
ãã¡ãžã£æååæ€çŽ¢ã¯ãç¹ã«çµæã®é«ã粟床ãå¿
èŠãªå Žåãèšç®ãªãœãŒã¹ã®é¢ã§éåžžã«é«äŸ¡ãªã¿ã¹ã¯ã§ãã ãã®èšäºã§ã¯ãèŸæžã®ãã¡ãžãŒæ€çŽ¢ã¢ã«ãŽãªãºã ã«ã€ããŠèª¬æããŸãããã®ã¢ã«ãŽãªãºã ã¯ã100ïŒ
ã®ç²ŸåºŠãšæ¯èŒçäœãã¡ã¢ãªæ¶è²»ãç¶æããªãããé«ãæ€çŽ¢é床ãæäŸããŸãã Luceneéçºè
ããã¡ãžãŒæ€çŽ¢ã®é床ã
2æ¡äžããããšãã§ããã®ã¯ãLevenshteinãªãŒãããã³ã§ãã
ã¯ããã«
èŸæžå
ã®æååã®ãã¡ãžãŒæ€çŽ¢ã¯ãããã¹ããšãã£ã¿ãŒãå
åŠåŒæåèªèã·ã¹ãã ãããã³æ€çŽ¢ãšã³ãžã³ã§äœ¿çšãããææ°ã®ã¹ãã«ãã§ãã¯ã·ã¹ãã ãæ§ç¯ããããã®åºç€ã§ãã ããã«ããã¡ãžãŒæ€çŽ¢ã¯ããã€ãªã€ã³ãã©ããã£ã¯ã¹ã®å€ãã®èšç®äžã®åé¡ã解決ããããã®ã¢ããªã±ãŒã·ã§ã³ãèŠã€ããŸãã

èŸæžã®ãã¡ãžãŒæ€çŽ¢åé¡ã®æ£åŒãªå®çŸ©ã¯ã次ã®ããã«å®åŒåã§ããŸãã äžããããæ€çŽ¢ã¯ãšãª
Wã«å¯ŸããŠãæ€çŽ¢ã¯ãšãªãšã®å·®
pãç¹å®ã®ãããå€
Nãè¶
ããªããã¹ãŠã®åèªã®ãµãã»ãã
PãèŸæž
Dããéžæããå¿
èŠããããŸãã

2ã€ã®åèªã®éãã®çšåºŠã¯ãããšãã°ã
ã¬ãŒãã³ã·ã¥ã¿ã€ã³è·é¢ãŸãã¯
ãã¡ã©ãŠ-ã¬ãŒãã³ã·ã¥ã¿ã€ã³è·é¢ã䜿çšããŠæž¬å®ã§ããŸãã
ã¬ãŒãã³ã·ã¥ã¿ã€ã³è·é¢ã¯ã2è¡éã®å·®ã®å°ºåºŠã§ããã1è¡ãå¥ã®è¡ã«å€æããããã«å¿
èŠãªæåã®æ¿å
¥ãåé€ãããã³çœ®æã®æå°æ°ãšããŠå®çŸ©ãããŸãã
Damerau-Levenshteinè·é¢ãèšç®ãããšãã転眮ïŒ2ã€ã®é£æ¥ããæåã®é åïŒãèš±å¯ãããŸãã

æ°å¹ŽåãHabréã«ã¯ãèŸæžãšããã¹ãã®ãã¡ãžãŒæ€çŽ¢
å°çšã®ntzããã®
æçš¿ããããŸãã-ã¬ãŒãã³ã·ã¥ã¿ã€ã³ãšãã¡ã©ãŠ-ã¬ãŒãã³ã·ã¥ã¿ã€ã³ã®è·é¢ã«é¢ãã詳现ã¯ããã§èªãããšãã§ããŸãã ç¶æ
ããã§ãã¯ããæéã®è€éããæãåºãã ãã§ã
åçèšç»æ³ã䜿çšãã
pïŒP i ãWïŒ<= Nã¯ã

ã
ããã§
| P i |ã| W | -æååãšãªã¯ãšã¹ãã®é·ãã ãããã£ãŠãå®éã®åé¡ã解決ããå Žåãååèªã®æ€èšŒã䌎ãèŸæžå€ã®å®å
šãªåæã¯ãååãšããŠåãå
¥ããããŸããã
ãã¹ãŠã®ãã¡ãžãŒæ€çŽ¢ã¢ã«ãŽãªãºã ããã¯ãšãª
Wã«ãã£ãŠãæ¡ä»¶
pïŒP i ãWïŒ<= NãæºããèŸæž
Dã®ãã¹ãŠã®çµ¶å¯Ÿåèª
ãèŠã€ããããšãä¿èšŒããããã§ã¯ãªãããšã«æ³šæããŠãã ãã
ã ãããã£ãŠãæ€çŽ¢ã®ç²ŸåºŠã«ã€ããŠã¯ãèŠã€ãã£ãçµæã®æ°ãšãç¹å®ã®æ¡ä»¶ãæºããèŸæžå
ã®å®éã®åèªæ°ãšã®æ¯ãšããŠèª¬æããã®ãçã«ããªã£ãŠããŸãã ããšãã°ããã§ã«èšåãã
æçš¿ã®èè
ã¯ãn-gramæ³ã䜿çšããæ€çŽ¢ã®ç²ŸåºŠã65ïŒ
ãšæšå®ããŸããã
éæ±ºå®æ§ã¬ãŒãã³ã·ã¥ã¿ã€ã³ãªãŒãããã³
èè
ã¯ãèªè
ããªãŒãããã³ããã³åœ¢åŒèšèªã®çè«ã®åºç€ã«ç²ŸéããŠããããã®äž»é¡åéã®çšèªã®èª¬æãæ§ããããšãåæãšããŠããŸãã 代ããã«ãããã«ä»äºã«åãæãããŸãã
å®çšçãªåé¡ã解決ããããã«ãã¬ãŒãã³ã·ã¥ã¿ã€ã³ã®æ±ºå®è«çãªæéç¶æ
ãã·ã³ã䜿çšãããŸãïŒå®å
šã«æ£ç¢ºã«èšãã°ããã®æš¡å£ïŒã ãã ããã¬ãŒãã³ã·ã¥ã¿ã€ã³ã®ç¢ºå®çæéç¶æ
ãã·ã³ã®åäœåçãçè§£ããã«ã¯ããŸãé確å®çããŒãžã§ã³ã®åäœãæ€èšããããšããå§ãããŸãã
åèªWã®ã¬ãŒãã³ã·ã¥ã¿ã€ã³ãªãŒãããã³ãšã¯ ãåèª
Wãš
Sã®éã®ã¬ãŒãã³ã·ã¥ã¿ã€ã³ïŒDamerau-LevenshteinïŒè·é¢ãæå®ãããå€
Nãè¶
ããªãå Žåã«ã®ã¿ãåèª
SãåãæéãªãŒãããã³
A N ïŒWïŒãæå³ããŸã
ãåèª
Wããã³èš±å®¹ããã倿޿°
Nã®ã¬ãŒãã³ã·ã¥ã¿ã€ã³ã¹ããŒããã·ã³ã¯ãé åºä»ãããã5ã€ã®èŠçŽ
A N ïŒWïŒ= <EãQãq 0 ãFãV>ãšããŠå®çŸ©ã§ããŸããããã§ã
Eã¯ãªãŒãããã³ã®ã¢ã«ãã¡ãããã§ãã
Qã¯å
éšç¶æ
ã®ã»ããã§ãã
q 0-åæç¶æ
ãéåQã«å±ããŸãã
Fã¯æçµç¶æ
ãŸãã¯æçµç¶æ
ã®ã»ããã§ã
Vã¯é·ç§»é¢æ°ã§ããªãŒãããã³ã®å
¥åã«å¥ã®ã·ã³ãã«ãå°çãããšãã«çŸåšã®ç¶æ
ããã©ã®ç¶æ
ãé·ç§»ã§ããããæ±ºå®ããŸãã
éæ±ºå®æ§ã®ã¬ãŒãã³ã·ã¥ã¿ã€ã³ãªãŒãããã³
A N ïŒWïŒã®ç¶æ
㯠ãéåžž
i #eãšããŠç€ºãã
ãŸããããã§ã
i = 0 .. | W | ã
e = 0..N ã ãã·ã³ã®ç¶æ
ã
i #eã®å Žåã
iã¯ ãæ£ãããæåããã·ã³ã«å
¥åããã
eåã®å€æŽãæ€åºãããããšãæå³ããŸãã 転眮ããµããŒããããªãŒãããã³ïŒã€ãŸã
ã Damerau-Levenshteinè·é¢ã
pïŒSãWïŒãšããŠäœ¿çšããã
ïŒãèæ
®ãããããç¶æ
ã®ã»ããã¯ç¶æ
{i T #e }ã§è£å®ããå¿
èŠããããŸãïŒ
i = 0 .. | W | -1 ã
e = 1..NãªãŒãããã³ã®åæç¶æ
ã¯ç¶æ
0 ïŒ0ã§ãã
æçµç¶æ
ã®ã»ããã«ã¯ãæ¡ä»¶
| W | -i <= N-e ã
ãªãŒãããã³ã®ç¶æ
ã®ç©ççãªæå³ã«åºã¥ããŠã蚱容å¯èœãªé·ç§»ã®æ§æã決å®ããããšã¯é£ãããããŸããã ã¬ãŒãã³ã·ã¥ã¿ã€ã³ãªãŒãããã³ã®é·ç§»é¢æ°ã¯ãããŒãã«ã®åœ¢åŒã§æå®ãããŸãã
ãªãŒãããã³ã®ç¶æ
ã®æ§æã®å³å¯ãªæ°åŠçæ£åœåãšäžèšã®ãã®ä»ã®è«æã«èå³ãããå Žåã¯
ãSchultz and MikhovïŒ2002ïŒã®èšäºã§ãããèŠã€ããããšãã§ããŸãã
æåxã®ç¹æ§ãã¯ãã«ZïŒxãW i ïŒã¯ãé·ã
minïŒN + 1ã| W |-iïŒã®ããããã¯ãã«ã§ããæåå
Wã®
ïŒi + kïŒçªç®ã®æåã
xã®å Žåã
kçªç®ã®èŠçŽ ã¯
1ã§ãããã以å€ã®å Žåã¯
0 ã ããšãã°ã
W =â LISTâã®å Žå
ZïŒ ''ãW 0 ïŒ = <1ã0>ãããã³
ZïŒ ''ãW 1 ïŒ = <0ã0>ã
W =â LISTâããã³
N = 1ã®ã¬ãŒãã³ã·ã¥ã¿ã€ã³ãªãŒãããã³ã®ã°ã©ãã£ã«ã«ãªè¡šçŸãå³ã«ç€ºããŸãã ãªãŒãããã³ã®é·ç§»ã¯ã察å¿ããç¹æ§ãã¯ãã«ã«ãã£ãŠçœ²åãããŸãã

ãªãŒãããã³ã®æçµç¶æ
ã¯ç·è²ã§åŒ·èª¿è¡šç€ºãããŸãã æ°Žè²-ãã·ã³ã®çŸåšã®ïŒã¢ã¯ãã£ããªïŒç¶æ
ã
æ°Žå¹³ç¢å°ã«æ²¿ã£ãç§»è¡ã¯ããæ£ãããèšå·ãæ©æ¢°ã«å
¥åããããšå®è¡ãããŸãã
åçŽç¢å°ã«æ²¿ã£ãé·ç§»ã¯ããã·ã³ã«å
¥åãããæ¬¡ã®æåã
ïŒi + 1ïŒçªç®ã®æåã®åã«å
ã®åèª
Wã«æ¿å
¥ããããšããä»®å®ã«å¯Ÿå¿ããŠããŸãã åçŽç¢å°ã«æ²¿ã£ãŠç§»åãããšããªãŒãããã³ã¯åèª
Wã®å€æŽããæ€åºãããŸã
ãeã®å€ã¯
1å¢å ããŸãã
ç¶æ
i #eããç¶æ
ïŒi + 1ïŒ ïŒe + 1ãžã®é·ç§»ã¯ãæ¬¡ã®æåãåèª
Wã® ïŒi +1ïŒçªç®ã®æåã眮ãæãããšããä»®å®ã«å¯Ÿå¿ããŸã
ãç¶æ
i #eããç¶æ
ïŒi + 2ïŒ ïŒe + 1ãžã®é·ç§»ã¯ãæ¬¡ã®æåãåèª
Wã®
ïŒi + 2ïŒçªç®ã®æåã«å¯Ÿå¿ããåèª
Wã®
ïŒi + 1ïŒçªç®ã®æå
ãæ¬ èœããŠãããšããä»®å®ã«å¯Ÿå¿ããŸãåèª
Sã§ãããããç¶æ
i T #eãžã®é·ç§»ã¯ãåèª
Wã®
ïŒi + 1ïŒçªç®ãš
ïŒi + 2ïŒçªç®ã®æåã®è»¢çœ®ãæ€åºãããããšã瀺åããŠããããšããã§ã«æšæž¬ããŠããã§ãããã
ããã§ã¯ããã®ä»çµã¿ãèŠãŠã¿ãŸãããã æ²ç·ã®èµ€ãç¢å°ã§ãã·ã³ãžã®æ°ããã·ã³ãã«ã®å
¥åã瀺ããç¢å°ã®å³åŽã«ç¹æ§ãã¯ãã«ã®å€ã瀺ããŸãã ããã¯ããSEARCHããšããåèªãå
¥åãããšããã·ã³
A 1 ïŒãLISTãïŒãã©ã®ããã«æ©èœãããã瀺ããŠããŸãã

å®éããªãŒãããã³ã®ç¶æ
ã®å€åã®ã·ãŒã±ã³ã¹ã¯ããªãŒãããã³ã®å
¥åã«äŸçµŠãããç¹å®ã®åèªã§ã¯ãªããç¹æ§ãã¯ãã«ã®ã·ãŒã±ã³ã¹ã«ãã£ãŠã®ã¿æ±ºå®ãããããšã«æ³šæããŠãã ããã ãã®ã·ãŒã±ã³ã¹ã¯ã2ã€ã®ç°ãªãåèªã§åãå ŽåããããŸãã ããšãã°ããªãŒãããã³ããmotherããšããåèªã«èšå®ãããŠããå Žåãç¹æ§ãã¯ãã«ã®ã·ãŒã±ã³ã¹ã¯ãlamaãããframeãããladyããªã©ã®åèªã§åãã«ãªããŸãã
å¥ã®è峿·±ãäºå®ã¯ããªãŒãããã³ã®èš±å®¹å¯èœãªé·ç§»ã®æ§é ã
i = 0ã®å Žåã«å€åããªãããš
ã§ãã..| W | -ïŒN + 1ïŒ ã
ãããã®2ã€ã®ç¶æ³ã«ããããã¡ãžãŒæ€çŽ¢ã¢ã«ãŽãªãºã ã®ãœãããŠã§ã¢å®è£
ã¯ãç¹å®ã®åèªããšã«èšç®ãããã®ã§ã¯ãªãããã®æ®éçãªæš¡å£ã®ãã·ã³ã䜿çšã§ããŸãã ããããæçš¿ã®ã¿ã€ãã«ããæ®éçãªãã¬ãŒãã³ã·ã¥ã¿ã€ã³ãªãŒãããã³ãæãçç±ã§ãã
ãã®å Žåãç¹å®ã®åèª
Sã®ãªãŒãããã³ã®èšç®ã¯ãåèª
Sã®åã·ã³ãã«
xã®ç¹æ§ãã¯ãã«ã®åçŽãªèšç®ã«åæžãããŸã
ã ç¶æ
ã®å€æŽã¯ã2ã€ã®å€æ°
eã®åçŽãªå¢å ãšããŠãœãããŠã§ã¢ã«å®è£
ãããŸãã
Schulz and MihovïŒ2002ïŒã¯ãåèª
Sã®ãã¹ãŠã®ç¹æ§ãã¯ãã«ãæé
OïŒ| S |ïŒã§èšç®ã§ããããšã瀺ããŸããã ããã¯ããã·ã³ã®äžæçãªè€éãã§ãã
åèª
Sã®æåã¯ãæ©æ¢°ã®å
¥åã«é 次éãããŸãã ç¹å®ã®ãã£ã©ã¯ã¿ãŒã絊é€ããåŸãã©ã€ã³
Sãš
Wã®éã®è·é¢ããããå€
Nãè¶
ããããšãæããã«ãªã£ãå Žåããã·ã³ã¯ã空ã®ãç¶æ
ã«ããããã·ã³ã«ã¯ã¢ã¯ãã£ããªç¶æ
ã¯ãããŸããã ãã®å Žåãåèª
Sã®æ®ãã®æåã®ç¹æ§ãã¯ãã«ãèšç®ããå¿
èŠããªããªããŸãã
ããã¯ããã·ã³ã
W = "LIST"ã§åèª
S = "ICS"ããå®çŸãããæ¹æ³ã§ãã

ãIãèšå·ãå
¥åããåŸã4ã€ã®ã¢ã¯ãã£ãç¶æ
ããã·ã³ã«ããã«çŸããŸãããããKãèšå·ãå
¥åããåŸãã¢ã¯ãã£ãç¶æ
ã¯ãããŸããã§ããããã·ã³ã¯ãšã©ãŒç¶æ
ã§ããIKSããšããåèªãåãå
¥ããŸããã§ããã ãã®å Žåãã·ã³ãã«ãCãã®ç¹æ§ãã¯ãã«ã®èšç®ã¯å®è¡ãããŸããã§ããã
決å®è«çã¬ãŒãã³ã·ã¥ã¿ã€ã³ãªãŒãããã³
決å®è«ã®å®çã«åŸã£ãŠãéæ±ºå®è«çæéç¶æ
æ©æ¢°ã«ã€ããŠãåçã®æ±ºå®è«çæéç¶æ
æ©æ¢°ãæ§ç¯ã§ããŸãã æ±ºå®è«çãªãŒãããã³ãå¿
èŠãªã®ã¯ãªãã§ããïŒ ãœãããŠã§ã¢ãå®è£
ããã ãã§ãããéãåäœããŸãã äž»ã«ãçŸåšã®ç¶æ
ã1ã€ããæãŠãªããããæ¬¡ã®æåãå
¥åãããšãã«ãç¹æ§ãã¯ãã«ã1ã€ã ãèšç®ããé·ç§»ããŒãã«ããé·ç§»ã1ã€ã ãæ±ºå®ããå¿
èŠããããŸãã
äžèšã§æ€èšããéæ±ºå®è«çã¬ãŒãã³ã·ã¥ã¿ã€ã³ãªãŒãããã³
A 1 ïŒWïŒã«ã€ããŠãç¹åŸŽãã¯ãã«ã®ãã¹ãŠã®å¯èœãªå€ãé çªã«ç¹°ãè¿ãå Žåãæ¬¡ã®ã»ããã®ãããããæ§æããç¶æ
ãåæã«ã¢ã¯ãã£ãã«ãªãããšã確èªã§ããŸãã

äžèšã®6ã€ã®ã»ããã¯ã
N = 1ã®ç¢ºå®çã¬ãŒãã³ã·ã¥ã¿ã€ã³ãªãŒãããã³ã®ç¶æ
ã«ãªããŸãã ããæ£ç¢ºã«ã¯ããªãŒãããã³ã«ã¯ã
i = 0 .. | W | -2ã® 6ã€ã®ç¶æ
ã
i = | W | -1ã® 3ã€ã®ç¶æ
ãããã³
i = | W | -1ã® 2ã€ã®ç¶æ
ããã
ãŸãã ã
æ±ºå®æ§ãªãŒãããã³ã®ç¹æ§ãã¯ãã«ã®æ¬¡å
ã¯ã
2N + 1ãšããŠèšç®ã§ããŸãã æ¬¡ã«ã
| W |ããã®åèªã®ãªãŒãããã³ã®é·ç§»è¡š
N = 1ã®æåã«ã¯ã
2x1 + 1è¡
2è¡ãš
6xïŒ| W | -1ïŒ+ 3 + 2åãå¿
èŠã§ãïŒããšãã°ã6æåã®åèªã®å Žåã¯8x35ïŒã ããã«ããã®ãããªããŒãã«ã¯ã
| W |ã®åå€ã«å¯ŸããŠèšç®ããå¿
èŠããããŸã
ã åå¥ã«ã ããã¯ããŸã䟿å©ã§ã¯ãªããèšç®ã®ããã®è¿œå ã®æéãŸãã¯ã¹ãã¬ãŒãžã®ããã®è¿œå ã®ã¡ã¢ãªãå¿
èŠã§ãã
ãã ããäžã§æžããããã«ããªãŒãããã³ã®èš±å®¹å¯èœãªé·ç§»ã®æ§æã¯ã
i = 0ã®å Žåã¯å€åããŸãã
ã -ïŒ2N + 1ïŒ ã ãããã£ãŠããœãããŠã§ã¢å®è£
ã§ã¯ãå®éã®ãªãŒãããã³ãèšç®ãã代ããã«ã決å®è«çãªãŒãããã³ãã·ãã¥ã¬ãŒãããæ¹ãã¯ããã«äŸ¿å©ã§ãã ãããè¡ãã«ã¯ããªãã»ããå€
iãä¿åãã8è¡6åã®ãŠââãããŒãµã«é·ç§»ããŒãã«ã䜿çšããã ãã§ååã§ãã ãã®ãããªããŒãã«ã¯äºåã«èšç®ã§ããŸãã
iãå¢å ãããšããªãŒãããã³ã®äžéšã®ç¶æ
ãå°éäžèœã«ãªãããã
i = | W | -2 .. | W | å¥ã®å°ããªããŒãã«ãçšæããå¿
èŠããããŸãã
ããã«ã決å®è«çãªã¬ãŒãã³ã·ã¥ã¿ã€ã³ãªãŒãããã³ãšããã°ããŸãã«äžèšã®æ®éçãªæš¡å£ãæå³ããŸãã
Nãå¢å ãããšãç¶æ
ã®æ°ã¯ææ°é¢æ°çã«å¢å ããŸãã ãããã£ãŠã
N = 2ã®å Žåã確å®ãªãŒãããã³ã¯42åã®ç¶æ
ãæã€ããšãã§ããŸã
ãN = 3ã®å Žåããã§ã«æ°çŸåãããŸãã ããã¯ãã¡ã¢ãªæ¶è²»ã
OïŒN 2 ïŒã«æ¯äŸããããšãæå³ããŸãã
決å®è«çã¬ãŒãã³ã·ã¥ã¿ã€ã³ãªãŒãããã³ã®åæç¶æ
ã¯ãç¶æ
A 0ã«ãªããŸãã
æçµçãªæ¡ä»¶ã¯äœã§ããïŒ éæ±ºå®çãªãŒãããã³ã®æçµç¶æ
ã«å¯Ÿå¿ãããã®ã
N = 1ã®å Žåããããã¯ç¶æ
A | W | ã
B | W | ã
A | W | -1 ã
C | W | -1 ã
D | W | -2 ã
E | W | -2 ã
F | W | -2 ã
6ã€ã®ç¶æ
éã®é·ç§»ã®æ°ã¯éåžžã«å€ããæ±ºå®è«çãªã¬ãŒãã³ã·ã¥ã¿ã€ã³ãªãŒãããã³ã®ç¶æ
ã®ç©ççãªæå³ã¯æããã§ã¯ãªããããããã§ã¯ãã®ã°ã©ãã£ã«ã«ãªè¡šçŸã瀺ããŸããã å
šäœåã¯ã¯ã£ããããŠããªããšæããŸãã ããã§ã圌女ãèŠããå Žåã¯ã
Mikhov and SchulzïŒ2004ïŒã®èšäºãåç
§ããŠãã ããã éæ±ºå®çãªãŒãããã³ã®æäœã®ãã1ã€ã®äŸã瀺ããŸãããä»åã¯ãã©ã®ç¶æ
ã§ãã®æ±ºå®çåçç©ããã¹ãŠã®ç¬éã«ååšãããã瀺ããŸãã

決å®ãããã¬ãŒãã³ã·ã¥ã¿ã€ã³ãªãŒãããã³ã®ãœãããŠã§ã¢å®è£
ã¬ãŒãã³ã·ã¥ã¿ã€ã³ãªãŒãããã³ã®ãœãããŠã§ã¢å®è£
ãCïŒã§äœæããŸãã-ãã®èšèªã«æã粟éããŠããŸãã
ããã§ãœãŒã¹ãèŠã€ããããšãã§ããŸãã ãŠãããŒãµã«å€æããŒãã«ã¯ãéçã¯ã©ã¹ParametricDescriptionã®ãã£ãŒã«ããšããŠå®è£
ãããŸãã ãã®ã¯ã©ã¹ã«ã¯ã
N = 1,2ã®ãŠãããŒãµã«å€æããŒãã«ãå«ãŸããŠããŸãã
倿ããŒãã«ã«å ããŠãParametricDescriptionã¯ã©ã¹ã«ã¯ãªãã»ããå¢åããŒãã«ãå«ãŸããŠããŸãã ãªãã»ããå¢åã¯ã次ã®ç¶æ
ã«ç§»è¡ãããšãã«
iã®å€ãå¢ããå¿
èŠãããå€ã§ãã
ã¬ãŒãã³ã·ã¥ã¿ã€ã³ãªãŒãããã³èªäœã¯ãLevTAutomataImitationã¯ã©ã¹ã«å®è£
ãããŠããŸãã ãã¹ãŠã®ã¯ã©ã¹ã¡ãœããã¯éåžžã«åçŽã§ããã詳现ã«èª¬æããŸããã èŸæžã§ãã¡ãžãŒæ€çŽ¢ãå®è¡ããå Žåããªã¯ãšã¹ãããšã«ã¯ã©ã¹ã®ã€ã³ã¹ã¿ã³ã¹ã1ã€äœæããã ãã§ååã§ãã
LevTAutomataImitationã¯ã©ã¹ã®ã€ã³ã¹ã¿ã³ã¹ã®äœæã¯ã
W ã
S ã
Nã®ä»»æã®å€ã«å¯ŸããŠçãäžå®æéã§å®è¡ãããããšã«æ³šæããŠãã ãã
ã ã¯ã©ã¹ã€ã³ã¹ã¿ã³ã¹ã«ã¯ã
Wã®å€ãšå°ããªãµã€ãºã®è£å©å€æ°ã®ã¿ãæ ŒçŽãããŸãã
æååã®é
åãããæå®ãããDamerau-Levenshteinè·é¢ãã2以å
ã®è·é¢ã«ããæååã®ã¿ãéžæããã«ã¯ã次ã®ã³ãŒãã䜿çšã§ããŸãã
äžããããã³ãŒãã¯ãã¬ãŒãã³ã·ã¥ã¿ã€ã³ãªãŒãããã³-ç¶²çŸ
çæ€çŽ¢ã®ã¢ã«ãŽãªãºã ã䜿çšããŠãèŸæžã§æãåçŽãªãã¡ãžãŒæ€çŽ¢ã¢ã«ãŽãªãºã ãå®è£
ããŸãã ãã¡ãããããã¯æãå¹ççãªã¢ã«ãŽãªãºã ã§ã¯ãããŸããã ã¬ãŒãã³ã·ã¥ã¿ã€ã³ãªãŒãããã³ã䜿çšããããå¹ççãªæ€çŽ¢ã¢ã«ãŽãªãºã ã«ã€ããŠ
ã¯ãèšäºã®åŸåã§èª¬æã
ãŸã ã
åç
§è³æ
- CïŒã®èšäºã®ãœãŒã¹
- ã¬ãŒãã³ã·ã¥ã¿ã€ã³è·é¢
- è·é¢Damerau-Levenshtein
- ã¹ããŒããã·ã³
- èŸæžãšããã¹ãã®ãããŸãæ€çŽ¢ã«é¢ããè¯ãæçš¿
- ã¬ãŒãã³ã·ã¥ã¿ã€ã³ãªãŒãããã³ã®ç°¡åãªèª¬æ
- Schultz and MihovïŒ2002ïŒã®èšäºã§ã®ã¬ãŒãã³ã·ã¥ã¿ã€ã³ãªãŒãããã³ã®è©³çŽ°ãªæ°åŠç説æ
- åããããã¯ã«é¢ããMikhovãšSchulzïŒ2004ïŒã®å¥ã®èšäº
- ãã¡ãžãŒæ€çŽ¢Luceneã§ã®ã¬ãŒãã³ã·ã¥ã¿ã€ã³ãªãŒãããã³ã®å®è£
ã®æŽå²
- Javaã§ã®å®è£
ïŒ 1ãš2
- ç§ã®åºçç©ã®ç¬¬äºéš