ããã»ã«ãåãååã®é¢æ°ãå°å
¥ããŠããçŽ200幎åŸãè€çŽ å¹³é¢å
šäœã§æå¹ãªãã©ã¡ãŒã¿ãŒã«é¢ããå°é¢æ°ã®åŒãèŠã€ãããŸãã
ãã®ããã°ã§ã¯ãç¹å¥ãªé¢æ°ïŒäž»ã«ããã»ã«é¢æ°ãšé¢é£é¢æ°ïŒã®ããã€ãã®æªç¥ã®æŽŸçç©ã«ã€ããŠèª¬æããè¶
幟äœåŠçããã³ãã®ä»ã®é¢æ°ã®ãã©ã¡ãŒã¿ãŒã«é¢ããååã®æŽå²ãšçŸåšã®ç¶æ
ã«è§ŠããŸãã äž»ãªæ°ããåŒã®1ã€ïŒä»¥äžã§è©³çްïŒã¯ãæãäžè¬çãªç¹æ®é¢æ°ã®1ã€ã§ããããã»ã«é¢æ°
Jã®1次å°é¢æ°ã®éããåŒã§ãã

æ°çç©çåŠã®å€ãã®é¢æ°ïŒã€ãŸããé »ç¹ã«äœ¿çšãããããç¹å¥ãªååãæã€é¢æ°ïŒã¯ãããã€ãã®å€æ°ã«äŸåããŸãã ãããã®1ã€ã¯éåžžåŒæ°ãšåŒã°ããä»ã®1ã€ã¯éåžžãã©ã¡ãŒã¿ãŒãŸãã¯ã€ã³ããã¯ã¹ïŒã¢ã€ã³ã³ïŒãšåŒã°ããŸãã ãããã®ç¹æ®é¢æ°ã«ã¯ãä»»æã®æ°ã®ãã©ã¡ãŒã¿ãŒãæå®ã§ããŸãã ããšãã°ïŒ
Wolfram颿°ãµã€ããåç
§ïŒãããã»ã«é¢æ°

ïŒzïŒããã³

ïŒzïŒããã€ãã³

ïŒzïŒããã¯ããã«ã

ïŒzïŒãããã³Struve

ïŒzïŒããã³

ïŒzïŒ1ã€ã®ãã©ã¡ãŒã¿ãŒïŒããããã€ã³ããã¯ã¹ïŒã®ã¿ããããWhittaker颿°

ïŒzïŒããã³

ïŒzïŒãããã³çž®éããè¶
幟äœé¢æ°


ïŒa; b; zïŒãšUïŒaãbãzïŒã«ã¯2ã€ã®ãã©ã¡ãŒã¿ãŒããããŸãã æãã®æ©èœ

ïŒzïŒããã³

ïŒzïŒãããã³Weber颿°

ïŒzïŒããã³

ïŒzïŒ1ã€ãŸãã¯2ã€ã®ãã©ã¡ãŒã¿ãŒãæã€ããšãã§ããŸãïŒ2ã€ã®ãã©ã¡ãŒã¿ãŒã®å Žåããããã¯Angerããã³Weberã®äžè¬å颿°ãšåŒã°ããŸãïŒã Appelããã³Humbert颿°ã«ã¯3ã5åã®ãã©ã¡ãŒã¿ãŒããããäžè¬åãããè¶
幟äœé¢æ°ãªã©ã®ããè€éãªç¹æ®é¢æ°

ãä»»æã®æéæ°ã®ãã©ã¡ãŒã¿ãŒãæã€ããšãã§ããŸãã
ä»ã®ããããã£ã®äžã§ããç¹æ®é¢æ°ã®åŸ®åã¯ããããã®å€æ°ãå€åãããšãã®åŸ®åã颿°ã®åäœãç¹åŸŽä»ããã®ã§ãéèŠãªåœ¹å²ãæãããŸãããŸãããããã®é¢æ°ã®åŸ®åæ¹çšåŒã®ç ç©¶ã«ãéèŠã§ã ååãšããŠããã®åŒæ°ã«ããç¹å¥ãªé¢æ°ã®åºå¥ã¯ã倧ããªå°é£ãæç€ºããŸããã ãã®ãããªå°é¢æ°ã®æå€§ã®ã³ã¬ã¯ã·ã§ã³ã¯ã200以äžã®é¢æ°ã®1次ã2次ãèšå·ãããã«ã¯åæ°æ¬¡æ°ãå«ã¿ãWolfram Functions Webãµã€ãã®ã埮åãã»ã¯ã·ã§ã³ã§å©çšã§ããŸãïŒ
ãã®ã»ã¯ã·ã§ã³ã«ã¯ãããã»ã«é¢æ°ã®21å°é¢æ°ã®åŒãå«ãŸããŠãããšããŸããã

ïŒzïŒïŒããŸãã¯Yuã®æ¬A. Brychkov
Handbook of Special Functions ïŒã ãããã®åŒã®ã»ãšãã©ã¯ã
Wolframèšèªã§ãçŽæ¥å©çšã§ããŸãã æ°ãã
MathematicalFunctionDataããã³
EntityValue颿°ã䜿çšããŠååŸã§ããŸãã
ãã ãããã©ã¡ãŒã¿ã«é¢ããå°é¢æ°ïŒåŒæ°ãšã¯å¯Ÿç
§çã«ïŒã¯äžè¬ã«èšç®ãã¯ããã«å°é£ã§ãã æ°åŠç©çåŠã®æãé »ç¹ã«ééããç¹æ®é¢æ°ã®1ã€ïŒãã©ã¡ãŒã¿ãŒ
Μã«é¢ãã ïŒã®1次å°é¢æ°ãå«ãäžèšã®åŒãéãã圢ã§çºèŠãããã®ã¯ããæè¿ã§ãããããã¯ããããé©ãã¹ãäºå®ãäžè¬çãªåé¡ã®è€éãã瀺ããŠããããšã¯æ³šç®ã«å€ããŸãã ãããã£ãŠãå
žåçãªäŸãšããŠããã»ã«é¢æ°
Jã䜿çšããŠããã®ç¹æ®é¢æ°ã®å·®å¥åã®æŽå²ã«ã€ããŠç°¡åã«èª¬æããŸãã
ããªããã£ãã®èšç®ã¯å¿
ãããç°¡åã§ã¯ãããŸãã
å€ãã®å Žåã人ã
ã¯ãæ°åŠçåæã«ç²ŸéããŠããŠããçµ±åã¯é£ãããå·®å¥åã¯ç°¡åã ãšèããåŸåããããŸãã ãäžè¬çãªãç¥æµã¯ç¥ãããŠãããã
å·®å¥åã¯æè¡ã®åé¡ã§ãããçµ±åã¯èžè¡ã§ããã
ãšè¿°ã¹ãŠããŸãã ãã ãããã®ã¹ããŒãã¡ã³ãã¯ã埮åãåã³åºæ¬é¢æ°ïŒãŸãã¯ãã®çµã¿åããïŒã«ã€ãªããåºæ¬é¢æ°ã«å¯ŸããŠã®ã¿å®å
šã«åœãŠã¯ãŸããŸãã 埮åããã©ã¡ãŒã¿ãŒã«ãã£ãŠå®è¡ãããå Žåãéåžžãããäžè¬çãªã¯ã©ã¹ã®è€éãªé¢æ°ã«ãªããŸãã
ãã©ã¡ãŒã¿ãŒã«ãã埮åãšåŒæ°ã«ãã埮åã®éãã¯ãããã»ã«é¢æ°
Jã§èª¬æã§ããŸã
ã åŒæ°
zã«é¢ããããã»ã«åŸ®å
Jã¯ããªã以åããç¥ãããŠãããæ¯èŒçåçŽãªé圢åŒãæã£ãŠããŸãã

ãã ãããã©ã¡ãŒã¿ãŒ
Μã«é¢ãããã®å°é¢æ°ã®åæèšç®ã¯ããè€éã§ãã å€ãã®å Žåããã©ã¡ãŒã¿ãŒã«é¢ããå°é¢æ°ã¯ãæŽæ°ãŸãã¯ç¡éçŽæ°ã®åœ¢åŒã§èšè¿°ã§ããŸããããããã®ãªããžã§ã¯ãã¯ãä»ã®åçŽãªé¢æ°ãŸãã¯æ¢ç¥ã®é¢æ°ã䜿çšããŠéãã圢åŒã§è¡šãããšã¯ã§ããŸããã æŽå²çã«ãããã€ãã®ç¹å¥ãªæ©èœã¯ãæ¢ç¥ã®æ©èœã®æŽŸçç©ã«ç°¡åãªè¡šèšæ³ãäžããããšãå¯äžã®ç®çãšããŠå°å
¥ãããŸããã ããšãã°ã
ããªã¬ã³ã颿°ã¯ ã
ã¬ã³ã颿°ã®å°é¢æ°ãè¡šãææ®µãšããŠç»å ŽããŸããã
äžè¬åãããè¶
幟äœé¢æ°

ãããŠããã®å°é¢æ°ã¯ãçè«ããã³å¿çšæ°åŠã®ããŸããŸãªåé¡ã解決ããäžã§éèŠãªåœ¹å²ãæãããŸãïŒããšãã°ãéåååŠã«ããããã©ã¡ãŒã¿ãŒã«é¢ããå°é¢æ°ã®äœ¿çšã«é¢ããLU Ancaraniããã³G. Gasaneoã®
èšäºãåç
§ ïŒã äžè¬åãããè¶
幟äœé¢æ°ã¯ãç¹å¥ãªå ŽåãšããŠãæãäžè¬çã«äœ¿çšãããå€ãã®åºæ¬é¢æ°ïŒããšãã°ãäžè§é¢æ°ãåæ²ç·é¢æ°ã察æ°é¢æ°ãéäžè§é¢æ°ïŒãããã³ããã»ã«ãã·ã¥ãã«ãŒããã±ã«ãã³ãã¢ã³ã¬ãŒ-ãŠã§ãŒããŒãå«ãå€ãã®ç¹æ®é¢æ°ãçæããŸããäžå®å
šãªã¬ã³ã颿°ãšç©å颿°ïŒææ°ããµã€ã³ãã³ãµã€ã³ïŒã
p = 0 ã
q = 1ã®å Žåãäžè¬åãããè¶
幟äœé¢æ°

颿°ã®ããã»ã«æãå«ãŸããŠããŸã

ïŒzïŒ

ïŒzïŒ

ïŒzïŒãããã³

ïŒzïŒã ããšãã°ãããã»ã«é¢æ°
Jã«ã¯ã次ã®è¶
幟äœè¡šçŸããããŸãã



è峿·±ãããšã«ãæ©èœå±¥æŽ

ïŒzïŒã»ãŒ200幎åã«å§ãŸããŸãã 1816-17幎ã®ãã«ãªã³ã¢ã«ãããŒïŒ1819幎å
¬éïŒã®ã¬ããŒãã§ã¯ã
Auflyscheauflösungder Keplerschen Aufgabeã®ç ç©¶ã§ ãããªãŒããªããŽã£ã«ãã«ã ããã»ã«ã¯ãããããã±ãã©ãŒæ¹çšåŒM = Ee sinïŒEïŒãèæ
®ããŸããããã§ã
Mã¯å¹³åç°åžžã
Eç°åžžãããã³
eã¯ã±ãã©ãŒè»éã®é¢å¿çã§ãã ãã®æ¹çšåŒã®è§£ã¯ãæŽæ°æ¬¡ã®ããã»ã«é¢æ°ãä»ããŠïŒçŸä»£ã®è¡šèšæ³ã§ïŒè¡šçŸã§ããŸãã

ãã®æåã®äœåã§ã¯ãããã»ã«ã¯ãŸã çŸä»£ã®è¡šèšæ³ã䜿çšããŠããŸããããåœŒã®æ©èœã¯ãã§ã«æé»ã®åœ¢åŒã§è¡šç€ºãããŸãã ããšãã°ã次ã®éã䜿çšããŸãïŒããã»ã«ã¯ã¬ãŠã¹ã®æå®ã䜿çšããããšã«æ³šæããŠãã ãã
ç§ã®ããã«
ïŒ ïŒïŒ

æè¿ã§ã¯ããã®åŒã次ã®ããã«Wolframèšèªã®2ã€ã®ããã»ã«é¢æ°ã®åèšãšããŠæžãããšãã§ããŸãïŒ


ãã®åèšã¯ãæ£ç¢ºã«ããã»ã«é¢æ°-2 ae

ïŒeiïŒïŒ


1824幎ã®åœŒã®
次ã®äœåã§ã¯ãããã»ã«ã¯ã»ãšãã©çŸä»£ã®è¡šèšæ³ïŒçœ®æ
J I ïŒã䜿çšããŠãåœŒã®æ©èœã瀺ããŠããŸãã



ãŸããæ¬¡ã®ãããªãã®æ©èœã®åºæ¬çãªé¢ä¿ãå°ãåºããŸãã



äžè¬çãªããã»ã«é¢æ°ã®ããŸããŸãªç¹æ®ãªã±ãŒã¹ã¯ããã«ããŒã€ããªã€ã©ãŒããã©ã³ããŒã«ãªã©ã®èæžã«ãã§ã«èšèŒãããŠããŸãïŒè©³çްã«ã€ããŠã¯
èšäºãåç
§ããŠãã ããïŒã 仿¥ã®ããã»ã«é¢æ°ã«é¢ããäž»ãªåèæžã¯ãGãN.ã¯ããœã³ã«ããå€å
žçãªã¢ãã°ã©ãã§ãããã
ããã»ã«é¢æ°ã®çè« ãã§ããã1922幎ã®åçãšæ¯èŒããŠç¹°ãè¿ãåçãããå®è³ªçã«è£è¶³ãããŠããŸãã
ãããã£ãŠãåŒæ°
zã«é¢ããããã»ã«é¢æ°
Jã®å°é¢æ°ã¯19äžçŽã®åãããç¥ãããŠããŸããã20äžçŽåã°ãŸã§ã«ãã€ã³ããã¯ã¹ã«é¢ããå°é¢æ°ã®ç¹æ®ãªã±ãŒã¹ãèŠã€ãããŸããã Μ= 0,1,2ã...ããã³Îœ= 1/2ã«ããã
Μã«é¢ããããã€ãã®ããã»ã«é¢æ°ã®å°é¢æ°ã¯1935幎ã«
J. R.ãšã¢ãªãŒã«ãã£ãŠäžãããããããã®ç¹ã«ãããããã»ã«æã®ä»ã®é¢æ°ã®è¡šçŸã¯V. Magnusã®æ¬ã§äžããããŸããã ãFãBeitmanããã³R. P. Soniã
æ°çç©çåŠã®ç¹æ®é¢æ°ã®å
¬åŒãšå®ç ãïŒ1966ïŒïŒ

ä»»æã®åæŽæ°
Μå€ã®äžè¬åã¯ã次ã®ããã«ã
åœéæœè±¡ããã³å¿çšåæäŒè° ïŒHanoiã2002ïŒã§çºè¡šãããŸããã

ãããã®çµæã¯ãæŽæ°ããã³åæŽæ°ç¹ã§ã®Struve颿°ã®ãã©ã¡ãŒã¿ãŒã«é¢ããå°é¢æ°ã®åŒãšãšãã«ã2004幎ãã2005幎ã«å
¬éãããŸããã ã¢ã³ã¬ãŒé¢æ°ãšãŠã§ãŒããŒé¢æ°ãã±ã«ãã³é¢æ°ãäžå®å
šã¬ã³ã颿°ãæŸç©ç·ã·ãªã³ããŒé¢æ°ãã«ãžã£ã³ãã«é¢æ°ãšã¬ãŠã¹é¢æ°ãäžè¬åããã³çž®éè¶
幟äœé¢æ°ã®ãã©ã¡ãŒã¿ãŒã«é¢ããŠåŸ®åããããã®ããŸããŸãªæ°ããå
¬åŒã¯
ãç¹æ®é¢æ°ã®
ãã³ãããã¯ã«ãããŸãïŒåŸ®åãç©åãã·ãªãŒãºãªã©ãã©ãŒãã¥ã© ãã ç°¡åãªæŠèŠãšåèè³æã«ã€ããŠã¯ã
HãCohlãåç
§ããŠãã ããã
ãããã®ãã¹ãŠã®çµæã§ããã©ã¡ãŒã¿ã®ä»»æã®å€ã«å¯Ÿããéãã圢ã®ããã»ã«é¢æ°ã®æåã®å°é¢æ°ã2015幎ã«ã®ã¿åŸãããããšã¯ããããé©ãã¹ãããšã§ãããïŒY. A. Brychkovãã
ã€ã³ããã¯ã¹ã«é¢ããããã»ã«é¢æ°ã®é«æ¬¡å°é¢æ° ãã2016å¹ŽïŒ ã ãããã¯ãããã»ã«é¢æ°ãšäžè¬åãããè¶
幟äœé¢æ°ã®ç©ã®çµã¿åãããšããŠè¡šãããŸãã äŸïŒ

以äžã®ã°ã©ãã¯ãããã»ã«é¢æ°ã®åäœã«é¢ããæŽå¯ãæäŸããŸãã

ïŒzïŒé¢å¿ã®ããåéã«ããããã®æŽŸçç©ã æåã«ãïŒå®éã®
Μ -
zå¹³é¢ã§ïŒã®äžæ¬¡å°é¢æ°ã®åŒãäžããŸã

ïŒzïŒ
Μã«é¢ããŠïŒèšäºã®åé ã®åŒãåç
§ïŒïŒ


åºå®ã€ã³ããã¯ã¹ãã€ãŸã
Μ = Ïã®å Žåãããã»ã«é¢æ°ã®ã°ã©ããšæåã®2ã€ã®å°é¢æ°ïŒåŒæ°ãšã€ã³ããã¯ã¹ã«é¢ããïŒã瀺ããŸãã


ïŒ
zã«é¢ããŠãããã³
Μã«é¢ããŠïŒå°é¢æ°ãã»ãŒäžèŽãããŒããæã£ãŠããããšã«æ³šæããããšã¯è峿·±ãã§ãã
ã©ããã£ãŠãããæã«å
¥ããã®ïŒ
å€å
žçãªé¢æ°ïŒããã»ã«é¢æ°ã®å°å
¥ããã»ãŒ300幎åŸã§ãã£ãŠã泚ç®ã«å€ãã

ïŒzïŒã¯1732幎ã«ãããšã«ãã«ããŒã€ã«ãã£ãŠå°å
¥ãããŸããïŒã以åã®ããã«ããã®ãããªé¢æ°ã«é¢é£ããæ°ããæ¯èŒçåçŽãªåŒãèŠã€ãããŸãã å®éãäžã§ç޹ä»ããå°é¢æ°ã®åŒ

ïŒããªããã£ãã®å¯Ÿå¿ããçµæãšãšãã«

ããã€ãã³ããã¯ããã«ããã±ã«ãã³ã®æ©èœïŒã¯Wolframèšèªã䜿çšããŠååŸãããŸããã ãããã®ããªããã£ããã©ã®ããã«æ€çŽ¢ããããã«é¢ããè©³çŽ°ãªæ
å ±ã¯ã
ããã«å
¬éãããŠã
ãŸã ã ãã®æçš¿ã§ã¯ãä»ã®ç¹å¥ãªæ©èœã«äœ¿çšã§ããã¢ãããŒãã®ãªãã·ã§ã³ã®1ã€ã®ã¹ã±ããã®ã¿ã瀺ããŸãã
ãŸããããã»ã«é¢æ°ãšãçŸåšé¢å¿ã®ããä»ã®é¢æ°ãè¶
幟äœåã®é¢æ°ã§ããããšãæãåºããŠãã ããã ãããã1ã€ã®å€æ°ã®äžè¬çãªè¶
幟äœé¢æ°ã®ãã©ã¡ãŒã¿ãŒã«ãã埮å

è€æ°ã®å€æ°ã®è¶
幟äœåã®ããè€éãªé¢æ°ãå¿
èŠã§ãïŒLU AncaraniãšG. Gasaneoã®
èšäºãåç
§ïŒã ãäžäœããã©ã¡ãŒã¿ãŒã«é¢ãã1次å°é¢æ°

ãããã³ãäžäœããã©ã¡ãŒã¿ã«é¢ããã·ã³ããªãã¯æŽæ°æ¬¡æ°
mã®ãã¹ãŠã®å°é¢æ°

äžè¬åãããè¶
幟äœé¢æ°ã¯ãCampge de Ferrierè¶
幟äœé¢æ°ã«é¢ããŠè¡šçŸã§ããŸãã

次ã®åŒã«ãã2ã€ã®å€æ°ïŒ


äžèšã®Campéde Ferrierã®è¶
幟äœé¢æ°ã¯ã2è¡ã§å®çŸ©ãã
ãŸã ïŒ
ãã¡ããš
ãã¡ããã芧ãã ããïŒã

Campe de Ferrier颿°ã¯ã2ã€ã®å€æ°ãžã®è¶
幟äœé¢æ°ã®äžè¬åãšèããããšãã§ããŸãã

颿°ã®å¯Ÿå¿ããæ£èŠåãããããŒãžã§ã³ã¯ãPohhammerãã£ã©ã¯ã¿ãŒã®ç©ã眮ãæããããšã«ãã£ãŠæ±ºå®ããããšãã§ããŸãã

äžã®åæ¯ã§

ã
Campe de Ferrier颿°ã¯ããã©ã¡ãŒã¿ã«é¢ããããã»ã«é¢æ°
Jã®å°é¢æ°ã衚ãããã«äœ¿çšã§ããŸãã

ãã®åŒã¯ã1ã€ã®å€æ°ã®è¶
幟äœé¢æ°ãå«ãäžèšã®åçŽãªåŒãšäžèŽããŸãããããã¯ããã«ã¯ããããŸããïŒå€æ¬¡å
è¶
幟äœé¢æ°ã1次å
è¶
幟äœé¢æ°ã®ã¿ãå«ãåŒã«åçŽåããããã®åŒã®å®å
šãªã»ããã¯ãŸã ãããŸããïŒã
3ã€ã®Meyer G颿°ã®ç©ããMellin倿ãèšç®ãããš
ã 2倿°ã®äžè¬åãããè¶
幟äœé¢æ°ã®äžèšã®å®çŸ©ãšåæ§ã®äºéçŽæ°ãçºçã
ãŸã ã

ãã®åŒã®å³èŸºã«ã¯ã2ã€ã®å€æ°ã®Meyer G颿°ãå«ãŸããŸããäžè¬çãªïŒé察æ°ïŒå ŽåãG-ã®
2ã€ã®åŒïŒ
first ã
second ïŒãšã®é¡æšã«ãããããã€ãã®ä¿æ°ãæã€Campe de Ferrierè¶
幟äœé¢æ°ã®æéåãšããŠè¡šãããšãã§ããŸã1ã€ã®å€æ°ã®Meyer颿°ã æåŸã«ãè¶
幟äœé¢æ°ã®å®æ°éšãšèæ°éšãå®ãã©ã¡ãŒã¿ãŒã䜿çšããŠ1ã€ã®å€æ°
z = x + iyããåé¢ããããšãã«ã³ãããã§ãªãšé¢æ°ãçºçããŸãã

ïŒäžèšã®åŒã¯E. D. Krupnikovã«ãã£ãŠå°åºãããŸããããå
¬éãããŠããŸããïŒã
è¿å¹Žãå€ãã®å€æ°ã®è¶
幟äœé¢æ°ããå Žã®éåè«ãååŠãæ©æ¢°å·¥åŠãéä¿¡çè«ãã¬ãŒããŒãªã©ã®åéã§ã®çšéãå¢ãããŠããããšã«æ³šç®ãã¹ãã§ãã å€ãã®å®çšçãªçµæã¯ããã®ãããªé¢æ°ã䜿çšããŠè¡šãããšãã§ããããããã®åéã®äž»ãªçµæã®ã»ãšãã©ã¯ãå¿çšç§åŠæç®ã§åŸãããŸãã çè«æ°åŠã«ããããã®ãããªé¢æ°ã®çè«ã¯ããŸã æ¯èŒçäžååã«éçºãããŠããŸãã
Wolframèšèªã®æå掟çç©
ã·ã³ããªãã¯ããªããã£ããå«ããããã®æ°ããè峿·±ãæ°åŒã®äœæè
ã§ããYuri Brychkovã¯ãç§ãã¡ã®ããŒã ã®ã¡ã³ããŒã§ããããã®çµ¶ããçºå±ããŠããæ°åŠã®åéããŠãŒã¶ãŒã®æ³šæãåŒãããšãã§ããŸãã ãŸãã
Mathematicaã·ã¹ãã ã®æ°ããæ©èœïŒWolfram LanguageïŒ-Entityãèªç±ã«äœ¿çšã§ããããšã幞éã§ããããã«ãããç¹ã«ãæ°é±éãŸãã¯æ°æ¥ä»¥å
ã«ãèšç®å¯èœãªåœ¢åŒã§ãèšèªã䜿çšããããã¹ãŠã®ãã©ãããã©ãŒã ã§æ°ããçµæãè¿
éã«è¡šç€ºã§ããŸãWolframèšèªããŠãŒã¶ãŒãžã ããšãã°ãMathematicaã§ã¯ã次ã®åŒãèšç®ã§ããŸãã


ãããã£ãŠããã®èšäºã®äž»èŠãªå
¬åŒãåŸãããŸãã æåã«ã·ã³ããªãã¯å€Îœããã³
zã代å
¥ããåŒãååŸããããšã«ãããæ°åŒãæ°å€çã«ç¢ºèªã§ããŸãã


次ã«ãå·Šéšåãšå³éšåãåé¢ããåŒæ°ãšãã©ã¡ãŒã¿ãŒãã©ã³ãã ãªå€ã«çœ®ãæããŸãã


å·ŠèŸºã®æ°å€å°é¢æ°ã¯ãå¶éæé ã䜿çšããŠWolframèšèªã§èšç®ãããŸãã 巊蟺ãšå³èŸºã®å¹³çæ§ããããã£ãŠãå°é¢æ°ã®å
ã®åŒã®æ£ç¢ºæ§ã¯æããã§ãã
ãã®èšäºã§èšåããã
EntityValueãä»ããŠã®ã¿å©çšå¯èœãªã·ã³ããªãã¯ããã³ãã©ã¡ããªãã¯æŽŸçç©ã«é¢ããå€ãã®æ°ããçµæã«å ããŠïŒWolframèšèªã®å°æ¥ã®ããŒãžã§ã³ã§ãã®æ©èœãããæ·±ãçµ±åããã«ã¯çµ¶ãéãªãåªåãå¿
èŠã§ãïŒããã®åéã®å€ãã®çµæãã·ã¹ãã ã®ã«ãŒãã«ã«æ¢ã«å®è£
ãããŠããŸãMathematicaãšWolframèšèªã®ã³ã¢ã ãã®ãããªãã©ã¡ãŒã¿ãŒã®å°é¢æ°ã¯è€éã§ããããèªåçã«èšç®ãããŸãããã
FunctionExpandã³ãã³ãã䜿çšããŠè¡šç€ºã§ããŸãã äŸïŒ




2次以äžã®ããã»ã«é¢æ°ãšé¢é£é¢æ°ã®ã€ã³ããã¯ã¹ã«é¢ãã埮åã¯ã2倿°ã®Campge de Ferrierè¶
幟äœé¢æ°ã®èгç¹ãã衚çŸã§ããŸãã

ãããããçµæã®åŒã¯éåžžã«è€éã«ãªãå¯èœæ§ãããããã«
Yå€é
åŒãå«ãå ŽåããããŸãã

æåŸã®åŒã¯ãããã»ã«é¢æ°ã®è¡šçŸããçããŸã

ïŒzïŒé¢æ°ã®æ§æãéããŠ


ïŒ;Μ+ 1; wïŒããã³

ïŒ
Faa di BrunoåŒã䜿çšããŸããããã«ããã
m颿°ã®åæã®n次å°é¢æ°ã®åŒãååŸã§ããŸãã

ã
m = 2ã®å ŽåïŒ
ãããš
ãããåç
§ïŒãããšãã°æ¬¡ã®åŒãååŸããŸãã

å
±éã®
mããã³
nã«å¯Ÿå¿ããåŒã¯ãWolframèšèªã§ååŸããã³æ€èšŒã§ããŸãã


äžè¬çãªé圢åŒããªããã«å€é
åŒYã¯ãé«é埮åã衚ãããã«éåžžå¿
èŠã§ããããã®æçš¿ã®èè
ã®1人ã§ããYuri Brychkovã¯ãããã»ã«é¢æ°ã®ãã©ã¡ãŒã¿ãŒã«é¢ããŠnçªç®ã®åŸ®åããå€é
åŒYãé€å»ããæ¹æ³ãçºèŠããŸãããçŽ æŽãããçµæãæ®ããŠãããŸããã

ãã©ã¡ãŒã¿ãŒã«é¢ããç¹å¥ãªé¢æ°ã®æŽŸçç©ïŒäžèšãå«ãïŒã®ãã¹ãŠã®æ¢ç¥ã®åŒã1ãæã§ç¢ºèªããããŠãŒã¶ãŒã®äŸ¿å®ã®ããã«ããããã®åŒãæ¬¡ã®æ¹æ³ã§åéããŠè¡šç€ºããŸããã
1.衚圢åŒïŒ
ãã¡ãããããŠã³ããŒãïŒã
2. Mathematicaã©ãããããã®åœ¢åŒïŒ
ãã¡ãããããŠã³ããŒãïŒã
3. 2009幎以åã«ç¥ãããŠããåŒã®ãµãã»ããã¯ãWolfram Function Siteã®ããŸããŸãªé¢æ°ã®ãDifferentiationãã»ã¯ã·ã§ã³ã§èŠãããšãã§ããŸãïŒããšãã°ããã®
ããŒãžãåç
§ ïŒã
æ¬¡ã®æçš¿ã§ã¯ãã·ã³ããªãã¯ããã³ãã©ã¯ã·ã§ãã«ãªãŒããŒã®å°é¢æ°ã®äžè¬çãªã«ãŒã«ãæã€400以äžã®é¢æ°ã®ã³ã¬ã¯ã·ã§ã³ã®å°é¢æ°ã®éãã圢ã®è¡šçŸãäžããŸãã Wolframèšèªã§ç¹æ®é¢æ°ã®æŽŸçç©ã®äžçãæ¥œããã§æ¥œããã§ãã ããïŒ
Wolframãã¯ãããžãŒã«é¢ãã質åã«ã€ããŠã¯ã info-russia @ wolfram.com ãŸã§ãåãåãããã ãã