ã¹ãã£ãŒãã³ã»ãŠã«ãã©ã ã®ãæ¬ãæžããâãŠã«ãã©ã ã®èšèªãæããããã« ã翻蚳åŸã
Kirill Guzenkoã«æè¬ããŸãã
ãWolframèšèªå
¥éããšããæ¬ã¯ã
ããŒãã³ã㌠ã
ç¡æã®ãªã³ã©ã€ã³ ã
ãã®ä»ã®åœ¢åŒã§å©çšã§ããŸãã

ãã€ãå¥ã®æ¬ãæžããã©ããããããŸããã§ããã ç§ã®ææ°ã®æ¬
-A New Kind of Science-㯠ã10幎以äžã«ãããéäžçãªç ç©¶ã«è²»ããããã®ã§ããããŸã§è¡ã£ããã¹ãŠã®äžã§
æå€§ã®ãããžã§ã¯ãã§ãã
ããããå°ãåã«å¥ã®æ¬ãæžãå¿
èŠãããããšã«æ°ã¥ããŸãã-ããã°ã©ãã³ã°ã«ç²ŸéããŠããªã人ã玹ä»ããæ¬ã§ã
Wolframèšèªãšãã®èšèªãæç€ºããã³ã³ãã¥ãŒãã£ã³ã°åéã®èãæ¹ã玹ä»ããæ¬ã§ãã
ãã®çµæãã仿¥åºçãããŠãã
åçŽWolframèšèªã®æ¬ã§ãã ãŸã
ãã€ã³ã¿ãŒãããã
ä»ã®åœ¢åŒã§ã
èªç±ã«å©çšã§ããŸã ã

ãã®æ¬ã®ç®çã¯ããŒããã人ã
ãå°ããŠãWolframèšèªã«ã€ããŠååã«ç¥ã£ãŠãããã宿çã«äœ¿ã£ãŠããããããšãã¹ãŠã®ããã®ããã°ã©ã ãäœæã§ããããã«ããããšã§ãã ãããŠãããŒãããšèšããšããç§ã¯æ¬åœã«ããŒãããæå³ããŸãã ãã®æ¬ã¯çã®ããã§ãã ããã°ã©ãã³ã°ãæ°åŠïŒç®è¡ã®åºæ¬ãé€ãïŒããŸãã¯ãã®ä»ã®åéã®ç¥èãæå³ãããã®ã§ã¯ãããŸããã åœŒå¥³ã¯æåãããªãŒãããããŸããŸãªããšã説æããŠããŸãã ç§ã¯ããã倧人ãšåäŸã®äž¡æ¹ã«é©ãããã®ã«ããããšããŸããã 12æ³ä»¥äžã®æ®éã®åäŸã«ã¯ãšãŠãé©ããŠãããšæããŸãã
éå»ã«ã¯ããã®ãããªæ¬ã®ååšã¯äžå¯èœã§ããã ãã®å®è£
ã«å¿
èŠãªæè¡ã¯ãŸã ååšããŠããŸããã§ããã çé¢ç®ãªããã°ã©ãã³ã°ã¯åžžã«å€§å€ãªäœæ¥ã§ãããå®éã®æŠå¿µãšçµã³ã€ããè¯ãæ¹æ³ã¯ãããŸããã ããããä»ã§ã¯WolframèšèªããããŸãã ãã®äœæã«ã¯30幎ããããŸããã ããããçŸåšã§ã¯ååãªéã®çµã¿èŸŒã¿ã®ç¥èãå«ãŸããŠãããããã°ã©ãã³ã°ããã»ã¹ã¯ååã«èªååãããŠãããç¥èã®ãªã人ããèšç®å¯èœãªäººã®å¢çã«äººãå°ãããšãã§ããŸãã

ãããããããè¡ãæ¹æ³ã¯ïŒ äœãã©ã®é çªã§èª¬æããå¿
èŠããããŸããïŒ ãã®æ¬ãæžãããšã«ãªã£ãåé¡ããããŸããã å°ãåã«ã
ããã°ã©ããŒåãã®ç°¡åãªç޹ä»ãæžããŸããã30ããŒãžã»ã©ã§ãWolframèšèªã®åºæ¬çãªã¢ã€ãã¢ããã§ã«ããã°ã©ãã³ã°ã«æ
£ããŠãã人ã
ã«ç޹ä»ããŠããŸãã ããããããã°ã©ãã³ã°ã«ã€ããŠäœãç¥ããªã人ã¯ã©ãã§ããããïŒ
é·å¹Žã«ããããç§ã¯ãããã®äººã
ã«çŸåšã®Wolframèšèªãäœã§ããããç€ºãæ§ã
ãªæ¹æ³ãèŠã€ããŠããŸããã ããã§ãç§ã¯ãã®çµéšã§äœãããå¿
èŠããããããã®æ¬ã§èª¬æããŸããã
ããã¯å¯Ÿè©±ã§ã
æ¬è³ªçã«ããã®æ¬ã¯èªè
ãšã³ã³ãã¥ãŒã¿ãŒã®éã®äŒè©±ã§ãã Wolframèšèªã«ã¯ããã¹ãŠãæ£åžžã«æ©èœããããã«ãã2ã€ã®
éèŠãªããšããããŸãã ãŸããèšèªã¯ã·ã³ããªãã¯ã§ããããã
color ã
image ã
graphãªã©ã
åŠçãããã¹ãŠã®ãã®ããã€ã¢ãã°ããã¯ã¹ã«è¡šç€ºã§ããŸãã ãããŠç¬¬äºã«ãèšèªã¯çŽç²ã«æ©èœçã§ããããããã®äžã®ãã¹ãŠãå®å®ããŠãããå
¥åã¯ãã¹ãŠèªçµŠèªè¶³ã®æ§é ã«ãªããŸãã

ãŸããWolframèšèªã«
çµã¿èŸŒã¿ã®ç¥èãå«ãŸ
ããŠããããšãéåžžã«éèŠã§ããããã«ãããå®éã®èšç®ãããã«éå§ã§ããŸãã


èŠèŠåãåæ§ã«éèŠã§ã-ãããã£ãŠãäœãèšç®ãããããç°¡åã«ç¢ºèªã§ããŸãã

ã©ãããå§ããŸããïŒ
ã§ã¯ãã©ãããå§ããŸããïŒ ç®è¡ã«é¢ããæ¬ã®
æåã®ããŒãž -çµå±ã®ãšãããããã¯èª°ã§ãèšç®ã®ä»çµã¿ãèŠãããšãã§ããé åã§ãïŒ

Wolframèšèªã®ã
åèª ãã®äžéšãçè§£ããã®ã«åœ¹ç«ã€
èŸæž ïŒèªåœïŒãšåŒã°ããã»ã¯ã·ã§ã³ããããŸãã ãŸãã
æŒç¿ ïŒæŒç¿ïŒããããŸãã
ããŠãç®è¡ã¯çµãããŸãããæ¬¡ã¯ã©ãã«è¡ããŸããïŒ ç§ã¯
颿°ã®è¡šçŸã«çŽè¡ããç®è¡æŠå¿µãéããŠãããã玹ä»ããããšã«ããŸããã ãã©ã¹ã¯ã颿°ã®æŠå¿µã¯èªè
ã«ãšã£ãŠã¯æ°ãããããããŸããããããããå®è¡ããæäœïŒç®è¡æŒç®ïŒã¯ãã§ã«ããç¥ãããŠããããšã§ãã
Plus颿°ãæããã«ãªããšããã«ãç¹å¥ãªç޹ä»ãå¿
èŠãšããªã
Maxãªã©ã®é¢æ°ã«ããã«åãæ¿ããããšãã§ããŸãã
Max颿°ã¯ç¹ã«è峿·±ãããšã¯äœãããŸããã æ¬¡ã«ç޹ä»ããããè峿·±ãæ©èœã¯
RandomIntegerã§ã ãããã¯ã人ã
ãäœåºŠãäœåºŠã䜿çšããŠããããäžãããã®ã確èªããã®ã奜ãã§ãã
ããã§ã¯ã次ã¯äœã§ããïŒ çãã¯æããã§ã-ãªã¹ããå
¥åããå¿
èŠããããŸãã ãããããªã¹ããã©ããããïŒ ãããããèŠçŽ ãéžæããããšã¯ç¹ã«ãšããµã€ãã£ã³ã°ã§ã¯ãªãããã§ããããããéèŠã§ãããšããçè§£ã¯ããã«ã¯åŸãããŸããã ãããã£ãŠããªã¹ããæäœããããã®æåã®æ©èœã§ãã
ListPlotãå°å
¥ããããšã«ããŸãã
ã èŠèŠåããå§ããã®ã¯çŽ æŽãããããšã§ãããŸããããã¯ã»ãã®å°ããªã³ãŒããå
¥åããŠãæçµçã«ãã倧ãããŠè峿·±ããã®ã«ããæ¹æ³ã®è¯ãäŸã§ããããŸãã

å®éãæãåçŽãªäŸã®äžã§æãåªããŠããã®ã¯
Range颿°ã§ããããããããã§èª¬æããŸããã
ç¯å²ã¯ãã³ã³ãã¥ãŒã¿ãŒãå®éã«äœããèšç®ããŠããããšã瀺ããçè§£ããããçµæãçæããçŽ æŽãããæ¹æ³ã§ãã
ããŠãä»ãç§ãã¡ã¯æ©èœãšãã®å
±åäœæ¥ã®ã¢ã€ãã¢ãçµ±åããå¿
èŠããããŸãã
Reverse颿°ã¯å®éã«ã¯ããŸãäžè¬çã§ã¯ãããŸããããçè§£ããã®ã¯éåžžã«ç°¡åã§ãã æ¬¡ã«ã
Join颿°ã玹ä»ããŸãã

è¯ããã¥ãŒã¹ã¯ã
Reverse ã
Range ãããã³
Joinã䜿çšãããš ãå®å
šã«èªçµŠèªè¶³ã§ãããããŸããŸãªèšç®ãå®è¡ã§ããããçš®ã®ãã€ã¯ãèšèªãããããšã§ãã ãããŠããã¡ãããèšç®ãè¡ããšãã·ã³ããªãã¯ãŸãã¯ã°ã©ãã£ãã¯åœ¢åŒã§çµæãããã«èŠãããšãã§ããŸãã

次ã®ã»ã¯ã·ã§ã³ã§ã¯ã
èŠèŠåãšãªã¹ãã®æäœã«ã€ããŠèª¬æããŸããããã«ãããåè¿°ã®å
容ãçµ±åãããå®éã«åœ¹ç«ã€ããŸããŸãªæ©èœã玹ä»ãããŸãã æ¬¡ã«ç¶ãã®ã¯
Tableã§ãããã«ã¯ã«ãŒããªã©ã®äŸ¿å©ãªæ©èœãå«ãéåžžã«åŒ·åã§äžè¬çãªæ©èœããããŸãã
å埩åã®ãªãåçŽãªããŒãžã§ã³ã®
Tableããå§ããŸãã
Tableã¯æ°åã®ãªã¹ããšåãæ¹æ³ã§ã°ã©ãã£ãã¯èŠçŽ ã®ãªã¹ãã衚çŸã§ããããšã¯åœç¶ã ãšæããŸãïŒãã¡ããããããã§ãããšããäºå®ã¯ãWolframèšèªã®æ ¹æ¬çã«è±¡åŸŽçãªæ§è³ªã®çµæã§ãïŒã

次ã®å€§ããªã¹ãããã¯ã
Tableã«å€æ°ãå
¥åããããšã§ãã ç§ã¯ãããã©ã®ããã«è¡ããã«ã€ããŠå€ãã®ããšãèããçŽç²ã«è±¡åŸŽçãªããŒãžã§ã³ã§ãããæåã«ç€ºãããšãæåã§ãããšå€æããŸããã æåŸã«ã颿°ãæ¢ã«ç޹ä»ããŸãããã·ã³ããªãã¯ããŒãžã§ã³ã§ã¯ã倿°ã®åºæãããã«ç¢ºèªã§ããŸãã ãããã倿°ãå«ã
ããŒãã«ãå°å
¥ããã®ã§ãå€ã«åºãŠãããªã¢ã«ã³ã³ãã¥ãŒãã£ã³ã°ããšåŒã°ãããã®ãå®è¡ããããšãã§ããŸãã

æ¬ãžã®ã²ãŒããŠã§ã€
æ¬ã®æåã®æ°ã»ã¯ã·ã§ã³ã§ã¯ãèšç®ã®ææã¯äž»ã«æ°åãšãªã¹ãã§ããã ããã«ãèšç®ã«äœ¿çšã§ãããã®ãä»ã«ãããããšã瀺ããããšæããŸãã æåã®äŸã®ããã«ã
è²ãéžæããŸããã ïŒaïŒèª°ããèªåã®ååšãç¥ã£ãŠãããïŒbïŒèšç®ãå®è¡ã§ãããïŒcïŒå©ããåããŠã«ã©ãã«ãªçµæãåŸãããšãã§ããïŒïŒïŒãããè²ã¯è¯ãéžæã§ãã

è²ã宿ãããã
ã°ã©ãã£ãã¯ãªããžã§ã¯ãã«ç§»ã
ãŸã ã 座æšã®æŠå¿µã¯å°å
¥ããªãã£ããããåã
ã®ã°ã©ãã£ãã¯ãªããžã§ã¯ãã衚瀺ã§ããã®ã¯ããããã®äœçœ®ã«é¢ããæ
å ±ãªãã§ãã

ãããŠã3次å
ã®å³åœ¢ã«è§Šããªãçç±ã¯ãŸã£ãããããŸãããããã«ããããã«è§ŠããŸãã

ããã§ããé«åºŠãªãäœãã
ã€ã³ã¿ã©ã¯ãã£ããªæäœã®æºåãã§ããŸããã æ§æã®ç¹ã§ã¯ã
Tableãšå€ãã®é¡äŒŒç¹ããããŸãããããã§ã¯å®å
šãªã€ã³ã¿ã©ã¯ãã£ããŠãŒã¶ãŒã€ã³ã¿ãŒãã§ã€ã¹ãåŸãããŸãã ãŸããã°ã©ãã£ãã¯ã¹ãå°å
¥ãããããã€ã³ã¿ãŒãã§ã€ã¹ã®äžéšã«ãªãå¯èœæ§ããããŸãã 人ã
ã¯ã倿°ã®ç°ãªãããã°ã©ã ã§ã€ã³ã¿ã©ã¯ãã£ããªã€ã³ã¿ãŒãã§ãŒã¹ãèŠãŸããã ç§ã®çµéšã§ã¯ã圌ããèªåã§ãŒãããäœæããèœåã«éåžžã«æéãåããããšã瀺ããŠããŸãã

ãã®æ¬ã§æ¬¡ã«ç޹ä»ããã®ã¯ãããããé©ãã¹ãããšã§ãããç»ååŠçã§ãã ã¯ããç»ååŠçã®èåŸã«ã¯å€ãã®è€éãªèšç®ããããŸãã ããããWolframèšèªã§ã¯ããã¹ãŠãå
éšã«é ãããŠããŸãã ãããŠã人ã
ã¯
Blur ã
ColorNegateã®ãããªæ©èœãèŠãã ãã§ããã®ç®çã¯ç°¡åã«çè§£ã§ããŸãã
ãŸãã人ã
ãç¹ã«åäŸã¯ãå¿
èŠã«å¿ããŠç»åããã©ãã°ããã ãã§ç»åã䜿çšããŠèšç®ãå®è¡ã§ããããšã奚å±ããŠããŸãã å®éãããã¯å€§éã®ããŒã¿ãå€éšããããã°ã©ã ã«å
¥åãããæ¬ã®æåã®äŸã§ãïŒã»ã¯ã·ã§ã³ã®ãµã³ãã«ç»åãå¿
èŠã ã£ãã®ã§ããŠã§ãã«ã¡ã©ã§æ¬ã®äœæ¥ãããŸããïŒã

ããããç§ã¯
è¡ãšããã¹ãã«ã€ããŠè©±ããŸããã æååæäœã¯éåžžã«éå±ã§ãã ããããWolframèšèªã«ã¯ããŠã£ãããã£ã¢ã®èšäºããåèªã®é²ãèŠèŠåããããããŸããŸãªèšèªã§äººæ°ã®ããåèªãæ€çŽ¢ãããã«é¢ä¿ãªããããªããã§ããå€ãã®è峿·±ãããšããããŸãã

次ã«ã
é³ãšé³ç¬Šããã·ãŒã±ã³ã¹ãäœæããæ¹æ³ã«ã€ããŠèª¬æããŸããã ãã¡ãããå°å·ãããæ¬ã§ã¯ããããèãããšã¯ã§ããŸããããå°ããªã¢ã€ã³ã³ã¯ç§ãã¡ãäœãæ±ã£ãŠããã®ããããçšåºŠç€ºããŠããŸãã

ãã°ã©ãã£ãã¯ã®çŽåŸã«é³ã«è§Šããªãã®ã¯ãªãã§ããïŒããšå°ãããããããŸãããããŸã第äžã«ãèå³ãç¶æããããã«ããã€ãã®ããšãæ··ããããšãè¯ããšæããŸããã ãã ããç°ãªãé åã®éã«ã¯äŸåé¢ä¿ã®ç¹å®ã®ãã§ãŒã³ããããŸãã ããšãã°ãé³ç¬Šã®ååã¯æååãšããŠæå®ããããããæåã«æååã«èšåããå¿
èŠããããŸãã
以äžã¯ã
é
åããŸãã¯ãªã¹ãã®ãªã¹ãã§ãã ãã®åŸ-
座æšãšã°ã©ã ã ãŸãã座æšãããŸãã«ããæ°åŠçãªããã®ã§ããããšãå¿é
ã§ããã ããããç¹ã«é
åã調ã¹ãåŸã座æšã¯ãã¯ãéåžžã«è€éãªæŠå¿µã§ã¯ãªãããã§ãã ãŸãã2次å
座æšã®æŠå¿µãæ€èšããã®ã§ã3次å
ã«ç§»è¡ããããšã¯é£ãããããŸããã

æ¬ã®ãã®æç¹ã§ã人ã
ã¯ãã§ã«Wolframèšèªã§æ¬åœã«åœ¹ã«ç«ã€ããšãããæ¹æ³ãç¥ã£ãŠããŸãã ããã§æ¬¡ã®ã»ã¯ã·ã§ã³ã§ã¯ãããçš®ã®éå¥ããããããŸãã-ã¡ã¿ã»ã¯ã·ã§ã³ã®äžçš®
ã§ã Wolframèšèªã®
ããªã¥ãŒã ãçè§£ããç¹å®ã®ãããã¯ãæ©èœã«é¢ããæ
å ±ãèŠã€ããæ¹æ³ã瀺ããŸãã

æœè±¡ã³ã³ãã¥ãŒãã£ã³ã°ãå°å
¥ããã®ã§ãä»åºŠã¯
å®éã®ããŒã¿ã«ã€ããŠèª¬æããWolfram Languageã
Wolfram | Alphaã§æç€ºããèšå€§ãªéã®
ããŒã¿ã«ã¢ã¯ã»ã¹ããæ¹æ³ã瀺ããŸã
ã
å€ãã®å®äžçã®ããŒã¿ã«ã¯ãŠããããå«ãŸããŠãããããæ¬¡ã®ã»ã¯ã·ã§ã³ã§ã¯
ãŠãããã®æäœã«ã€ããŠèª¬æ
ããŸã ã ãããå®äºã
ãã ãå°çèšç®ã»ã¯ã·ã§ã³ïŒå°çã«é¢é£ããèšç®ïŒã«è§ŠããŸããããšãã°ãå°çäžã®ãã€ã³ãéã®è·é¢ãæ€çŽ¢ããããããããæç»ãããã§ããŸãã

ãã®åŸã
æ¥ä»ãšæéã«ã€ããŠã話ã
ãŸã ã ããã¯ç¹ã«é¢çœããŠæçšãªãããã¯ã§ã¯ãªããšæãã§ãããã ããããããã¯å®éã«ã¯ãŠããã¿ã¹ãªå®éã®ã³ã³ãã¥ãŒãã£ã³ã°ã®éåžžã«è¯ãäŸã§ãã

Wolframèšèªã¯éåžžã«èšå€§ãªèšèªã§ãã ããããããã¯åžžã«äœåºŠãäœåºŠã䜿çšãããŠããå°æ°ã®ã¢ã€ãã¢ã«åºã¥ããŠããŸãã æ¬ã®æãéèŠãªã¿ã¹ã¯ã®1ã€ã¯ããããã®ã¢ã€ãã¢ãã«ããŒããããšã§ãã ãããŠæ¬¡ã®ã»ã¯ã·ã§ã³-
ãªãã·ã§ã³ã«ã€ã㊠-ã¯ãå®éã«çµ¶ãéãªãçºçãã1ã€ã®ç°¡åãªã¢ã€ãã¢ãã«ããŒããŠããŸãã

ãªãã·ã§ã³ã®åŸãç§ãã¡ã¯ãã°ãã°è€éãªãããã¯ãšããŠèŠãããäœãã«ã€ããŠè©±ãæºåãã§ããŠããŸãïŒ
ã°ã©ããšãããã¯ãŒã¯ ã ããããç§ã®çµéšã§ã¯ã人ã
ã¯æ¥åžžç掻ã§ããªãå€ãã®ã°ã©ããšãããã¯ãŒã¯ã«çŽé¢ããŠãããããWolframèšèªã§ããããçè§£ããã®ã«å€§ããªåé¡ã¯ãªãããšã瀺ããŠããŸããããã¯ã·ã³ããªãã¯ãªããžã§ã¯ãã®å¥ã®äŸã§ãã

ã°ã©ããšãããã¯ãŒã¯ã«ç¶ããŠãäžèŠéåžžã«è€éãªãããã¯ã§ãã
æ©æ¢°åŠç¿ãéå§ããæºåãã§ããŸããã ããããå
éšã®æ©æ¢°åŠç¿ã¢ã«ãŽãªãºã ãè€éã§ãã£ãŠããWolframèšèªã§ãããå®è£
ããæ©èœèªäœã¯éåžžã«çè§£ãããããã®ã§ãã ãããŠãçŽ æŽãããããšã¯ã圌ããšäžç·ã«å€ãã®äŸãæããããšã§ãæ©æ¢°åŠç¿ã®éèŠãªã¢ã€ãã¢ã®éåžžã«è¯ãçŽæçãªã¢ã€ãã¢ãåŸãããšãã§ãããšããããšã§ãã

æ¬ãéããŠãç§ã¯å¯èœãªéãåçŽãªæ¹æ³ã§ç©äºãæç€ºããããšããŸãã ãã ããããã«ããããã§ã«åãäžãããããã¯ããã詳现ã«èª¿ã¹ãå¿
èŠãçããå ŽåããããŸãã
ãæ°å€ã®è©³çްããš
ããã®ä»ã®èŠèŠåãã¯ãã®äºå®ã瀺ã2ã€ã®äŸã§ããããã§ã«ééããæŠå¿µã説æããŠããŸããããããã®é åãããå®å
šã«çè§£ããã«ã¯ãæ°ããã¬ãã«ã§ãããã«æ»ãå¿
èŠããããŸãã
颿°åããã°ã©ãã³ã°
次ã®ããã€ãã®ã»ã¯ã·ã§ã³ã§ã¯ã
颿°åããã°ã©ãã³ã°ã®éèŠãã€ä¿¡ããããªãã»ã©åŒ·åãªãããã¯ãæããã«ã
ãŸã ã éå»ã«ãããŠã颿°åããã°ã©ãã³ã°ã¯äžè¬çã«è€éãªãã®ãšèŠãªãããããã°ã©ãã³ã°ãç¿ãå§ããã°ããã®äººã
ã«æãã䟡å€ã®ãããã®ã§ã¯ãããŸããã§ããã ããããWolframèšèªã¯ç¶æ³ãå€ãããšæããŸãããããŠä»ãã¯ããã«çè§£ããããèšèªã§é¢æ°åããã°ã©ãã³ã°ã説æããããšãå¯èœã«ãªããŸããã 颿°ãé©çšããããã»ã¹ã«ã€ããŠã®æœè±¡çãªäŒè©±ããå§ããããšã«ããŸããã

ãŸãã
çŽç²ãªå¿å颿°ã«ã€ããŠã話ããããšæã
ãŸã ã ååãšããŠããã£ãšæ©ã話ãããããšãã§ããŸããããã®åã«ã颿°ãäžè¬çã«ã©ã®ããã«äœ¿çšããããã人ã
ã«ç€ºãããšãéèŠã ãšæããŸãã

次ã®ã»ã¯ã·ã§ã³ã§ã¯ã颿°åããã°ã©ãã³ã°ã®çã®åã®ããã€ãã®å
åã«æ¢ã«æ°ã¥ãããšãã§ããŸãã äžè¬çã«ã
NestListã
NestGraphãªã©ã®é¢æ°ã¯ãããªãè€éã§æœè±¡çã«èŠãããããããŸããã ããããæ¬ã®ãã®æç¹ã§ã¯ãååãªæ°ã®Wolframèšèªæ§æäœã調ã¹ãã®ã§ãç°¡åã«èª¬æã§ããå€ãã®å
·äœçãªäŸããããŸãã

次ã®ããã€ãã®ã»ã¯ã·ã§ã³ã§ã¯ãçŽç²ãªæ©èœãçè§£ãããšãã«éãããèšèªã®é åã«ã€ããŠèª¬æããŸãã å°ãªãã¢ã€ãã¢ããçãŸããå€ãã®åŒ·åãªããã°ã©ãã³ã°æ¹æ³ããããŸãã

颿°åããã°ã©ãã³ã°ã®åŸã次ã®å€§ããªãããã¯ã¯
ãã³ãã¬ãŒããšãã¿ãŒã³æåããã°ã©ãã³ã°ã§ãã 以åã«ãããã«ã€ããŠè©±ãããããšã¯ã§ããŸããããä»ã®ãšãããããã®å¿
èŠã¯ãããŸããã

Wolframèšèªã§ãã³ãã¬ãŒããéåžžã«åŒ·åã«ããåºæ¬çãªãã®ããããŸãïŒã·ã³ããªãã¯åŒã«åºã¥ããèšèªã®ãããããã®ã«å¯Ÿããåäžã®æ§é ã§ãã Wolframèšèªã®ä»æ§ãæžããããæååŒããå§ããŸãã ãããŠãçè«èšç®æ©ç§åŠãŸãã¯çŽç²æ°åŠã®å°éå®¶åãã®æ¬ãæžãããªãã確ãã«åãããšãããã§ãããã
ã·ã³ããªãã¯åŒã¯çè§£ãã«ããæŠå¿µã§ã¯ãããŸããã Wolframèšèªãå®éã«å®éã«ã©ã®ããã«æ©èœããããããããªãã ãã§ãçè«çåºç€ãç ç©¶ããåæ©ä»ããé£ããã ããããä»ã§ã¯ãããã«ã€ããŠè©±ãããã®ãçã«ããªã£ãŠããŸããç¹ã«ããã³ãã¬ãŒãã䜿çšããŠãã®æ å
ã®äœåããã¹ãŠèŠãããšãã§ããããã§ãã
ã¹ã¿ãã¯å
šäœ
æ¬ã®ãã®æç¹ã§ãããšãã°Webã¢ããªã±ãŒã·ã§ã³ããããã€ããæ¹æ³ãæ€èšããæºåãã§ããŸããã ãããããã®åã«ãä»ã«èæ
®ãã¹ãããšããããŸãã
åäŒã«ã€ããŠããããã
èªç¶èšèªèªèã«ã€ããŠè©±ããŸãã å
éšçã«ã¯ãèšèªèªèã·ã¹ãã ã¯éåžžã«è€éãªãã®ã§ãã ããããWolframèšèªã¬ãã«ã§ã¯èªèã¯äœ¿ããããã§ãããä»ã®äºæãšã©ã®ããã«é¢ä¿ããããèŠãããã«ã¯ãçŽç²ãªæ©èœã«ã€ããŠè©±ãå¿
èŠããããŸãã

ããŠãããã§ãã¹ãŠã
ã€ã³ã¿ãŒãããã§ã®å±éã«ã€ããŠè©±ãæºåãã§ã
ãŸãã ã ãããŠçŸæç¹ã§ã¯ã人ã
ã¯ãäžçãšå
±æã§ãã䟿å©ãªã¢ããªã±ãŒã·ã§ã³ãœãããŠã§ã¢æ§æãäœæããæ©äŒããããŸãã

ãã¹ãŠ220ããŒãžã»ã©ããããŸããã ããããç§ã«ãšã£ãŠã¯ãããã¯é©ãã»ã©å°æ°ã®ããŒãžã§ããããŒãããæåããWebã¢ããªã±ãŒã·ã§ã³éçºã®å°éåéã«é²ãããšãã§ããŸãã ç¹å®ã®çš®é¡ã®ã¢ããªã±ãŒã·ã§ã³ã«ã€ããŠã®ã¿èª¬æããå Žåãããã¯ããã»ã©å°è±¡çã§ã¯ãããŸããã ããããã»ãšãã©ãã¹ãŠã®çš®é¡ã®èšç®ãå®è¡ã§ããéåžžã«äžè¬çãªåœ¢åŒã®ã¢ããªã±ãŒã·ã§ã³ã«ã€ããŠè©±ããŠããŸãã

倿°ãžã®å€ã®å²ãåœãŠ
C ++ãJavaãªã©ã®åŸæ¥ã®ããã°ã©ãã³ã°èšèªã«é¢ããæ¬ãéããå Žåãæåã«åºããããããã¯ã®1ã€ã¯ã倿°ã«å€ãå²ãåœãŠãããšã§ãã ããããç§ã®æ¬ã§ã¯ã
38çªç®ã®ã»ã¯ã·ã§ã³ã§ã®ã¿ãã®ãããã¯ãåŒçšããŠããŸãã ããæå³ãããã¯å¥åŠã«æãããããããŸããããå®éã«ã¯ããã§ã¯ãããŸããã çµå±ã®ãšãããWolframèšèªã§ã¯ã倿°ã«å€ãå²ãåœãŠãããšãªãæ¬æ ŒçãªWebã¢ããªã±ãŒã·ã§ã³ããããã€ãããªã©ãé©ãã»ã©å€ãã®ããšãã§ããŸãã
ãããŠå®éããããWolframèšèªã®ç¿åŸãéåžžã«ç°¡åãªçç±ã®1ã€ã§ãã å®éã倿°ã«å€ãå²ãåœãŠãªãå Žåãåã³ãŒãã¯ç¬ç«ããåžžã«åãåäœã瀺ããŸãã ãããã倿°ãžã®å€ã®å²ãåœãŠãéå§ãããšããã«ãé衚瀺ã®ç¶æ
ã衚瀺ããã倿°ã®çŸåšã®å€ã«å¿ããŠã³ãŒããç°ãªãåŠçãå®è¡ããŸãã
ããã«ããããããã倿°ãšãã³ãã¬ãŒããžã®å€ã®å²ãåœãŠã«ã€ããŠè©±ãåã£ããšããWolframèšèªã§ãŸããŸãè€éãªæ©èœãå°å
¥ã§ãã
ç¬èªã®é¢æ°ã®å®çŸ©ã«ç§»ãæºåãã§ããŠããŸãã

ãã®æç¹ã§ãèªè
ã¯Wolframèšèªã®çšèªãšåºæ¬æŠå¿µã«ã€ããŠå®å
šã«ã¬ã€ããããŠããŸãã ããããæ¬ã®æåŸã®ããã€ãã®ã»ã¯ã·ã§ã³ã§ã¯ãããã€ãã®éèŠãªå¿çšãã€ã³ãã«ã€ããŠèª¬æããŠããŸãã
æååãã¿ãŒã³ãšçœ®æã«é¢ããã»ã¯ã·ã§ã³ããããŸãã æ¬¡ã®ã»ã¯ã·ã§ã³ã§ã¯ã
ããŒã¿ãšã³ãŒããããŒã«ã«ããã³ã¯ã©ãŠãã«
ä¿åããæ¹æ³ã«ã€ããŠ
説æããŸã ã æ¬¡ã«ã
ã€ã³ããŒããšãšã¯ã¹ããŒãã®ã»ã¯ã·ã§ã³ã 次ã«ã
ããŒã¿ã³ã¬ã¯ã·ã§ã³ïŒã»ããïŒã®ã»ã¯ã·ã§ã³ã Wolframèšèªã䜿çšãããã¹ãŠã®äººãããŒã¿ã®ã³ã¬ã¯ã·ã§ã³ïŒã»ããïŒãå¿
èŠãšããããã§ã¯ãããŸãããã倧éã®æ§é åããŒã¿ãåŠçããå¿
èŠãããå Žåããã®ã»ã¯ã·ã§ã³ã¯éåžžã«åœ¹ç«ã¡ãŸãã ãããŠãããã¯ãã¹ãŠãWolframèšèªã§ããŸããŸãªã¢ã€ãã¢ãã©ã®ããã«å®è£
ãããŠãããã®è峿·±ãäŸã§ãã
ãšãã»ã€ã»ã¯ã·ã§ã³
æ¬ã®æåŸã«ã¯ãããŸããŸãªãããã¯ã«é¢ãããšãã»ã€ã®ã»ã¯ã·ã§ã³ããããŸãïŒ
è¯ãã³ãŒãã
æžãããšã ãããã° ããããšããã
ãããã°ã©ããŒã§ãããš
æããæ¹æ³ã«ã€ããŠã ãããã®ã»ã¯ã·ã§ã³ã®ç®çã¯ããã®æ¬ãèªãã çµæãšããŠçããæèæ¹æ³ãéçºããããã€ãã®æœè±¡çãªã¢ã€ãã¢ã«çµã³ä»ããããšã§ãã

ãã¬ãŒã³ããŒã·ã§ã³ã®æ§æ
æåã«èšã£ãããã«ããã®æ¬ã¯åºæ¬çã«å£èªçãªã¹ã¿ã€ã«ã§æžãããŠããŸãã ã»ãšãã©ãã¹ãŠã®ã»ã¯ã·ã§ã³ã§ã
質åãšåçãš
æè¡ç詳现 ãšãã 2ã€ã®è¿œå éšåã远å ããŸããã 質åãšåçãå«ãéšåã®ç®çã¯ã人ã
ãæãé »ç¹ã«ééãããããã®è³ªåãžã®åçããã¹ããŒãªãŒããªã³ã°ã®ã¡ã€ã³ã©ã€ã³ããæ°ãæ£ããããšãªãæäŸããããšã§ãã

質åã«ã¯ããã€ãã®çš®é¡ããããŸãã äžéšã¯ãåè¿°ã®æ©èœæ¡åŒµã«é¢ãããã®ã§ãã äžéšã¯ãããããã¹ãŠã®èåŸã«ãããã®ã«ã€ããŠã§ãã ãŸããããã€ãã®è³ªåïŒãã¹ãä¹ãšã¯ã©ãããæå³ã§ããïŒãïŒèªè
ã«ãã£ãŠã¯åçŽãããããã«èŠãããããããŸãããããã¹ãŠã®èªè
ã«ãšã£ãŠã¯ããã§ã¯ãããŸããã
質åãšåçãå«ãéšåã«å ããŠãæè¡çãªè©³çްãå«ãéšåãå«ããããšã¯åççã§ããããã«æããŸããã 圌ãã®ç®æšã¯ãç¹å®ã®åéã«æ¢ã«ååã«é©å¿ããŠãã人ã
ã«æè¡æ
å ±ãæäŸãã圌ãã®ç¥èãæ¬ã®è³æãšçµã¿åãããããšãã§ããããã«ããããšã§ãã
æŒç¿
ã»ãšãã©ã®ã»ã¯ã·ã§ã³ã§ç€ºãããŠããä»ã®éšåã¯ãæŒç¿ã®ã³ã¬ã¯ã·ã§ã³ã§ãã ãããã®å€§éšåã¯ãã
Nãäœæããã³ãŒããæžã ããšãã圢åŒã§è¡šç€ºãããã
ãã®ã³ãŒãã®ããåçŽãªåçç©ãèŠã€ãã ããšãã圢åŒã¯ã»ãšãã©ãããŸã
ã ã

å°å·ãããæ¬ã®æåŸã«ã¯ããã¹ãŠã®æŒç¿ãžã®
çãããããWebããŒãžã§ã³ã«ã¯è¿œå ã®æŒç¿ããããŸãã ãã¡ãããããã«æç€ºãããçãã¯å¯èœãªãã®ã®1ã€ã ãã§ããããããå¯äžã®æ£ããçãã§ããå Žåãç¶æ³ã¯ã»ãšãã©çºçããŸããã

æŒç¿ãæžãããšã¯ç§ã«ãšã£ãŠè峿·±ãçµéšã§ãããå®éãããã¯ãããšãã°
人工ç¥èœãšéä¿¡ããæ¹æ³ã«ã€ããŠã®ç§ã®èãã®æèã«ãããŠéåžžã«éèŠã§ãã çµå±ã®ãšãããã»ãšãã©ã®æŒç¿ã§ã¯åºæ¬çã«ã
ãã®ããã¹ããè±èªã§åããWolframèšèªã³ãŒãã«å€æããŸãã
ãšæžãããŠããŸã ã ç°¡åãªããšã§ãããè±èªã¯èªåèªèº«ã説æããã®ã«é©ããŠããŸãã ããããã¿ã¹ã¯ãé£ããã»ã©ãè±èªã§èª¬æããã®ã¯é£ãããªããŸãã äžè¬ã«ãæ¬ãæžããšããè±èªã§æžããããWolframèšèªã®ãšã¯ãµãµã€ãºã«çããæ¹ãã¯ããã«ç°¡åãªç¶æ³ã«ãã°ãã°ééããŸããã
ããæå³ã§ã¯ãããã¯éåžžã«åªããŠããŸãããªããªããWolframèšèªã¯ã¢ã€ãã¢ã衚çŸããã®ã«éåžžã«é©ããŠããããã§ãã è±èªã§ç°¡åã«è¡šçŸã§ãããã®ããããŸãããWolfram | Alphaã§ã®è§£éã«åæ Œã§ããŸãã ããããWolframèšèªã«ã¯ãã£ãšå€ãã®æ§é ãšç²ŸåºŠãå¿
èŠãªãã®ããããããããŸãã
æ¬ïŒ
ããæå³ã§ã¯ãã¯ããã«æè»ãªæ§é ã§ãŠã§ã圢åŒã§äœããäœæããã®ã§ã¯ãªããå°å·å¯èœãªæ¬ãæžãã®ã¯å¥åŠã«æãããããããŸããã ããããç§ã«ãšã£ãŠã¯ããã®æ¬ã®æŠå¿µãéåžžã«åœ¹ç«ã€ããšãããããŸããã ã¯ãããªã³ã¯ããã©ã£ãŠå€ãã®æ
å ±ãååŸã§ããWebãµã€ããäœæã§ããŸãã - , , , , .
, - .
- , - . , , - â â .
, Wolfram Language, . , , ( ), , .. , . , : , Wolfram Language .
« ». . Wolfram Language â . , , , , . ,
.
, , , , . , ; , .
, , , Wolfram Language, . , , .

Wolfram Language. 1988 ,
Mathematica, . : , . 767 . 10 , «» 1488 . , â , .

, , , , . , , ,
50 000 .
, Mathematica , , , , . ,
Wolfram Language , , .
, , Wolfram Language ( Mathematica) . , , , . , , Wolfram Language Mathematica , .
?
, - , . , , , Wolfram Language , , . , . , , , . .
: "
? ". , , , , , . . .
ãã®æ¬ãæžãã®ã¯æ¬åœã«æ¥œããã£ãã§ãã人ã
ããããèªãã§èå³ãæã¡ã Wolframèšèªã§ãã°ããããã®ãäœæããæ¹æ³ãåŠã¶ããšãé¡ã£ãŠããŸãïŒ