æ©æ¢°åŠç¿ã¯å°çãæ©ããŠããŸãã ãã¥ãŒã©ã«ãããã¯ãŒã¯ã§ããã人工ç¥èœã¯ããã¥ãŒãã³ã§å°éããããšãã§ããã¿ã¹ã¯ã«ãããŠãåŸã
ã«äººã
ã®å
ãè¡ã£ãŠããŸãã ãã ããåçŽãªç·åœ¢ååž°ã¢ãã«ãå¿ããŠã¯ãªããŸããã 第äžã«ããã¥ãŒã©ã«ãããã¯ãŒã¯ãå«ãå€ãã®è€éãªæ©æ¢°åŠç¿æ¹æ³ãæ§ç¯ãããŠããããã§ãã ãããŠã第äºã«ããã°ãã°é©çšãããããžãã¹ã¿ã¹ã¯ã¯ãç·åœ¢ã¢ãã«ã«ãã£ãŠç°¡åãè¿
éãå¹ççã«è§£æ±ºãããããã§ãã
ãããŠãæå§ãã«ãã¡ãã£ãšãããã¹ãã ç·åœ¢ã¢ãã«ã䜿çšããŠèª¬æããããšã¯å¯èœã§ããïŒ
-身é·ã«å¯Ÿãã人ã®äœéã®äŸå床ïŒ
-1æ¥ã®ç°ãªãæéã«åºé ã§äžŠãã§ããæé
-ææ°é¢æ°çæé·ã®æ®µéã§ã®ãµã€ããã©ãã£ãã¯ïŒ
-å°äžéã®é§
ã§é»è»ãåŸ
ã£ãŠãã人ã®æ°ã®æéãã€ããã¯ã¹ïŒ
-ããã©ãŒãã³ã¹ã«å¿ããŠãã¯ã©ã€ã¢ã³ãããµã€ãã§æ³šæããªãå¯èœæ§ã¯ïŒ
ãæ³åã®ãšããããã¹ãŠã®è³ªåã«å¯Ÿããçãã¯ãã¯ããã§ããŸããã§ãã ãã®ãããç·åœ¢ã¢ãã«ã¯äžèŠããã ãã§ã¯åçŽã§ã¯ãããŸããã ãããã£ãŠã圌ãã®è±ããªå€æ§æ§ã«ç²ŸéããŸãããã
åé¡ã®å£°æ
äžé£ã®
Mçµã®ãœãŒã¹ããŒã¿
ïŒX i ãY i ïŒãäžãããããšããŸããããã§ã
â-å®æ°ã®ã»ãã
â-èªç¶æ°ã®ã»ãã
MÐâãiÐâã1â€iâ€M
X iÐâdãdÐâãããªãã¡ åX
iã¯ãé·ã
dã®å®æ°ã®ã·ãŒã±ã³ã¹ã§ã
Y iÐâkãkÐâãããªãã¡ ãŸããåY
iãå®æ°ã®ã·ãŒã±ã³ã¹ã§ãããé·ãã¯
kã§ãã
Xã¯ãç¬ç«å€æ°ïŒããã³å åãŸãã¯ãªã°ã¬ããµãŒïŒãšåŒã°ããŸãã ãŸããYã¯åŸå±å€æ°ãŸãã¯èª¬æå€æ°ãšåŒã°ããŸãã
æãåçŽãªå Žåã
d = k = 1 ãã€ãŸããæ°å€ã®ãã¢ãäžããããŸããããšãã°ãïŒäººã®èº«é·ã人ã®äœéïŒãŸãã¯ïŒéšåã®äœç©ãéšåã®ééïŒãŸãã¯ïŒäžŠãã§ããæéãã¯ã©ã€ã¢ã³ãã®åºçºã®ãµã€ã³ïŒã
ã»ãšãã©ã®å Žå
d> 1 ãããã³
k = 1ã§ã ãã€ãŸããå
Yã«è€æ°ã®
XãäžããããŸããããšãã°ãïŒïŒïŒgrowthãageïŒãweightïŒãŸãã¯ïŒïŒæšæ¥ã®è²©å£²ãæšæ¥ã®è²©å£²ãæšæ¥ã®è²©å£²ïŒãä»æ¥ã®è²©å£²ïŒãŸãã¯ïŒïŒå²ãåœãŠãããã¿ã¹ã¯ã®æ°ãã¿ã¹ã¯ã®è€éãã®åèšïŒãåŸæ¥å¡ããã£ãšããããå£å®ã®äžã§æ©ããæ¥æ°ïŒã
Yãããã€ãã®å€ã§æ§æããããã¢
ïŒX i ãY i ïŒã¯ãããšãã°æ¬¡ã®ããã«èŠããããšããããŸã-ïŒïŒèº«äœæŽ»åã®æéãè² è·ã®ã¬ãã«ãããã£ãã¹ææ°ããã£ãããã¹ã®ã¬ãã«ïŒãïŒè¡äžã®ä¹³é
žã®ã¬ãã«ãå埩æéã®é·ãïŒïŒã
ãããŠããæ³åã®ãšãããçªç¶äºæ³å€ã®ä»®å®ãç«ãŠãŸãã
ãYã¯
Xã«äŸåããã ãã§ãªãã
Y = b T Xã«ç·åœ¢ã«äŸåããŸããããã§ã
bã¯æ¬¡å
dâkã®å®è¡å圢åŒã®ã¢ãã«ãã©ã¡ãŒã¿ãŒã§ãã
ãã ãã2ã€ã®éèŠãªåŽé¢ãããã«æãåºããŸãã 第äžã«ããã®ãããª
b T Xãå³å¯ã«
Yã«çããçç±ã¯ãããŸãã
ã çµå±ãæåã®ããŒã¿ã枬å®ããŠïŒãããŠããããæããã枬å®ããïŒãšã©ãŒãåºããŠããŸãå¯èœæ§ããããŸãã ããã«ã
Yã«ã圱é¿ãäžããããã€ãã®èŠå
XãèŠå€±ã£ãŠããå¯èœæ§ããããŸãïŒã»ãŒç¢ºå®ã«ã»ãŒç¢ºå®ã§ãïŒ
ã ãããã£ãŠãã¢ãã«ã§ã¯ã©ã³ãã ãšã©ãŒãèæ
®ããå¿
èŠããããŸãã
第äºã«ã
Yã
Xã«çŽæ¥ç·åœ¢ã«çŽæ¥äŸåãããšããä¿èšŒã¯ãããŸããã çµå±ã®ãšããã圌ãã¯ä»ã®äœãã«äŸåããŠããå¯èœæ§ããããããã¯
Xã«äŸåããŠããŸã
ã ããšãã°ã
Yã¯
bâX 2ãŸãã¯
bâlog Xã«çããå Žåããã
ãŸãã ãããŠãå®éã«ã¯ãYã«äŸåããå€ã§ã¯ãªããYèªäœã®äŸåæ§ãå³å¯ã«æ±ããã®ã§ããããšãã°ã
log Y = b T Xã§ãããããã£ãŠãç·åœ¢åé¡ã®äžè¬åãããå®åŒåã«å°éããŸãã
Y
* = b
T X
* +â
ããã§ãX
* = fïŒXïŒãY
* = gïŒYïŒã
randomã¯ç¢ºçå€æ°ã§ãã
fãšgã¯éç·åœ¢é¢æ°ã«ãªããçµæãšããŠ
Yã¯
Xã«éåžžã«éç·åœ¢ã«äŸåãããšããäºå®ã«ãããããããã¢ãã«ã¯ãã©ã¡ãŒã¿ãŒ
bã«é¢ããŠç·åœ¢ã®ãŸãŸã§ãã ãããç·åœ¢ã¢ãã«ãšåŒã°ããçç±ã§ãã
ããããããã¯åé¡ã®å
šäœçãªå®åŒåã§ã¯ãããŸãã
ãããŸã§ã®ãšããã
Xãš
Yã®ã¿ãç¥ã£ãŠããŸã
ã 確ãã«ããããç§ãã¡ã«äžããããã®ã§ãç§ãã¡ã®ã¡ãªããã¯ããã§ã¯ãããŸããã ãããŠã
bãšknowãã©ããã£ãŠç¥ãã®ã§ããããïŒ
ã¢ãã«ã®æ¬è³ªã¯æ£ç¢ºã«ä¿æ°
bã§ããããšãæãåºããŠãã ããã çµå±ãç§ãã¡ããã®å€§éšããå§ããã®ã¯åœŒãã®ããã ãã§ããã ã©ã³ãã ãšã©ãŒwereããªããã°ã
bã¯
dæ¹çšåŒã®åºæ¬ã·ã¹ãã ã解ãããšã§ç°¡åã«èšç®ã§ããŸã
ãdã¯å åã®æ°ãã€ãŸããã¯ãã«
X iã®é·ãã§ãã ã€ãŸããåæããŒã¿ãšããŠæ£ç¢ºã«
dåã®ãã¢
ïŒX i ãY i ïŒãååŸããã ãã§ååã§ããå
X iã¯æ£ç¢ºã«
dåã®å€ã§æ§æãããæ£ç¢ºãªã¢ãã«ã®æºåãã§ããŠããŸãã
ããšãã°ããœãŒã¹ããŒã¿ã®åœ¢åŒïŒïŒéšåãµã€ãºãææäŸ¡æ ŒïŒãéšåã®ã³ã¹ãïŒãããå Žåã2ã€ã®éšåã ãã§ååãªããŒã¿ã§æ£ç¢ºãªã³ã¹ãåŒãäœæã§ããŸãã
ããããå®éã«ã¯ããã¯èµ·ãããŸããã ç§ãã¡ã¯å¹žéã«æµãŸããã圱é¿èŠå ã®å®å
šãªãªã¹ããäœæããæ£ç¢ºã«æž¬å®ããŸãã ãããã£ãŠãã¢ãã«ã®åŒã«ã¯ãå埩äžèœãªã©ã³ãã ãšã©ãŒalwaysãåžžã«ååšããŸãã ããã«ãã»ãšãã©ã®å Žåãããã¯åŸ®èŠçãšã©ãŒã§ã¯ãªããç¡èŠããŠæå·ãªãã§ç¡èŠã§ããŸãã ããããããªãã¯åœŒå¥³ãèæ
®ããªããã°ãªããŸããã ãããŠã2ã€ã®éšåã§ã¯ãªããæ°çŸããã³æ°åã枬å®ããŠèšç®ããå¿
èŠããããŸãã
ããã§ããŸã ååšãã
ã©ã³ãã æ§ã®ãããã¢ãã«ã®æãŸããä¿æ°
bãç°¡åã«èšç®ããããšã¯ã§ããŸããã ãããã£ãŠã
b * = argmin FïŒb | XãYïŒã®åœ¢åŒã®æé©ååé¡ã解ãå¿
èŠããããŸããããã§ã
Fã¯ç¹å®ã®é¢æ°ïŒããšãã°ãâïŒY
i -b
T X
i ïŒ
2ã§ãæå°äºä¹æ³ã«å°ããŸãããããã³ãã®ä»ã®æ©èœïŒã
æ£ç¢ºã§æ£ç¢ºãªä¿æ°
bããŸã ååšããããšã«æ³šæããŠãã ãããããããã¯ããããŸããã ãããŠãç§ãã¡ãæåŸ
ã§ããæåã®æ¹æ³ã¯ã
b *ã®æšå®å€ã§ããããã¯ãããã
bã«è¿ãã§ãããã ããã«ãæ©èœãç°ãªããš
b *ãç°ãªãå¯èœæ§ããããçæ³çãª
bãšã¯ç°ãªãæ¹æ³ã§ç°ãªããŸãïŒãã ãããŸã ããããŸããïŒã
ãšã©ãŒã«å¯ŸåŠããŸã
ã©ã³ãã ãšã©ãŒèªäœã§ã¯ã
âã¯ããã«è€éã§ãã ç§ãã¡ã¯ããããç¥ããªãããã§ããããããèšç®ãããã®ã¯äœããããŸããããããã«ãããããããå°ãªããšãåè¿°ã®æé©ååé¡ã®æ£ç¢ºãªå®åŒåã®ããã«ãããïŒãŸãã¯ããããããã«ã€ããŠã®æ
å ±ïŒãå¿
èŠã§ãïŒããã§ãªããã°ããã解決ããæ¹æ³ïŒïŒïŒ ãããã£ãŠãããã€ãã®ãã©ã¡ããªãã¯ãªä»®å®ãè¡ãå¿
èŠããããŸãã
åæããŒã¿ãçæããããã»ã¹ã®æ§è³ªã«åºã¥ããŠã
priorâœâ¥ïŒÎžïŒ ãã€ãŸããã©ã³ãã å€æ°
âããã©ã¡ãŒã¿ãŒ
Ξã®ã»ãããæã€æ¢ç¥ã®ååž
describedïŒæ£èŠååžãªã©ïŒã«ãã£ãŠèšè¿°ãããããšãã¢ããªãªãªã«å®£èšãããšããŸãã
ãŸãã¯ãååžãããããªãå Žåããã®éèŠãªç¹æ§ã«ã€ããŠæšæž¬ããããšãã§ããŸãã ããšãã°ã
E [â] = 0 ãã€ãŸãããšã©ãŒã®æ°åŠçæåŸ
å€ã¯ãŒãã§ãã ãŸãã¯ã
D [âi] =Ï2 = const ãã€ãŸãããã¹ãŠã®èª€å·®ã®åæ£ã¯åãã§æéã§ãã
ãããããªãããã ããªã®ã§ããããïŒ çµå±ãéžæããé¢æ°ãã
argminãååŸããå€
bãååŸããã ãã§ãã
æ¬åœã«å¯èœã§ãã å¯äžã®åé¡ã¯ããã®å€ã®å質ã§ãã äœãåããèšç®ããããæ確ã§ãªãå Žåãã¢ãã«ã§ã¯ãªããäœãç解ããããããããŸããã
ããšãã°ã
âã«ã³ãŒã·ãŒååžãããå ŽåãOLSã¡ãœããã䜿çšãããœãªã¥ãŒã·ã§ã³ã¯ç¡ç§©åºã§ç¡æå³ãªçµæããããããŸãã
ããããããšãã°ãæ¡ä»¶ãåæã«æºããããå Žå
-E [â] = 0-E [â| X] = 0 ãã€ãŸãããšã©ãŒã¯
Xã«äŸåããŸãã
-D [âi] =Ï2 = const-covïŒâiãâjïŒ= 0 ãããã§
iâ j次ã«ãæå°äºä¹æ³ã«ããèšç®ã®çµæãšããŠãç®çã®ãã©ã¡ãŒã¿ãŒ
bã®æšå®å€ã ãã§ãªããæãå¹æçã§äžåã®äžè²«ããæšå®å€ãååŸããŸãã ãããŠãããã¯ãã¹ãŠã®åŽé¢ããã®å®çã«ãã£ãŠéåžžã«æ確ã«æ£åœåããã蚌æãããææãããŠããŸãã
éèŠãªäºå®ã«æ³šæããŠãã ããã ç©
b T X *ã¯å®å
šã«æ±ºå®çã§ããããã
Y *㯠distributionãšåãååžåœ¢åŒãæã€ã©ã³ãã å€æ°ã§ãã
ãšãèšããŸãã ãããŠãã¢ãã«ã
E [Y * ] = b T X *ã®åœ¢ã«æžãæããããšã«ããã䟿å©ãªçµè«ãå°ãåºãããšãã§ã
ãŸã ãããã¯ãç·åœ¢ã¢ãã«ã
Y *å€èªäœãäºæž¬ããã®ã§ã¯ãªãããã®æ°åŠçãªäºæ³ãæå³ããŸãã ãããŠãæãè±å¯ãªçµ±èšããŒããŠã§ã¢ãæ¥ç¶ããŠåé¡ã解決ããŸãã
ç¹ã«ãåæããŒã¿ãæã¡ãååžåœ¢åŒ
para ïŒãããã£ãŠ
Y * ïŒã«é¢ãããã©ã¡ããªãã¯ãªä»®å®ãæå®ããŠã尀床é¢æ°â
ïŒbïŒãæ§ç¯ãããããæ倧åã§ããŸããããã¯ãç·åœ¢ã¢ãã«ã®æ§ç¯ãšåçã§ãã èšãæããã°ãååžãã©ã¡ãŒã¿ãŒãéžæããïŒãããã¯ãã¹ãŠåã
bã§ãã ïŒããã
Yã«å¯èœãªéãé¡äŒŒãããããªã©ã³ãã å€æ°ãçæããæ¹æ³ãåŠç¿ããŸã
ã åºæ¬çã«éæããããšã
ããŸããŸãªç·åœ¢ãã¿ãŒã³
ã¢ãã«ã®èª¬æãç¹°ãè¿ããŸãã
Y * = b T X * +âb * = argmin FïŒb | X * ãY * ïŒ ã
ã³ã³ããŒãã³ãã®åœ¢åŒãšé
眮ïŒY
* ãX
* ãb
* ãâãFïŒãå€æŽãããšãããŸããŸãªããããã£ãæã¡ãããŸããŸãªã¿ã¹ã¯ã«é©çšã§ããããŸããŸãªã¢ãã«ãåŸãããŸãã
ç¬ç«å€æ°ïŒ
X ïŒã®æ¬¡å
ã«åŸã£ãŠã1å åïŒåå€æ°ïŒã¢ãã«ãšå€å åïŒå€å€æ°ïŒã¢ãã«ãåºå¥ã§ããŸãã
åŸå±å€æ°ïŒ
Y ïŒãã¹ã«ã©ãŒå€ã§ããå ŽåãåäžïŒåå€éïŒã¢ãã«ããããŸãã åŸå±å€æ°ãå€æ¬¡å
ãã€ãŸããã¯ãã«ã§è¡šãããå Žåãå€å€éã®äžè¬ã¢ãã«ãååŸããŸãã
ãŸããç¬ç«å€æ°ã«ã¯ããœãŒã¹ããŒã¿ãšãç¹°ãè¿ããããã®ãå«ããã®å€æã®äž¡æ¹ãå«ããããšãã§ããããšãå¿ããªãã§ãã ããã ããšãã°ãå
¥åã«åäžã®å€æ°
Xããã ããã®å€æ°ããããã€ãã®èŠçŽ ïŒ
[XãX 2 ãX 3 ] ïŒãäœæããããã«ãã£ãŠå¥åŠã«èãããå€é
åŒç·åœ¢ã¢ãã«ãååŸãããšããŸãã
å¥ã®åªããäŸã¯ãã«ããŽãªãŒå€æ°ã®å€æã§ãã ããšãã°ããœãŒã¹ããŒã¿ã®å€æ°ã®1ã€ã¯ããã¡ãããããè»ãããèªè»¢è»ãã®å€ãåããŸãã ã¢ãã«ã«å¯ŸããŠã
X * metro ã
X * car ã
X * bikeã® 3ã€ã®èŠçŽ ãããã«äœæãããŸã
ãX * metro = 1 ã
X 茞éã¢ãŒã = metroãªã©ã®å Žåã
ãã®ããã
Y = bXãšãã圢åŒã®éåžžã«ææ§ãªã¢ãã«ã§ã¯ãªãã
茞éã¢ãŒãã Y = b 1 X * metro + b
2 X
* car + b
3 X * bikeãšãã圢åŒã®äŸ¿å©ã§æè»ãªã¢ãã«ã«åãæ¿ããŸãã
åŸå±å€æ°ã«ã¯ããœãŒã¹ããŒã¿ïŒããã¯åçŽãªã¢ãã«ã«ãªããŸãïŒãšãã®å€æã®äž¡æ¹ãå«ããããšãã§ããŸãã ããã«ãå€æãããåŸå±å€æ°
ãååžã®
ææ°ãã¡ããªãŒã«å±ããå Žåãããããäžè¬åç·åœ¢ã¢ãã«ïŒGLMïŒã«ã€ããŠãã§ã«è©±ããŠãããããã«ã¯ãç¹ã«ãæ£èŠãããžã¹ãã£ãã¯ããã¢ãœã³ãææ°ãäºé
ãããã³ä»ã®å€ãã®ã¢ãã«ãå«ãŸããã äžè¬åã¢ãã«ã¯ãåæãã©ã¡ãŒã¿ãŒãåŸãããæšå®å€ã®å質ãããã³ç°ãªãã¿ã€ãã®æ±é¢æ°ã®åœ±é¿ã蚌æããŠããããã䜿çšããã®ã«éåžžã«éèŠã§äŸ¿å©ã§ãã çæ³çã«ã¯ãã¿ã¹ã¯ãããã€ãã®GLMã¢ãã«ã«æžããããã«ããŠãã ããã
ãããŠããã§ãåŸå±å€æ°ã®æ§è³ªã倧ããç°ãªãå¯èœæ§ãããããšãæãåºããŠãã ããã ç¹ã«ãé£ç¶ïŒéã¿ã確çãªã©ã®å®æ°ïŒãŸãã¯é¢æ£ã«ããããšãã§ããŸãã åŸè
ã¯ãæŽæ°ïŒé¡§å®¢æ°ãæ¥æ°ãªã©ïŒãŸãã¯ã«ããŽãªãã©ã¡ãŒã¿ãŒã§ããããã€ããªïŒyes / noïŒãŸãã¯å€é
åŒã§ãããäž¡æ¹ãšãç¡ç§©åºïŒèªè»¢è»ããã¹ãå°äžéïŒãããã³é åºä»ãïŒè©äŸ¡ "good" "ã"æ£åžž "ã"æªã "ïŒã
åœç¶ãç°ãªãã¿ã€ãã®å€æ°ã«ã¯ç°ãªãã¢ãã«ãå¿
èŠã§ãã åãã¢ãã«ã§ã¯ãããšã圱é¿èŠå ãåãã§ãã£ãŠãã顧客ãå»ãå¯èœæ§ãšè³Œå
¥éãäºæž¬ããããšã¯ã§ããŸããã
ååžãç°ãªãå¯èœæ§ã®ããã©ã³ãã ãšã©ãŒãå¿ããªããããã¢ãã«ãšãã®æ§ç¯æ¹æ³ã«åŒ·ã圱é¿ãåãŒããŸãã ããšãã°ãããžããã¢ãã«ãšãããããã¢ãã«ã¯ããŸã£ããåãå€éšæ§é ã§ãããåãããŒã¿ãååŸããŠãç¹å®ã®
Xã«å¯Ÿããã€ãã³ã
Yã®ç¢ºçãäºæž¬ããŸã
ã ãã ãããããããã¢ãã«ã®ã¿ã§ãšã©ãŒãæ£èŠååžããããžããã¢ãã«ã§ã¯ããžã¹ãã£ãã¯ååžããããŸãã åœç¶ããããã®ã¢ãã«ã¯ç°ãªãçµæãäžãããããæ··åããªãã§ãã ããã
æ倱é¢æ°
ã¢ãã«ã®åŒãæŽçããæé©åãããé¢æ°ã䜿çšããŸãã ãŸããæ倱é¢æ°ãã€ãŸãã¢ãã«ã«ãã£ãŠäºæž¬ãããå€ãšå®éã®å€ã®å·®ã®ã¿ãèæ
®ãããšãç°¡åã«ãªããŸãã åçŽãªæ©èœã®å
žåçãªäŸã¯æ¬¡ã®ãšããã§ãã
-æå°äºä¹ïŒæå°âïŒY
i * -b
T X
i * ïŒ
2-éã¿ä»ãæå°äºä¹ïŒmin â W
i ïŒY
i * -b
T X
i * ïŒ
2ãªã®ã§ãããšãã°ãæè¿ã®ããŒã¿ã«éã¿ãè¿œå ããŠãéå»ã®ããŒã¿ã®éèŠæ§ãæžããããšãã§ããŸãã
-
ããã©ããã¹è·é¢ã«ããäžè¬åæå°äºä¹ïŒmin minïŒY
i * -b
T X
i * ïŒTΩ
-1 ïŒY
i * -b
T X
i * ïŒ
-Huberã®é¢æ° ãããã¯ãæå°å€ã«è¿ã2次é¢æ°çã«åäœããä»ã®å Žæã§ã¯ç·åœ¢ã«åäœãããšããç¹ã§èå³æ·±ããã®ã§ãã
éããŒããŒé¢æ°ã§ããéã«ãã©ãã§ãäºæ¬¡é¢æ°ã§ãããæå°å€ã®è¿ãã§ç·åœ¢ã§ãã
ãã¡ãããããã¯å¯èœãªæ©èœã®ãªãã·ã§ã³ã¯ãŸã£ããå¶éãããŠããŸããã ããããæãåºãã¯ã©ã¹ã¯
æå°€æ±é¢æ°ã§ãã ã©ã³ãã 誀差paraïŒãããã£ãŠY
* ïŒã®ååžã«é¢ãããã©ã¡ããªãã¯ãªä»®å®ãå°å
¥ãããšã尀床é¢æ°ãæ瀺çã«èšè¿°ããæ倧åé¢æ°ãæ§ç¯ããŠãç®çã®ãã©ã¡ãŒã¿ãŒãèšç®ã§ããŸãã
ãšããã§ãå¥åŠãªäºå®ïŒ
Y *ãæ£èŠååžããŠããå Žåãæå°€æ±é¢æ°ã¯å®éã«ã¯æå°äºä¹æ±é¢æ°ãšåçã§ãã
æ£åå
è€éãªæ±é¢æ°ã«ã¯æ£ååãå«ãŸããŠãããéåžžã¯è¿œå ã®æ£ååé
ãšããŠè¡šãããŸãïŒ
minâïŒbïŒ+λâ±ïŒbïŒ ãããã§
âïŒbïŒã¯æ倱é¢æ°ã
â±ïŒbïŒã¯æ£ååé¢æ°ã
λã¯åœ±é¿åºŠã決å®ãããã©ã¡ãŒã¿ãŒã§ãæ£ååã
æ£ååã¯ãã¢ãã«ã®è€éãã調æŽããããã«èšèšãããŠããããã®ç®æšã¯ã¢ãã«ãåçŽåããããšã§ãã ããã¯ãç¹ã«ãåèšç·ŽãšæŠãã®ã«åœ¹ç«ã¡ãã¢ãã«ã®äžè¬åèœåãé«ããããšãã§ããŸãã
æ£ååé¢æ°ã®å
žåçãªäŸïŒ
1.
L 1 = â | b |LASSOæ£ååïŒæå°çµ¶å¯Ÿåçž®ããã³éžææŒç®åïŒãšããŠç¥ãããŠãããååã瀺ãããã«ãä¿æ°ã®æ¬¡å
ãæžãããŠããããã®äžéšããŒãã«ããããšãã§ããŸãã ãŸãããœãŒã¹ããŒã¿ãé«åºŠã«çžé¢ããŠããå Žåãããã¯éåžžã«äŸ¿å©ã§ãã
2.
L 2 = â | b | 2ãªããžæ£ååãšåŒã°ããããšããããã¢ãã«ã®ä¿æ°ã®å€ãæå°åãããšåæã«ããœãŒã¹ããŒã¿ã®å°ããªå€æŽã«å¯ŸããŠå
ç¢ã«ããããšãã§ããŸãã ãŸããå·®å¥åãåªããŠãããããã¢ãã«ãåæçã«èšç®ã§ããŸãã
3.
L EN =αL 1 +ïŒ1-αïŒL 2LASSOãšridgeãçµã¿åããããšã2ã€ã®äžçãšãã¹ãŠã®ãã©ã¹ãšãã€ãã¹ãçµã¿åãããElasticNetãåŸãããŸãã
4.
L N = â E [AïŒbãÅœïŒ]-AïŒbãXïŒ ã
Aã¯ãã°ããŒãã£ã·ã§ã³é¢æ°
Åœ= X +â¥ã®åœ¢åŒã®æ°ããå€æ°ãå°å
¥ããŸããããã§ã
â¥ã¯ã©ã³ãã å€æ°ã§ãããå®éã«å
ã®ããŒã¿ã«ã©ã³ãã ãã€ãºãè¿œå ããŸããããã¯æããã«åãã¬ãŒãã³ã°ãšã®æŠãã«åœ¹ç«ã¡ãŸãã
æãåçŽãªç·åœ¢ååž°ã§ã¯ãå æ³æ§ãã€ãºã®å°å
¥ã¯
L 2æ£ååãšåãã§ãããä»ã®ã¢ãã«ã§ã¯ãå æ³æ§ãã€ãºã¯éåžžã«èå³æ·±ãçµæããããããŸãã ããšãã°ãããžã¹ãã£ãã¯ååž°ã§ã¯ã圌ã¯æ¬è³ªçã«1/2ã«è¿ãäºæž¬ã«å¯ŸããŠçœ°éãç§ããŸãïŒèšãæãããšãã«ããŽãªãŒäºæž¬ã奚å±ããäžç¢ºå®æ§ã«å¯ŸããŠçœ°ãç§ããŸãïŒã
5.ããããã¢ãŠã
ãã¥ãŒã©ã«ãããã¯ãŒã¯ã§ç©æ¥µçã«äœ¿çšãããŠãããã1ã€ã®å·§åŠãªã¢ãããŒãã variable
= X *â¥ãšãã圢åŒã®æ°ããå€æ°ãå°å
¥ããŸããããã§ã
â¥ã¯é·ã
dã®ã©ã³ãã å€æ°ã®
ãã«ããŒã«ãã¯ãã«ã§ãã ç°¡åã«èšãã°ãå åXã®ãµãã»ãããã©ã³ãã ã«éžæãããããããã¢ãã«ãæ§ç¯ãããã®ã©ã³ãã æ§ã«ããŸãäŸåããªãã¢ãã«ãéžæããŸãã
æãåçŽãªç·åœ¢ååž°ã§ã¯ãããããã¢ãŠãã¯åã³
L 2æ£ååã«äŒŒãŠããŸãã ããããããšãã°ãããžã¹ãã£ãã¯ååž°ã§ã¯ããŸãã§ã¯ãããéåžžã«ç¹åŸŽçãªèŠå ã®åœ±é¿ãèæ
®ããããšãã§ããŸãïŒèšãæãããšãéåžžã«å°ããª
X ijã®å Žåã倧ããªä¿æ°
b jãéžæããããããçµæãžã®åœ±é¿ã倧ãããªããŸãã
ãã¡ãããå©çšå¯èœãªæ£èŠåã®çš®é¡ã¯ããã«éå®ãããŸããã ç·åœ¢ã¢ãã«ããã以äžå¿
èŠã«ãªãããšã¯ã»ãšãã©ãããŸãããã
ãããŠä»ããœãªã¥ãŒã·ã§ã³
æ©èœãæ§ç¯ããåŸããã®ãœãªã¥ãŒã·ã§ã³ã«é²ãããšãã§ããŸãã ãããŠãäž»ã«2ã€ã®æ¹æ³ããããŸãã
-åæãœãªã¥ãŒã·ã§ã³
-æ°å€è§£ã
ONKã®ãããªåçŽãªæ±é¢æ°ãããªããžæ£èŠåãåããONKã§ããã解æçã«è§£ãããšãã§ããŸããã€ãŸããç®çã®ä¿æ°ãèšç®ããããã®åŒãå°ãåºãããšãã§ããŸãã ååãšããŠããã®ãããªæ±ºå®ã¯ãããšãã°
SVDãŸãã¯
ã³ã¬ã¹ããŒå解ã䜿çšããŠããããªãã¯ã¹åœ¢åŒã§çŽã¡ã«è¡ãããŸãã
ãã ãã倧éã®ããŒã¿ãããå ŽåããŸãã¯ããŒã¿ãéåžžã«ãŸã°ããªå Žåã¯ããããã®å Žåã§ãå埩æ°å€æ³ã®æ¹ãé©ããŠããŸãã
éåžžãåæãœãªã¥ãŒã·ã§ã³ã¯äžè¬ã«å©çšã§ãããæ°å€çææ³ã«é Œããªããã°ãªããŸããããã¡ãããããã§ã¯ãéåžžã«å€æ§ãªã¢ã«ãŽãªãºã ã«çŽé¢ããŠããŸãã
-
確ççåŸé
éäž-
確ççå¹³ååŸé
-
å
±åœ¹åŸé
æ³-Broyden-Fletcher-Goldfarb-Shannoã¢ã«ãŽãªãºã ãããã³å¶éãããã¡ã¢ãª
L-BFGSã«ããå€æŽ ã
ãŸãšãããš
ã芧ã®ãšãããåçŽãªç·åœ¢ã¢ãã«ã¯ãŸã£ããåçŽã§ããããŸããã èšå€§ãªæ°ã®éåžžã®ããžãã¹äžã®åé¡ã¯ãç·åœ¢ã¢ãã«ã«ãã£ãŠããŸã解決ãããŸãã ç¹ã«ãéè¡ãä¿éºäŒç€Ÿã¯é·å¹Žã«ããã£ãŠç©æ¥µçã«ãããã䜿çšããŠããŸãã ãããã«ããããã¥ãŒã©ã«ãããã¯ãŒã¯ãä»ã®æ©æ¢°åŠç¿æ³ãæ±ãåã«ãç·åœ¢ååž°ã泚ææ·±ãç 究ãã䟡å€ããããŸããããã¯ãããè€éãªåæã¢ãã«ãäœæããããã®æ§ç¯ãããã¯ã§ããããã§ãã