ãã°ããåãã¢ã¹ã¯ã¯å·ç«å€§åŠã®åæ¥çã§ãããããŒããŒã倧åŠã®å€§åŠé¢ã忥ããå€ãã®ç§åŠç ç©¶è
ã§ããã€ãŽãŒã«ã»ããã¯ãã€ã³ããã¯ã¹ã®ã¢ã¹ã¯ã¯äºåæã«æ¥ãŸããã çŸåšãã€ãŽãŒã«ã¯ã«ãªãã©ã«ãã¢å€§åŠã§åããŠããŸãã Yandexã«é¢ãã圌ã®è¬çŸ©ã¯ãããŸããŸãªã¯ã©ã¹ã®ã·ãŒã±ã³ã¹ãšé åã«å°å¿µããŸããã è¬çŸ©äžã®æš©å©ãå«ããŠã圌ã¯ãé åã®åéã®éµã®1ã€ã§ãã
ããŒãã³ãšã¶ã€ã«ããŒã¬ãŒã®ä»®èª¬ã«åè«ããèšç®ãæç€ºããŸããã
ã«ããã®äž-詳现ãªããã¹ããã³ãŒããšã»ãšãã©ã®ã¹ã©ã€ãã

ç§ã®å ±åã¯æãæšæºçãªãã®ã§ã¯ãããŸããã æ®å¿µãªãããåæåã®çµã¿åããã¯ããŸãçå£ã«ç ç©¶ãããŠããŸãã-ãã·ã¢ã§ã¯æšæºçãªå€§åŠããã°ã©ã ã«å«ãŸããŠããŸããã ã¬ããŒãã®æåã®å
¥éååã§ã¯ãåæåçµã¿åããè«ããã®æåãªå€å
žçãªè³ªåãåŒçšããŸãã åŸåã§ã¯ãæè¿æ°ã¥ãããã®ããããã«è€éãªãã®ã«ãªããŸãã ããªããç§ãæ¢ããŠè³ªåããå Žå-ããã¯å€§äžå€«ã§ãã
åæçµã¿åããè«ãšã¯äœã§ããïŒ éåžžãèªç¶æ°ã®ã·ãŒã±ã³ã¹ãç ç©¶ããŸãã 圌ãã¯éããŸãã Online Encyclopedia of Integer SequencesããåããŒã¹ã®ã·ãŒã±ã³ã¹ãæžããŸããã ãã·ã¢èªã話ããŸãããã¹ã©ã€ãã¯ãã¹ãŠè±èªã§ãã
ããã€ãã®ã·ãŒã±ã³ã¹ã¯ããã³ã³ããããªã¢ã«ã§ãããããã€ãã¯ããå°ãªãçµã¿åããã§ãã ããšãã°ããã®çŸç§äºå
žã®æåã®ã·ãŒã±ã³ã¹ã§ããæéã°ã«ãŒãã®æ°ã¯ãããŸãã³ã³ããããªã¢ã«ã§ã¯ãããŸããã æ¬¡æ°4ã®2ã€ã®ã°ã«ãŒããããããšãããããŸããæ¬¡ã«ç°¡åãªã·ãŒã±ã³ã¹ã¯çŽ æ°ã§ãã æŽæ°nã®ããŒãã£ã·ã§ã³ã®æ°ãé
ã®åèš-åŸã§ç¢ºèªããŸãã æ¬¡ã®ã·ãŒã±ã³ã¹ã¯ãã£ããããæ°åã§ãã æ¬¡ã«ãã€ã³ããªã¥ãŒã·ã§ã³ã®æ°ãã«ã¿ããã¢èªã®æ°ãæ¥ç¶ãããã°ã©ãã®æ°ã
質åã¯æ¬¡ã®ãšããã§ããåã·ãŒã±ã³ã¹ã®æ°å€ãèšè¿°ããåŒã¯ãããŸããïŒ ããã¯é£ãã質åã§ã-ããã¯åŒã®æå³ã«é¢é£ããŠããŸãã ããŸããŸãªã·ãŒã±ã³ã¹ãšåŒã«ã€ããŠèª¬æããŸãã ããããç§ã¯ãããçµ±äžããŠãçè«ãäŒããããšããŸãã ã·ãŒã±ã³ã¹ãç ç©¶ãããããã«å«ãŸããæ°å€ã®å
¬åŒãçè§£ããããšããŸãã

æšæºã®ç޹ä»ããå§ããŸãã ç§èªèº«ã¯äœã決å®ããŸãã-2人ã®èè
ãåŒçšããæ¹ãè¯ãã§ãã æåã®åŒçšã¯ãªãã£ãŒãã»ã¹ã¿ã³ã¬ãŒã«ãããã®ã§ãé·ãéèªãã§ããŸããããã®æå³ã¯æ¬¡ã®ãšããã§ãã圌ã¯ããäœããäœããæãããã®ã®åèšã«çããããšæžãã°ãæãè峿·±ãã®ã¯æç€ºçãªåŒã ãšèããŠããŸãã
ããŒããŠã£ã«ãã¯ãåŒã¯ãããåã§ãããç©ã§ãããã«ã¯é¢ä¿ãªãããã®ããã«å®çŸ©ããããšã¯ã§ãããåŒã¯å®éã«ã¯ã¢ã«ãŽãªãºã ã§ãããšã¯èšããŸããã ç§ãã¡ã«ãšã£ãŠã圌ã®ã¢ã€ãã¢ã¯éåžžã«éèŠã§ãã æ°åŒã¯ãnã®æéå€é
åŒã®ã·ãŒã±ã³ã¹å
ã®æ°ãã«ãŠã³ãããç¹å®ã®ã¢ã«ãŽãªãºã ã§ãã
ããããå®éã«ã¯ãå€ãã¢ã€ãã¢ã¯ãåŒãè¯ããã©ãããçè§£ããããšã§ãã 圌ãã¯æŒžè¿åŒã§åŒãèŠãŸãã ãã®æ°å€ããã©ã¹ãŸãã¯ãã€ãã¹3ïŒ
ã®ç²ŸåºŠã§åŒã«ãã£ãŠçè§£ã§ããå Žåãããã¯é©åãªåŒã§ãã ãã©ãŒãã¥ã©ãšã¯äœãã®3ã€ã®æšæºå®çŸ©ããªã¹ãããŸããã 3ã€ãã¹ãŠãéåžžã«éèŠã«ãªããŸãããã¢ã«ãŽãªãºã ã®ã¢ãããŒããæãéèŠã«ãªããŸãã

挞è¿ç·ããå§ããŸãããã ããã¯éåžžã«å€ããã®ã§ããã¹ãŠã®ã·ãŒã±ã³ã¹ã§ç¥ãããŠããŸãã ããšãã°ããã£ããããæ°ã¯éåžžã«ç¹å®ã®ææ°é¢æ°çæ¹æ³ã§æé·ããã«ã¿ããã¢èªæ°ãææ°é¢æ°çã«æé·ããŸã-å€é
åŒå åããããŸãã éåžžã«å€ãå®çã«ã€ããŠè©±ããŠããã ããã¯ã100幎以äžåã®çŽ æ°ååžå®çã§ãã ããŒãã£ã·ã§ã³ã®æ°ã«ã€ããŠã¯ãé©ãã¹ã挞è¿åŒããããŸãã 蚌æããã®ã¯ããã»ã©ç°¡åã§ã¯ãããŸããããææ°é
ã®çè§£ã¯å°ãç°¡åã§ãã
éçž®ã®æ°ã«ã€ããŠã¯ãè€éããããå°ãã®åæãå¿
èŠã§ãã ããããæ¬¡æ°<= nã®ã°ã«ãŒãæ°ã®åŒã¯éåžžã«è€éã§ãã ããã蚌æããã«ã¯ãåçŽãªæé矀ã®åé¡ãç¥ãå¿
èŠããããŸããããã¯å®å
šãªçµã¿åããè«ã§ã¯ãªããçµã¿åããè«ã§ã¯ãããŸããã
ããããæåŸã®åŒã¯ããã©ãããéåžžã«åçŽã§ãã né ç¹ã®ã°ã©ãã®æ°ã¯ã床ïŒ...ïŒä¿æ°ã§çŽ2ãn / 2ã§ãã ãŸãããã®æå³ã¯éåžžã«åçŽã§ããã©ã³ãã ã°ã©ãã¯ãnãç¡é倧ã«ãªããš1ã«ãªãåŸåã®é«ã確çã§æ¥ç¶ãããŸãã
ãããã®åŒã¯åªããŠããŸãããçµã¿åããåŒã§ã¯ãªãåæåŒã§ãã ãŸãããããã®æ°å€ãã«ãŠã³ãããæ¹æ³ãçè§£ããããšã¯ã§ããŸããã ãããŠããããç§ãã¡ã®ããããšã§ãã ãããŠãç§ãã¡ãäœãããŠããããæ£ç¢ºã«çè§£ããããã«ãéåžžã«æšæºçãªå€å
žçãªäŸã§ãããã£ããããæ°ããå§ããŸãã

ãããã®å®çŸ©ã®1ã€ã瀺ããŸãã ãã£ããããæ°ã¯ã2ã€ã®é£ç¶ããåäœããªãé·ãnãã1ãåŒãã0ãš1ã®ã·ãŒã±ã³ã¹ã®æ°ã§ãã ããšãã°ã2ã€ã®ãŠããããé£ç¶ããªãé·ã2ã®ã·ãŒã±ã³ã¹ãæ£ç¢ºã«3ã€ãããŸããããã§ã¯ã00ã01ã10ã§ãã2ã€ã®ãŠããããé£ç¶ããªã5ã€ã®é·ã3ã®ã·ãŒã±ã³ã¹ããããŸãã
以äžã®3ã€ã®åŒããããŸãã æåã®åŒã¯ãç§ãã¡ããç¹°ãè¿ããããã£ããããæ°ã®æ¯ã§ããæ¬¡ã¯ãåã®2ã€ã®å€ã®åèšã§ãã 2çªç®ã®åŒã¯ããã£ããããæ°ãäºé
ä¿æ°ã®åèšãšããŠæžãåºããŸãã 3çªç®ã®åŒã¯éåžžã«æç¢ºã§ãã圌女ã¯ãããããé»éæ¯ãšãã®éã®2床ã®åèšãšããŠèšè¿°ããŸãã
次ã®è³ªåã¯ããããã®åŒã®ã©ããè¯ãã§ããïŒ åŠçãæ°å
¥çã2幎çãæãããšããç§ã¯äŒçµ±çã«æåã®åŒããå§ããŸã-ããã¯å®çŸ©ã§ãããšèšãããã°ããããŠ3çªç®ã®åŒãå°ãåºãã30åã蚌æããŸãã
ãããã117çªç®ã®ãã£ããããæ°ãèšç®ããå¿
èŠãããå Žåã3çªç®ã®åŒã¯ãŸã£ãã圹ã«ç«ã¡ãŸããã ãããèšç®ããã«ã¯ããã®ãŽãŒã«ãã³ã»ã¯ã·ã§ã³ãæ£ç¢ºã«äœã§ããããéåžžã«æç¢ºã«ç¥ãå¿
èŠããããŸã-倿°ã®èšå·ã§ã«ãŠã³ãããå¿
èŠããããŸãã ãããŠãããããŸãå°é£ã§ãã ã©ãããŸããïŒ èããŠã¿ããšãããã¯è¯ãæ¹æ³ã§ã¯ãããŸããã äºé
ä¿æ°ã®åèšã®åŒã¯åªããŠããŸãããèšç®ã®å Žåãæåã®åŒã®æ¹ãããç°¡åã§ç°¡åã§ãã ããªãã¯äžã€ãã€æ°ãããã¹ãŠãããŸãããã§ãããã
åé¡ãäœã§ãããã¯ãã§ã«æããã§ãã ã©ã¡ãã®åŒãåªããŠãããã¯å®å
šã«ã¯æããã§ã¯ãããŸããã çŸåŠã®èгç¹ããã¯ããããã3çªç®ã®åŒã®æ¹ãåªããŠãããæŒžè¿æ§ã®èгç¹ããã¯ç¢ºãã§ãã 圌女ã¯ããã«ãã£ããããæ°ãæŒžè¿çã§ãããšèšããŸãã ãã ããæåã®åŒã¯èšç®ã«é©ãã2çªç®ã®åŒã¯ããã€ãã®å®çã蚌æããã®ã«ããé©ããŠããŸãã

æŽåã®æ°ã¯éåžžã«å€ãã·ãŒã±ã³ã¹ã§ãã èŠçŽ iãåžžã«iã«çãããªãèŠçŽ ã«å
¥ããããªé åã®æ°ãåããŸãã é·ã2ã®é åãããå Žåããã®ãããªé åã¯åžžã«1ã€ã ãã§ãã åäžã®é åã¯é©åããã{21}ãé©åããŸãã é·ã3ã®é åãããå Žåãäž¡æ¹ãšãã«ãŒãã§ããæ£ç¢ºã«2ã€ã®é åããããŸãã æ®ãã¯ãŸã£ããé©åããŸãã-ãããã«ã¯åºå®ç¹ããããŸãã
ãããŠäžè¬çã«ãåã³3ã€ã®åŒã æåã¯çŽ æŽãããã§ãïŒãã®æ°ã¯nïŒ/ Eã«æãè¿ãæŽæ°ã§ãã éåžžã«åçŽãªåŒããããŸãã ã·ã³ãã«ã ãæŒžè¿çãªææã¯é©ãã¹ããã®ã§ãã eã®å€ãã³ã³ãã¥ãŒã¿ãŒã§èšç®ããã®ã¯éåžžã«é£ãããé·ã117ã®æŽåã®æ°ãæç€ºçã«èšç®ããã«ã¯ãéåžžã«é«ã粟床ã§eãç¥ãå¿
èŠããããŸãã 2çªç®ã®åŒã¯æåã®åŒã説æããŠããŸãã 倧ãŸãã«èšãã°ãnãåãåºããšïŒ ã¢ãŠããnãååŸïŒ ãã€ã©ãŒçŽæ°ã®æåã®kã¡ã³ããŒã®åèšãæããŸãã äžæ¹ã§ã¯ãããã¯æåã®åŒã説æãã仿¹ã§ã¯ãããã«æŽæ°ããããŸã-ãããã¯ç°¡åã«æç€ºçã«èšç®ã§ããŸãã
å®éãæé©ãªèšç®åŒã¯3çªç®ã§ãã ãããã«äºæããªãååž°é¢ä¿ãåŸãããŸãããããã¯æãç°¡åã«èšç®ã§ãããŸã£ããäœã説æããŸããã å®çŸ©ãããã®ãããªåŒã蚌æããããšã¯ãéåžžã«æçœãªç·Žç¿ã§ã¯ãããŸããã ããïŒâ1ïŒã®nä¹ãã©ãåŠçãããã¯æç¢ºã§ã¯ãããŸããã ãããç©èªã§ãã æŽåã®æ°ã«ã€ããŠã¯ãã©ã®åŒãè¯ãã®ããã©ã®åŒãæªãã®ããæç¢ºã§ãªãããšã¯æããã§ãã

ã¡ããŒãžã¥çªå·ããã©ã³ã¹èªã ã¿ã¹ã¯ã¯æ¬¡ã®ãšããã§ãã19äžçŽã®æãªããã®ãã£ããŒããŒãã£ãŒãéå¬ãããn人ã®ã«ããã«ãæåŸ
ããã2ã€ã®æ¡ä»¶ãæºããããããã«ãã¹ãŠãæ€ããããšèããŠããŸãã æåã®æ¡ä»¶ã¯ãç·æ§ã女æ§ãšäº€äºã«ãªãããšã§ãã 2çªç®ã®æ¡ä»¶ã¯ãé
å¶è
ãé£å士ã«åº§ã£ãŠããªãããšã§ãã XIXäžçŽã®ä»äºã¯ããããã誰ãããŸã ãã®ãããªãã£ããŒããŒãã£ãŒãåéããŠããŸãã 圌ãã¯çµå©åŒã§ããããããšããã
ãã®æ°ãèšç®ããæ¹æ³ã¯ïŒ çµå©ããŠããã«ããã«ã2人ãããªãå Žåããããã座ãããããšã¯ã§ããŸããã ã«ããã«ãäžç·ã«åº§ãããã«ã圌ãã¯ãäºãã«å察ã§ãªããã°ãªããŸãã-ããã¯äº€æ¿ããªãããšãæå³ããŸãã 倫婊ã2人ããå Žåãã·ãŒã±ã³ã¹ã¯æåããå§ãŸããŸãã ããããçµå©ãã倫婊ã3人ãããšãã¯ããã§ã«ããªãã®æ°ã®ãã®ãããªåº§åžã®é
眮ããããŸãã ããã«ãããã®1ã€ããããŸãã ã«ããã«1Aã2Bã3CããããšããŸãã AãBãCã¯é çªã«æ€ãä»ããè¡ãã1ã2ã3ã¯ããè€éãªæ¹æ³ã§æ€ããŸãã 3ã¯AãšBã®éã«ãããAãŸãã¯Bã®é
å¶è
ã§ã¯ãªãããšãããããŸãã
ãã®åé¡ã¯è§£æ±ºã§ããŸãã æŽå²çãªèгç¹ããã2ã€ã®è§£æ±ºçããããŸãã æåã®-è€éã§ãé·ããååž°ç-ã¯ã1891幎ã«ä»¥åã«ååŸãããŸããã 2çªç®ã®è§£æ±ºçã¯ãäºé
ä¿æ°ãéä¹ãå åãªã©ã®åèšã®æç€ºçãªåŒã§ãããã®æ¯çãåŸããããšãã誰ãç¹ã«æºè¶³ããŠããŸããã§ããã ããã«åŸã£ãŠãã¹ãŠãèšç®ããã®ã¯ç°¡åã§ãããããã¯ããŸãå¿
èŠãªåŒã§ã¯ãªããšèããããŠããŸããã ãããã1934幎ã«ã¿ã·ã£ãŒããäºé
ä¿æ°ã®å€æ°åã®åœ¢åŒã§åŒãåãåããšããã«ã誰ããåé¡ã解決ãããšèããŸããã èšç®ã®èгç¹ããã¯ã2çªç®ã®åŒã®æ¹ãã¯ããã«åªããŠããŸãã
åšæççµã¿åããè«ããã®éåžžã«å€å
žçãªäŸãæããŸãã ãããã©ã®ããã«äœ¿çšããŸããïŒ çŸåšãæç€ºçãªåŒãäœã§ãããã«ã€ããŠã®çè§£ãæ¹åããããšããŠããŸãã æšæºçãªæ¹æ³ã¯ãçæé¢æ°ãååŸããããšã§ãã ãããè¡ãã«ã¯ã2ã€ã®ç°ãªãæ¹æ³ããããŸãã æãç°¡åãªæ¹æ³ã¯ãåçŽã«ãã®ãããªã·ãªãŒãºã®åèšãåããtã®æ£åŒãªé¢æ°ãšèŠãªãããšã§ãã

åé¡ã¯ããã®é¢æ°ã®åŒããããã©ããã§ãã å€ãã®å Žåãã·ãŒã±ã³ã¹ã«ã¯é©åãªåŒã¯ãããŸãããã颿°ã«ã¯ãããŸãã ããã«ããã£ããããæ°ã®éåžžã«è¯ãåŒãããäŸããããŸã-çæé¢æ°ã«ãšã£ãŠéåžžã«åççã§ãã ããããã«ã¿ããã¢èªã®æ°ã«ã€ããŠã¯ãn + 2ãŽã³ã®äžè§åœ¢åå²ã®æ°ã䜿çšãããŸãã ãªã€ã©ãŒã¯1750幎代ã«ãµã³ã¯ãããã«ãã«ã¯ã§ããããçºæããç ç©¶ããŸããã ãã®å Žåã®çæé¢æ°ã¯åççã§ã¯ãªãã代æ°çã§ãã

ä»ã®äŸãèŠãŠã¿ãŸããã-éçž®ã®æ°ãèšãã ã€ã³ããªã¥ãŒã·ã§ã³ã¯ã2ä¹ã1ã«çããé åã§ãã ããã¯ã1ãŸãã¯2ã®é·ãã®ãµã€ã¯ã«ã§æ§æãããããšãæå³ããŸãããã®ãããªã€ã³ããªã¥ãŒã·ã§ã³ã®æ°ã«ã€ããŠã¯ããããäºé
ä¿æ°ã®åèšãšããŠè¡šãããšãã§ããé©åãªåŒã¯ãããŸããã ãã ããéåžžã«è¯ãåçºçããããŸãã ããã蚌æããæ¹æ³ã¯æããã§ããïŒ
nã®æåŸã®èŠçŽ ãååŸããŸãã åºå®å°æ°ç¹-é åã®æ°ã1å°ãªãããä»ã®èŠçŽ ãšè»¢çœ®ãããŠãããã®ããããã§ãã ãã®ãããªèŠçŽ ãéžæããæ¹æ³ã¯n-1åããããã®åŸã«äœããè¡ãå¿
èŠãããèŠçŽ ãn-2åãããŸãã å®çŸ©ããããã®ãããªåçŽãªååž°é¢ä¿ãåŸãããŸãã ããã¯ããªããæç€ºçã«æžãããšãã§ããçŽ æŽãããçç£æ©èœãæã£ãŠããŸãã ããã¯ææ°çæé¢æ°ã§ããããšã«æ³šæããŠãã ããã t
n >
a n /
nãåã
ãŸãïŒ -確çã®çæé¢æ°ãèŠãŠãããã®ããã«ã
ãããŠãããã«ã¯è¯ãåŒe
t + t 2/2ããããŸãã
æç€ºçãªåŒãèŠãæ°ããæ¹æ³ããããŸãã ããŒãã£ã·ã§ã³ã®æ°nã«ã€ããŠãnãè¢«å æ°ã®åèšãšããŠè¡šãããã€ãã®æ¹æ³ããããŸãã ããšãã°ã4 = 3 + 1 = 2 + 2ãªã©-4ãé
ã®åèšãšããŠèšè¿°ããæ¹æ³ã¯5ã€ãããŸãã ãããããããã¥ãŒã¹æ©èœãçŽ æŽãããã§ãã ãªã€ã©ãŒã1738幎ã«ãããæãã€ããŸããã ç¡éã®ä»äºã¯ãããã©ããªããã§ãã ããã¯åã«èŠãã»ã©è¯ãæ©èœã§ã¯ãããŸããã ç¡éã®äœæ¥ãããå Žåããããã©ããããã¯ããŸãæç¢ºã§ã¯ãããŸããã ããªãè€éãªæ©èœã§ãã
-ã«ãŠã³ãã«ã€ããŠæããŠãã ããã
-nåã®é ç¹ã«ããæ¥ç¶ãããã°ã©ãã®å Žåãååž°é¢ä¿ããããŸãããããã¯äºæ¬¡é¢æ°ã§ããããã®ä¿æ°ã¯äºé
ã«ãªããŸãã ã°ã©ãã«ã¯2次ã®é¢ä¿ããããŸãããå¿ããèŠããŠããŸããã ããã«ã«ãŠã³ãã§ããŸããããã®ãããã¯ã«ã¯å«ãŸããŠããŸããã

çè« ã§ããã ãå€ãã®ã·ãŒã±ã³ã¹ãåé¡ããããšæããŸãã ããã€ãã®ã¯ã©ã¹ãåããŸãã æåã®ã¯ã©ã¹ã¯æçæ°åã§ãã çæé¢æ°ãæçã§ããå Žåãã€ãŸãã2ã€ã®å€é
åŒã®æ¯çã§ããå Žåããããã¯æçã§ãã å®éãããã¯ããã£ããããæ°ãäžè¬åãããæå®ãããæ°ã®åçŽãªç¹°ãè¿ãé¢ä¿ãšå®å
šã«åçã§ãã ããã«ããªããèããããšãã§ããæãç°¡åãªãã®ããããŸãã é©ãã¹ãããšã«ããããã®ååž°é¢ä¿ãæºããã·ãŒã±ã³ã¹ã¯ããªããããŸãã ãã ããã·ãŒã±ã³ã¹ã¯æç颿°ãããåçŽã§ãã ãã¹ãŠã®æçæ°åã«ã¯éåžžã«åçŽãªæŒžè¿ç·ããããéåžžã«ç°¡åã«åŠç¿ã§ããŸãã
次ã®ã¬ãã«ã¯ä»£æ°ã§ãã ãããã¯ãæ°åŒAïŒtïŒ=
1-âïŒ1-4tïŒ /
2tãäžè¬åãã代æ°åã§ãã
çæé¢æ°ãå€é
åŒä¿æ°ãæã€ç¹å®ã®ä»£æ°æ¹çšåŒãæºãããšä»®å®ããŸãã ãŸãããã®ãããªã·ãŒã±ã³ã¹ã¯éåžžã«å€ããããŸããã«ã¿ããã¢èªã®æ°ã«ã¯ããã®ãããªã·ãŒã±ã³ã¹ãã¢ããã³ã®æ°ãããã³ä»ã®å€ãã®ãã®ããããŸãã ããããããã¯æå€§ã®ã¯ã©ã¹ã§ã¯ãªãããšãããããŸããã ãã倧ããªã¯ã©ã¹-äºé
åãåŠç¿ããŸãã åèšãå€ãã®äºé
ä¿æ°ãåããŸãã ç§ã¯ãã©ãã£ã¹äžã®ãã¹ãŠã®ãã¯ãã«ãåèšããŸãããå®éã«ã¯ãã¢ã«ãã¡ãšããŒã¿ã¯ç·åœ¢é¢æ°ã§ãã äºé
ä¿æ°ã§é¢æ°ãè² ã«ãªãå Žåãããã¯0ã§ãããšèŠãªãããŸãããããã®æ°å€ãæéã§ããå Žåã«ã®ã¿è峿·±ãã§ãã ãããŠããã®ãããªã±ãŒã¹ã¯ããªããããŸãã
ãã®äŸã¯ããŸãã«ãã®ãããªå Žåã瀺ããŠããŸãã ç§ãã¡ã®åã«ããã€ãã®äºé
ä¿æ°ã®åèšããããŸãã ããã§-0ããn / 2ãŸã§ãããªãã¯ææŸãããšãã§ããŸãããã£ãšãããäºé
ä¿æ°ã ããæ¶ãããŒãã«ãªããŸãã

ãã®çµæãå€ãã®ç°ãªãã·ãŒã±ã³ã¹ãäºé
åããããŸãã ãããã«ã¯ãæŽåã®æ°ãããã³ããŒãã«ã®åº§åžé
çœ®ã®æ°ãå«ãŸããŸãã ããã¯ãã¹ãŠããã®ãããªäºé
ä¿æ°ã®èгç¹ããçè§£ã§ããŸãã äžã«ãäžã«ãå€ãã®éä¹ããããŸã-ãã¹ãŠãçè§£ã§ããŸãã ããã¯å€§ããªã¯ã©ã¹ã§ãããããã«å€§ããªã¯ã©ã¹ã§ããPååž°ã·ãŒã±ã³ã¹ã«èå³ããããŸãã ãããã¯2ã€ã®æ¹æ³ã§å®çŸ©ã§ããŸãã æãçè§£ããããæ¹æ³ã¯ããããã®æ°å€ã«ååž°çãªé¢ä¿ãããå Žåãåççãªå Žåã®ããã«ä¿æ°ã宿°ã§ã¯ãªããnã«äŸåããå€é
åŒã®å Žåã§ãã èŠããŠãããªããã«ãŒã«ã¹ãçºæãããã®è€éã§ããŸãæ£ç¢ºã«èšè¿°ãããŠããªãååž°é¢ä¿ã¯å
žåçãªãã®ã§ãã ãããããã®ãããªé¢ä¿ã¯ä»ã®å€ãã®ã·ãŒã±ã³ã¹ã«ãååšããŸãã

å
žåçãªäŸã¯nïŒ..å®çŸ©äžïŒn-1ïŒã§ãïŒ * nã
å¥ã®äŸã¯ã«ã¿ããã¢èªçªå·ã§ãã ããã¯ã2ã€ã®äºé
ä¿æ°ã®ããçš®ã®æ¯çã§ããããšãèŠããŠããŸãã çµæã¯ãnã«äŸåããæç颿°ã§ãã ãããã£ãŠãããã¯ãŒãã«çãããªããã°ãªããªãååž°é¢ä¿ãšããŠæžãããšãã§ããŸãã
ããã¯ããŸãè€éãªå®çã§ã¯ãããŸããã ããã¯ãçæé¢æ°ãå€é
åŒä¿æ°ã䜿çšãããã®ãããªåžžåŸ®åæ¹çšåŒãæºããããšãæå³ããŸãã ã·ãŒã±ã³ã¹ã®ä»çµã¿ãçè§£ããå¥ã®æ¹æ³ã次ã«ç€ºããŸãã ç§ãã¡ã«ãšã£ãŠãPååž°ã·ãŒã±ã³ã¹ã¯æãéèŠãªã¯ã©ã¹ã«ãªããŸãã 以äžã®å®çãå«ãŸããŠããŸãããããã®å®çã¯ä»¥äžã«èšè¿°ãããŠããã以åã®ãã¹ãŠã®ã¯ã©ã¹ããã®äžã«ãããšããäºå®ã«åºã¥ããŠããŸãã æå€§çŽã®ã¯ã©ã¹ã§ãã 代æ°åã®å Žåãããã¯å®å
šã«æããã§ã¯ãªããä»ã®äººã«ããã蚌æããã®ã¯å°ãç°¡åã§ãã
ãã¡ããããã®ã¯ã©ã¹ã«ã¯ãã¹ãŠã®äŸãå«ãŸããŠããããã§ã¯ãããŸããã çŽ æ°ã¯ããã«å
¥ããªããšèšã-ãããã«ã¯å€é
åŒã®é¢ä¿ã¯ãªãã åæ§ã«ãæ¥ç¶ãããã°ã©ãã®æ°ã«ã¯å€é
åŒã®é¢ä¿ã¯ãããŸããã ãããã¯ãããã§ã¯åœãŠã¯ãŸããªããããè€éãªäŸã§ãã ããŒãã£ã·ã§ã³ã®æ°ãããã«å«ãŸããŠããªãå Žåããã®ãããªäŸãããã®ã¯æªãããšã§ãããå®çŸ©äžãPååž°ã·ãŒã±ã³ã¹ãå€é
åŒæéãšããŠã«ãŠã³ããããã®ã¯çŽ æŽãããããšã§ãã ããã«æžãããŠããããšã¯ç§ãã¡ã«ãšã£ãŠéèŠã§ãã ã·ãŒã±ã³ã¹ã®ã¯ã©ã¹ãããããã®ãã¹ãŠãã«ãŠã³ãã§ããŸãã

ããããæ°ãå§ããåã«ãç¹å®ã®åž°çµãäžããŸãã ãã®ã¯ã©ã¹ã§ã¯ãæŒžè¿æ§ã®èгç¹ããããã°ãã¹ãŠããã§ã«è¯å¥œã§ãããšããäºå®ã«ãããŸãã Pååž°ã·ãŒã±ã³ã¹ã䜿çšããŠããå ŽåãæŒžè¿çãªåäœã¯æ¢ã«éåžžã«è¯å¥œã§ãã宿°nïŒãããçšåºŠãλn
nα ïŒlog nïŒ
βããããŸãã ãã¹ãŠãããŸãæ©èœããŸãããæ®å¿µãªããããã®å®çã¯èšŒæãããŠããŸããã äžéšã®äººã¯ãããå®çãšèããŠããŸããã圌女ã«ã¯ç¹å¥ãªå Žåã«ã®ã¿çŸããŸãã ããããååãšããŠããã®ãããªç¹å®ã®ã±ãŒã¹ã¯éèŠã§ã-ææ°ä»¥äžã«æé·ããéè² ã®Pååž°æŽæ°ã·ãŒã±ã³ã¹ãããå Žåããã®åäœã¯éåžžã«åçŽã§ãïŒÎ»n
nα ïŒlog nïŒ
β ã 圌女ã¯ãåçŽã§è¯ã挞è¿çãªæ¯ãèããããŠããŸãã ãã®ã¯ã©ã¹ã¯éåžžã«å€§ãããåŠç¿ãããããŸããŸãªçµã¿åããã·ãŒã±ã³ã¹ãå«ãŸããŠããŸãã Pååž°ã·ãŒã±ã³ã¹ã¯ãç§ãã¡ã«ãšã£ãŠæãéèŠãªã¯ã©ã¹ã§ãã

ããå°ãäžè¬çãªã¯ã©ã¹ããããããã«ã€ããŠã¯ã»ãšãã©ç¥ãããŠããŸããã çæé¢æ°ã代æ°åŸ®åæ¹çšåŒãæºããã·ãŒã±ã³ã¹ã«ã€ããŠè©±ããŠããŸãã ãã®çæé¢æ°ã®ç¹å®ã®æ°ã®å°é¢æ°ã䜿çšãããšããããã¯äžç·ã«ãªã£ãŠããã€ãã®å€é
åŒãæºãããŸãã ããã¯ããäžè¬çãªã¯ã©ã¹ã§ãã æ®å¿µãªãããæŒžè¿çãªæ¯ãèãã«é¢ããçµæã¯ã»ãšãã©ãããŸããã æ¬¡ã«äŸã瀺ããŸãã ç¹å®ã®æ°ã§å§ãŸãããã®åŸãããå°ãªããããå°ãªããªãé åã亀äºã«åã£ãŠã¿ãŸãããã ããšãã°ãé·ã3-1ã3ã2ãããã³2ã3ã1ã®ãã®ãããªé åãã¡ããã©2ã€ãããŸããé·ã4ã®é åã5ã€ãããŸãã
ãã®ãããªé åã®æ°ã«ã€ããŠã¯ãããªãè€éãªååž°é¢ä¿ããããŸãã ããã¯ãéåžžã®åŸ®åã§ã¯ãªãã代æ°åŸ®åã§ããæ¹çšåŒãšããŠæžãçŽãããšãã§ããŸãã2A '= A
2 +1ããã®åœ¢åŒã§ã¯ãè§£ãããŸããçæé¢æ°ã¯ãtanïŒtïŒ+ secïŒtïŒã§æç€ºçã«èšè¿°ã§ããŸãã , , , . , , , â n- . , .
, â , . , , , , . 150 , , , t
n 2 , t
n 3 , â 150 . , . , . , - . .
4. , . . . , .
â ?
â . , n .
â . , , ?
â . , , , , .
n! * t
n , . , , defined, n! , . , .
â , , ?
â . , .
? . ?
â â ?
â , , , . , n â 2 n/2, â , . , â , . . â , . .
, , , . , , n, ? - , , labeled unlabeled. , . ? : e
n â . , . , , . â .

. . . â -. «». , , , 0-1-, . , (5674123) (321) â .
, (4321), 4. (321) â . , , , .
, . , , . â , Ï avoids Ï.
. , - : «, ».
, . , , 0-1- . â , , . , . ç°¡åãªäŸã , â (12). 7, ? . , (12), , . : (7654321).
, . .

. , (123), 3. , : , , . , 1915 â . 3, , . , (213), . , , , 3: . . 4, 4, 4 â . .
, , . . , . , , , , , .
, , . . , 2, â , , , . , . , . , , , (1342). , , .
â , , . , - , , .

, , : , , , -, .
, , . . , , , , . 31 80 , .
31 â . - , , . , . ? ãã³ã»ã³ã¹ã , 80 . .

, , - , , . , , â . 90- , . , , : â 1990 . - , , , . , 4, (1324), , , -. .
31 , 4. , , , . - - . -, . -, ? .

? . , F F', , 2, , . : . .
2. , , F F'. , ? , , , . , ?
, . , â F F' «» «». - .
, , , . â , . , .

, k , . , . , , - . â , . , .
, . , , , . . â . , -. , - .
, , , . 2.

, = NP. : , , .
NP? , , NP. , , .
âP. , . . , = âP = NP â . , âP â , . , . , , â . . â .
, . , n- . imput size n log (n) bits, n log (n) . , n, input. , P â âP EXP â âEXP. , input unary, not in binary. Computation Complexity.

, . EXP â âEXP, â 31 â , , , , n. , , defined, AD, 1 , â Computation Complexity. , . - , - â .
, , , , n â , .
1982 : - , ? ? - 31 80 â , . , , Computation Complexity , , , .

, . , , - . , 1. . â - . â 0, â 1 . , , . . , , .
- . , r
0 (n)a
n + r
1 (n)a
n-1 . . , , .

. . 0, 1, 0,0, 0,1, 1,0 1,1, 0,0,0, 0,0,1 0,1,0, .

. : , . , . , 80 80, .

, 88. , - , 1010, . , , :

, , â , , . , , . , , , , , .

â . . 88 1010. , ⊠1 ? . , , -, , , â , . , . , , , 2
n . , 1 + ε
n - ε, , - . .

. . , -, ADE. , . . , , , K! + K n.
. , n
2 . , , â . ! + , , , , . , .

? ? , . , , Wang tiles. 11. , . Wang tiles, . : , , ? , , .
, , . . , , . . - , , .
.


. : , 1. , , ? , , , . , , , 2, . , , -? , .
, , , . , . , , â . 31 . , , .
ãã ããSeilbergerã¯æ£ãããšèãããããã®ãããªé åãå«ãŸãªãé åã®ã·ãŒã±ã³ã¹ã¯Pååž°çã§ã¯ãããŸãããæåŸã®ä»®èª¬ã¯ããã¿ãŒã³ãå«ãŸãªãæ°å€ãã«ãŠã³ãããã¿ã¹ã¯ã¯ããã®èšç®ã¯ã©ã¹ã§ã¯é£ããããšã瀺åããŠããŸããåçŽã«å®åŒåããå Žåã§ããå°ãæéãããããŸããå®éã«ã¯ãããã ãã§ãã ã©ããããããšãã