãã ããã¯ãïŒæåââã¯ïŒäžèŠãããšããããåæã®ç°¡åãªäœæ¥ã§ãã ããã¯æå°äºä¹æ³ã§ãã
èšç®ã®ã¢ã«ãŽãªãºã ãèšè¿°ããå¿
èŠãããå Žåãã¡ãœããã®èŠããã®åçŽãã¯ãããªãæ®é
·ãªåè«ãæŒããŸãã ããã¯éåžžã«é£ããäœæ¥ã§ãããå€ãã®èœãšãç©ŽããããŸãã ãã ããç®æšã¯æå°äºä¹æ³ã䜿çšããããšã§ããããã®å®è£
çšã«å¥ã®ã¢ã«ãŽãªãºã ãèšè¿°ããããšã§ã¯ãªãããã䜿çšããã¢ã«ãŽãªãºã ã¯æ¢ã«å®è£
ãããŠããŸãã
ãŠã«ãã©ã æ°åŠ
Mathematica MATLABãMapleãªã©ã®ããã°ã©ã ã䜿çšããããšããªãå Žåã¯ãå§ããŸãããã éåžžã«åçŽãªå ŽåïŒåŠç¿ããããšãæããªãããïŒã埮åæ¹çšåŒç³»ãèšå·çã«è§£ãããããŸãã¯èšå·çã«çµ±åããããããŸãã¯ã°ã©ããæãããã«ãããã®ããã°ã©ã ãå¿
èŠã§ããããããã¯ãã¹ãŠ1è¡ã®ãäžå¯§ãªèŠæ±ãã§è¡ãããŸãã æ°åŒãèšå·åœ¢åŒïŒæ°å€ã§ã¯ãªãïŒãã¹ãŠæåãå€æ°ããã©ã¡ãŒã¿ïŒã§æžããšãåãçããåŸãããŸã-äžè¬çãªèšå·åœ¢åŒã§ã ANCã¡ãœããã§ãã©ã¡ãŒã¿ãŒãèŠã€ãããšã圌ãããã®æ¹æ³ãç¥ã£ãŠããŸãã ïŒ...ãããŠãããã ãã§ãªãããããã¯ãã§ã«è©³çŽ°ã§ãïŒã Wolfram Mathematicaã§éãã§ã¿ãããšããå§ãããŸãã MathematicaããœãŒã·ã£ã«ãããã¯ãŒã¯ïŒVKontakteãªã©ïŒã®ããŒã¿ããŒã¹ã«ã¢ã¯ã»ã¹ã§ãããšããäºå®ãç¥ããšã誰ãããã£ãšèå³ãæã€ãããããŸããã ïŒæããã«ããªãŒãã³ããŒã¿ã®ã¿ã§ãããããã§ãïŒå®åšã®äººç©ã®ããŒã¿ã䜿çšããŠèªåã§èª¿æ»ãè¡ãããšãã§ããŸãã 圌ãã®å¥œã¿ãè·æ¥ãèå³ãæçš¿ã®é »åºŠã瀟äŒåŠãšäººéã®è¡åã«é¢ããŠããªããæããã¹ãŠã Mathematicaã®æäœæ¹æ³ã«é¢ããèšäºã¯ãããããããŸãããç¹ã«çŽ æŽãããã®ã¯ãçµã¿èŸŒã¿ãã«ãã®èšå€§ãªéã®äŸã§ã-æåéãããããå Žé¢ã§ã ããã«ããMathematicaã®éçºã倧å¹
ã«ç°¡çŽ åãããŸãïŒMATLABã«ã€ããŠã¯ããŸããäžèŸã«ãªããŸããïŒãã¡ããå©ç¹ããããŸãããç§ã®éžæã¯Mathematicaã§ãïŒã
以äžã«é©çšãããæ©èœã«ã€ããŠã®ããã€ãã®èšèã äžé£ã®èŠ³æž¬å¯èœãªïŒæž¬å®ãããïŒããŒã¿ïŒã©ã³ãã å€æ°ãè¿œå ãããŠããïŒã®ååšäžã§ãæ¢ç¥ã®ã¿ã€ãã®é¢æ°ã®ãã©ã¡ãŒã¿ãŒãèŠã€ããã«ã¯ãFindFité¢æ°ã䜿çšãããŸãã ãã€ã³ãã®é
åã衚瀺ããã«ã¯ãListPloté¢æ°ã䜿çšããŸãã ããããã«ã¯ãåã«Plotã䜿çšãããŸãã éåžžãé
åã¯äžæ¬åŒ§{}ã§å²ãŸããé
åèŠçŽ ãžã®ã¢ã¯ã»ã¹ã¯äºéè§æ¬åŒ§[[]]ãä»ããŠè¡ãããŸãã ããŸããŸãªé¢æ°ã䜿çšããŠãããŒãã«ãªã©ã®é
åãäœæããããšãã§ããŸãã 1ã€ã®å³ã«ã°ã©ããšç¹ã®é
åã衚瀺ããã«ã¯ãããŒã¿ãã°ã©ãã£ã«ã«ã«è¡šç€ºããããã®ä»»æã®é¢æ°ã§ãã2ã€ã®èŠçŽ ïŒãŸãã¯ãã以äžïŒã®é
åããShow [{}]é¢æ°ã䜿çšããŸãã
äŸ
ã»ãšãã©ã®å Žåãã²ãŒã ã¯ããã€ãã®ãã©ã¡ãŒã¿ãŒãä»ã®ãã©ã¡ãŒã¿ãŒã«äŸåãããããã«è€éãããé¢æ°ã䜿çšããŸããã ã»ãšãã©ã®å Žåãç·åœ¢é¢æ°ax + bããŸãã¯ïŒax + bïŒ/ïŒcx + dïŒã®åœ¢åŒã®é¢ä¿ã䜿çšãããŸãã é¢æ°ãèŠã€ããããã®æ確ãªã«ãŒã«ã¯ãããŸããã éçºè
ã¯ãå¿
èŠã«å¿ããŠãæšæž¬ããã®ãã»ãšãã©äžå¯èœãªéåžžã«è€éã§ãããã«ããæ©èœãäœæã§ããŸãã ãã ãããã®ãããªã±ãŒã¹ã¯éåžžã«ãŸãã§ãã ïŒax + bïŒ/ïŒcx + dïŒã®åœ¢åŒã®æ¯çã¯ãäžããå¶éãããã¹ãå€ãèšç®ãããå Žåã«ãã䜿çšãããŸããããšãã°ãä¿è·å€ããåãããã¡ãŒãžã®æžå°ã§ãã 確ãã«ã100ïŒ
以äžã®ãã¡ãŒãžäœæžãšããæŠå¿µãå°å
¥ããããšã¯æå³ããããŸããã ãã®ãããªå Žåãäžã«å¶éãããéããããšããy =ïŒax + bïŒ/ïŒcx + dïŒã®åœ¢åŒã®é¢æ°ãè©ŠããŠã¿ãã®ãæåã§ãã
åãããã¡ãŒãžã®æžå°çãä¿è·ã®äŸ¡å€ã«äŸåããããšãèŠã€ããŸãããã ãããè¡ãã«ã¯ãæ°å€ã®ãã¢ïŒä¿è·ãå²åïŒãååŸããå¿
èŠããããŸãã ããã¯éåžžã«ç°¡åã§ãã ãã¹ãŠã®ã¢ã€ãã ããã£ã©ã¯ã¿ãŒããåé€ãããŸãã ãããŠãé çªã«ãç°ãªãéã§ãç°ãªãçµã¿åããã§ããããã¯å
ã«æ»ãããŸãã ãããã£ãŠãä¿è·ã®äŸ¡å€ãå€åãããããŒã»ã³ããŒãžãã©ã®ããã«å€åãããã確èªããŸãã ãã®åœ¢åŒã§çµæãé
åã«æžã蟌ã¿ãŸãã
OurDefSource = {{637ã10.73}ã{689ã11.5}ã{462ã8.02}ã{585ã9.94}ã{358ã6.33}ã{317ã5.64}ã{281ã5.03}ã{99ã1.83} ã{0ã0}ã{3668ã40.9}ã{1287ã19.54}ã{495ã8.54}ã{2471ã31.8}ã{4596ã46.44}}ã
ãã®åŸããã€ã³ããããã«ã°ã©ãã£ã«ã«ã«è¡šç€ºããããã«ãä¿è·ã®æå°å€ãšæ倧å€ãèŠã€ãããšäŸ¿å©ã§ãã ãŸããããŒã¿ã䞊ã¹æ¿ããŸãã 2次å
é
åã®é
åãã転眮ãããšã2ã€ã®1次å
é
åã®é
åãäœæãããä¿è·ã®æå°å€ãšæ倧å€ãèšç®ãããŸãã
Def = Sort [OurDefãïŒ1 [[1]] <ïŒ2 [[1]]ïŒ];
MaxDef = Last [Transpose [Def] [[1]]];
MinDef = First [Transpose [Def] [[1]]];
次ã«ãé¢æ°ã®äžè¬çãªãã¥ãŒãèšå®ããæ€çŽ¢ããå¿
èŠããããã¹ãŠã®ãã©ã¡ãŒã¿ãŒã®é
åãäœæããŸãã
Fdef [x _]ïŒ=ïŒa * x + bïŒ/ïŒc * x + dïŒ;
CoefsFdef = {aãbãcãd};
次ã«ãFindFitã䜿çšããŠãå®éšçã«ååŸããããŒã¿ã䜿çšããŠãç¹å®ã®ã¿ã€ãã®é¢æ°ã®ãã©ã¡ãŒã¿ãŒãæ€çŽ¢ããŸãã
CoefsFdefFit = FindFit [DefãFdef [x]ãCoefsFdefãx]
ãã®åŸãèŠã€ãã£ããã©ã¡ãŒã¿ãŒã䜿çšããŠé¢æ°ã®åœ¢åŒã瀺ããŸãïŒããã«ã¯ãã/ããã䜿çšãããŸãïŒ
Fdef [x] /ãCoefsFdefFit
ãã®çµæãïŒ-1.1499 + 7.32728 xïŒ/ïŒ388.234 + 0.0732995 xïŒãåŸãããŸã
ç§ã¯èšããªããã°ãªããªãããã¥ãŒã¯éåžžã«çŸããã§ã¯ãããŸããã éçºè
ãã³ã³ãã¯ãã§èŠèŠçãªä¿æ°ã䜿çšããæ¹ãã¯ããã«ç°¡åã§ãããããéåžžã«çŸããä¿æ°ã¯ã»ãšãã©äœ¿çšãããªãããšãããã«èšããªããã°ãªããŸããã ããããç§ãã¡ã®çµæã¯äžéšãåæžã§ããæ¬åŒ§ã®å€ã«äœãã眮ããŸãã ããçŸããå€èŠ³ã«ã€ãªãããŸãã ããèŠããšãååãšåæ¯ã®xã®åã®ä¿æ°ãåãã§ããããšãããããŸãã åæ°ã®äž¡æ¹ã®éšåãååã®xã®ä¿æ°ã§é€ç®ããŸãã
ïŒ-0.156933+ xïŒ/ïŒ52.9848_ + 0.0100036 xïŒ
æãåºãããã«ãå€æ°xã¯åäœã§ã®ä¿è·ã®éãæå³ããŸãã xã®ç¹æ§å€ã¯æ°åã®ãªãŒããŒã§ãã ãããã£ãŠãååã®æ°å€å®æ°ã¯ç¡èŠã§ããŸããããã¯ãé¢æ°ã®äžè¬çãªåœ¢åŒãå®éã«äºæ³ãšã¯å€å°ç°ãªãããšãã€ãŸãååã«å®æ°ããªãããšãæå³ããŸãã åæ¯ã«é¢ããŠã¯ãxã®åã®ä¿æ°ã¯0.01ã«éåžžã«äŒŒãŠããŸãã åæ¯ã®çšèªã¯53.00ãšéåžžã«äŒŒãŠããŸãã ãããã®ãã¹ãŠã®ä»®å®ãè¡ããåæ¯ã«100ãæãããšãæå·äœæžã®å²åã¯100 * x /ïŒ5300 + xïŒã§ããããšãããããŸããããã§ã-xã¯ä¿è·ã®åèšéã§ãã
æ°åŒãçŸå®ã«ã©ãã»ã©ãçŸããããã確èªããããã«ãå®éšç¹ãšé¢æ°ã®å€ã®éããèŠã€ããŸãã
OurDiff = Fgood [x _]ïŒ= 100 * x /ïŒ5300 + xïŒ;
OurDiff =ããŒãã«[Fgood [Def [[i]] [[1]]]-Def [[i]] [[2]]ã{iã1ãLength [Def]}]
ããã¯ã¹[OurDiff]
å·®ã®æ倧å€ã¯0.00493997ã§ããããã¯ãããŒã»ã³ãå€ã®æåŸã®æå¹ãªïŒè¡šç€ºãããïŒæ°åã®ååæªæºã§ãã ããã¯éåžžã«æºè¶³ã§ãã
çµæã¯ãã£ãŒãã«è¡šç€ºã§ããŸãã
衚瀺[{ListPlot [DefãPlotStyle-> {Blue}]ãPlot [Fgood [x]ã{xãMinDefãMaxDef}ãPlotStyle-> {Green}]}]
Mathematicaã®å®å
šãªã³ãŒãïŒ
OurDefSource = {{637, 10.73}, {689, 11.5}, {462, 8.02}, {585, 9.94}, {358, 6.33}, {317, 5.64}, {281, 5.03}, {99, 1.83}, {0, 0}, {3668, 40.9}, {1287, 19.54}, {495, 8.54}, {2471, 31.8}, {4596, 46.44}}; Def = Sort[OurDefSource, #1[[1]] < #2[[1]] &]; MaxDef = Last[Transpose[Def][[1]]]; MinDef = First[Transpose[Def][[1]]]; Fdef[x_] := (a*x + b)/(c*x + d); CoefsFdef = {a, b, c, d}; CoefsFdefFit = FindFit[Def, Fdef[x], CoefsFdef, x] Fdef[x] /. CoefsFdefFit OurDiff = Fgood[x_] := 100*x/(5300 + x); OurDiff = Table[Fgood[Def[[i]][[1]]] - Def[[i]][[2]], {i, 1, Length[Def]}] Max[OurDiff] Show[{ListPlot[Def, PlotStyle -> {Blue}], Plot[Fgood[x], {x, MinDef, MaxDef}, PlotStyle -> {Green}]}]
åæ§ã®ã¢ãããŒãã¯ãåªæã®ãã¡ãŒãžãèšç®ããããã®å
¬åŒãèšç®ãããšãã«ãããŸãæ©èœããŸãããããã®æ¯åŒåžãã®ã¢ããã®ã€ã³ã¿ããŒãã¹ããå€æãããé女 ãã®äŸã§ã¯ãé¢æ°ã®äžè¬çãªåœ¢åŒã¯ãããã«ç°ãªããŸãã ãããã®ãã©ãŒãã¥ã©ããã£ã©ã¯ã¿ãŒã®ãã©ãŒãã¥ã©ã«äŒŒãŠãããšä»®å®ãããšãã€ã³ã¿ã¯æåã«ã¹ãã«ãã¯ãŒã«å€æããã次ã«ãã®åã«äœããè¿œå ããïŒã®ã¢ãŸãã¯ããããïŒããã®åŸãåãåã£ãã¹ãã«ãã¯ãŒã¯äœããã®ãã©ãŒãã¥ã©ã«ãã£ãŠãã¡ãŒãžã«å€æãããŸãç¹å®ã®åªæããã ãŸããå€ãã®å Žåãåªæã«ãããã¡ãŒãžã«ã¯äžå®ã®éšåããããããã¯åªæã®åŒ·ãã«äŸåããŸããã ãããã£ãŠãåŒã®åœ¢åŒã¯ãããã
a51 + b51 *ïŒc51 * x + yïŒ
ããã§ãa51ã¯ç¹å®ã®ã¹ãã«ã®èšç®ã«ãããå®æ°ã§ãã b51ã¯åªæåŒã®èŠçŽ ã§ãã c51ã¯ãã¹ãã«ãã¯ãŒãšintã®æ¯äŸä¿æ°ã§ãã xã¯ã€ã³ã¿ã§ãyã¯ã®ã¢ãããã¯ãŒãåŸãããã®ããŒãã¹ã²ã€ã³ã§ãã FindFitã¯ãããã€ãã®å€æ°ã®é¢æ°ã«å¯ŸããŠæ©èœããŸãã ãã®çµæã以äžãåŸãããŸãã
ãã¡ãŒãžã¹ãã«æ¯ã®åŒåž= 1669 + 4.8 *ïŒ1.25 *ã€ã³ã¿+ããŒãã¹ã®åŒ·ãïŒ;
ãã£ã©ã¯ã¿ãŒãšã¯ç°ãªããã¹ãã«ãšint powerã®æ¯äŸä¿æ°ã¯0.2ã§ã¯ãªã1.25ã§ããããã¯ããããã®ã¹ãã«ã®ã¹ãã«ã®powerãã»ãŒ6åéãæé·ããããšãæå³ããŸãã
æ¯èŒã®ããã«ïŒ
ãã¬ãœãã¯ããªã±ãŒã³ã654 + 1.92 *ïŒ1.25 * x + yïŒ;
ããã©ã¬ã¹ã¿ãŒã®ç¢ã980 + 2.88 *ïŒ1.25 * x + yïŒ;
çµè«
ãããã£ãŠãããªãåçŽãªææ³ã䜿çšããŠãã²ãŒã ã®æ³åãšååã«é¢ããæ
å ±ãååŸã§ããŸãã éäžã§ã瀺ãããŠããããã«ã1ã€ã®ãã©ã¡ãŒã¿ãŒã®å¥ã®ãã©ã¡ãŒã¿ãŒãžã®äŸåã ãã§ãªããä¿æ°c51ãªã©ãæåã¯æ¢ããŠããªãã£ãããšã«ãæ°ä»ããŸããã ããã§ãèšç®ã®æ£ç¢ºãªåŒãããã£ãã®ã§ãã©ã®ãã©ã¡ãŒã¿ãŒãšã©ã®ããã«æ¹åããããåæããã³ã¢ããªã³ã°ã§ããŸãã ãããã£ãŠããã£ã©ã¯ã¿ãŒéçºæŠç¥ã¯ããææ矩ã«ãªããŸãã
ãã®æ¹æ³ã¯ãã³ãŒãã®ãããã³ã°ãéæ³ãªãã®ã«ã¯äžåé©çšãããŸããã ãã ãããã®æ¹æ³ã䜿çšãããšãä»ã®äººã«ã¯æããã«è¡šç€ºãããªããã®ã確èªã§ããŸãã
ãããã«
Matanã¯ã²ãŒã ã§ã圹ç«ã¡ãŸãã ã²ãŒã ã§OLSã䜿çšãã説æãããäŸãããã¿ã³ãžã®é¢å¿ãé«ããããšãé¡ã£ãŠããŸãã