
åæããå Žå

åžå ŽïŒForexãå«ãïŒã®ãã©ãŒã©ã ã§ã¯ã2ã€ã®ããªãå®å®ããæèŠãåºå¥ã§ããŸããããããæ²èŠ³çã§æ¥œèгçãšåŒã³ãŸãããã
æ²èгè«è
ã«ãããšã
åžå Žã¯ãã©ã³ãã ãªããã»ã¹ã®ã¹ã±ãžã¥ãŒã«ãäœæããå人ïŒããã®ãã¬ãŒããŒïŒãEURUSDãã£ãŒããšåºå¥ã§ããªãã£ããããã§ããã€ãŸããåžå Žã§å®å®ããåå
¥ãåŸãããšã¯äžå¯èœã§ãããªããã£ãã¹ãã¯ãããã«å察ããŸãã
åžå Žãã©ã³ãã ã§ããå Žåãçžå Žã¯è¿æ1ãæ©ããŸããããç¡éã«è¡ããŸãã ãããã£ãŠãåžå Žã¯ã©ã³ãã ã§ã¯ãªããããã§çšŒãããšãã§ããŸãã å©ççã倧ããïŒãã£ãšããïŒæ¬åœã«å®å®ããåçæŠç¥ãèŠãŸããïŒçŸå®çã§ãããäž¡æ¹ã®æèŠããå©çãåŸãããšããŸãããïŒåžå Žãã©ã³ãã ã§ãããšä»®å®ãããã®ä»®å®ã«åºã¥ããŠããã¬ãŒãã£ã³ã°ã·ã¹ãã ã®åçæ§ã®
éã©ã³ãã æ§ããã§ãã¯ããæ¹æ³è«ãæ§ç¯ããŸãã
ãã®èšäºã§æ€èšãããŠããææ³ã¯ããã¡ã³ããå€åœçºæ¿ããã®ä»ã®åžå Žã«å
±éã§ãã
åé¡ã®å£°æ
ç空äžã®ç圢銬ã«ã€ããŠã®ããç¥ããããžã§ãŒã¯ã®ãããã§ãçŽ æŽãããan話ãçãŸããŸãããããã¯çæ³ãæå³ããŸãããå®éã®ã¢ãã«ã§ã¯ãŸã£ããé©çšã§ããŸããã
ããã«ãããããããåé¡ã®æ£ããå®åŒåã«ããããç空äžã®çäœã¢ãã«ããé©çšããããšã«ãããããªãå
·äœçãªå®éçãªå©ç¹ãåŒãåºãããšãã§ããŸãã ããšãã°ãå®éã®åŠç¿å¯Ÿè±¡ã®ãç圢æ§ãã®åŠå®ãéããŠã
ç¹å®ã®åžå Žã§äœ¿çšãããååŒã·ã¹ãã ããããšããŸãã ãŸããåžå Žãã©ã³ãã ã§ã¯ãªããã·ã¹ãã ãååŒæ±ºå®ãè¡ãããã®ææšãšããŠåœè£
ãããä¹±æ°ãžã§ãã¬ãŒã¿ãŒã§ã¯ãªããã®ã䜿çšãããšããŸãã åå
¥ã®å®å®æ§ãè©äŸ¡ããããã«ãå©çå åã䜿çšããŸãã

ã©ãã§

-åå
¥é¡

-æå€±é¡ïŒæ£ã®æ°ïŒã
ãã®ã·ã¹ãã ã®å®å®æ§ã«ã€ããŠè©±ãããã«ãå©çèŠå ã¯äœã§ããïŒ æããã«ãå©ççãé«ãã»ã©ãã·ã¹ãã ãä¿¡é Œããçç±ãå€ããªããŸãã ããããäžéã¯ããŸããŸãªæ¹æ³ã§ããŸããŸãªå°éå®¶ã«ãã£ãŠæšå®ãããŠããŸãã æãäžè¬çãªãªãã·ã§ã³ïŒ> 2ïŒãŸããŸãïŒã> 5ïŒè¯ãã·ã¹ãã ïŒã> 10ïŒåªããã·ã¹ãã ïŒã ãŸã ãã®ãããªããªãšãŒã·ã§ã³ããããŸãïŒ

ã©ãã§

-ååŒåå
¥ã®æå€§å€ããã®å€ã¯ä¿¡é Œã§ããå©ççãšåŒã°ããŸãã 1.6ã®ä¿¡é Œã§ããå©ççã®æå°èš±å®¹å€ãšèããããŠããŸãã
å©çèŠå ã«åžžã«æ©ãŸãããã®ã¯ãåžå Žã®ãã€ããã¯ã¹ãšè²¿æã®æ¿ãããèæ
®ããŠããªãããšã§ãã ãããã£ãŠãå©çå åã®éèŠæ§ãè©äŸ¡ããããã®å¥ã®ã¢ãããŒããææ¡ããŸããäºåã«æ±ºããããäºåã®å€ãšæ¯èŒããã®ã§ã¯ãªããå©çå åã¯ã§ããã ãé«ãããå¿
èŠããã
ãŸãã ãåæ§ã®ååŒåŒ·åºŠãšãã©ãã£ãªãã£ãæã€
ã©ã³ãã åžå Žã®ã©ã³ãã ã·ã¹ãã ã®å©çå åããäœãã¯ãªããŸããããã«å¿ããŠïŒå®éããçæ³çãªã¬ã¹ããŸãã¯ãç空ãã«ããããç圢ã®ãã¬ãŒããŒãã®ããããäœããªãïŒã
æ¯èŒã®ããã«çæ³çãªã¢ãã«ãæ§ç¯ããããšã ããæ®ã£ãŠããŸãã
ãçç¶ã®ãã¬ãŒããŒ...ã
ã©ã³ãã ãªååŒã·ã¹ãã ïŒãçç¶ã®ãã¬ãŒããŒãïŒãæ€èšããŠãããšããŸãã ã¢ãã«ã¯ã©ã³ãã ã§ãããããååŒã€ãã³ãã¯ä»¥åã®æ±ºå®ã«é¢ä¿ãªããã©ã³ãã ãªæç¹ã§çºçããŸãã ãã©ã³ã¶ã¯ã·ã§ã³ã®æ¹åãã©ã³ãã ã§ãïŒ0.5ã®è²©å£²ãŸãã¯è³Œå
¥ã®ç¢ºçïŒã ååŒéã¯äžå®ã§ãããäžè¬æ§ãæãªãããšãªããæçããã€ã³ãåäœã§æšå®ãããšæ³å®ããŠããŸãã
å¹³åãã©ã³ã¶ã¯ã·ã§ã³æéã

ãããã³2ã€ã®åŸç¶ã®ãã©ã³ã¶ã¯ã·ã§ã³ã®ã¯ããŒãºéã®å¹³åæé

ïŒåæã«éããã©ã³ã¶ã¯ã·ã§ã³ã®æ°ã«å¶éã課ããŸããïŒã
ãŸããã€ãã³ãã®ãã¢ãœã³ã¹ããªãŒã ãæ±ã£ãŠãããšããŸãã
ååŒæé

ã¯ã
ææ°ååžã®ç¢ºç倿°ã«ãªããŸãã
ã©ãã§

ã
ååŒæ°

äžå®æéã³ããã
ãã¢ãœã³ååžã«ãã£ãŠèª¬æãããŸãã
ã©ãã§

ã
ã...ç空äžã
ããã§ããçç¶ã®ãã¬ãŒããŒããã€ãŸããç空ããã€ãŸãå®å
šã«ã©ã³ãã ãªåžå Žã«ãšã£ãŠçæ³çãªç°å¢ãèããŠã¿ãŸãããã
çžå Žã®å€åã®
æ£èŠååžã«ãã£ãŠåžå Žãèšè¿°ãããŠãããšä»®å®ããŸã

ãã°ããã®é

ïŒ
ã©ãã§

次ã®ããã«å®çŸ©ãããŸãïŒåæ£ã䌎ã
æ£èŠååžç¢ºç倿°ã«ãããåäœæéã«ããã£ãŠåŒçšç¬Šãå€åããããã«ããŸã

ããã®åŸãæéééãèæ
®ãããš

ãåŒçšç¬Šã®å€æŽã«å¿ããŠã忣ããããŸãã
ããã¯ããã©ãŠã³ããã»ã¹ã®æ¢ç¥ã®æ¯çã§ãã
åŒ
ïŒ2.1ïŒããã³
ïŒ1.1ïŒãèæ
®ãããšããã©ã³ã¶ã¯ã·ã§ã³
ã®çµæã¯ããã©ã³ã¶ã¯ã·ã§ã³ã®éå§ããçµäºãŸã§ã®æéã«ãããèŠç©ããã®ââå€åãšèŠãªãããæ¡ä»¶ä»ã確çã®ç©åãšããŠèª¬æãããŸãã
)
ã«ãã£ãŠ

ïŒ
ãŸãã¯
Wolfram Mathematicaã䜿çšããŠãã®ç©åãè§£ããšã次ã®çµæãåŸãããŸãïŒ
ãŸãã¯
ã©ãã§

ã
çµæã®ãã¿ãŒã³ã¯
ã©ãã©ã¹ååžã§ãã
ãããã£ãŠãã©ã³ãã åžå Žã§ã®ã©ã³ãã ã·ã¹ãã ã®1ã€ã®ãã©ã³ã¶ã¯ã·ã§ã³ã®æçã¯ã
ã©ãã©ã¹ååžãšçµæã®çµ¶å¯Ÿå€ã«ãã£ãŠèšè¿°ãããŸãã

ãã©ã³ã¶ã¯ã·ã§ã³ã«ã¯
ææ°ååžããããŸãã
ã©ãã§

ã
ææ°ååžã¯
ã«ã€äºä¹ååžã®ç¹æ®ãªã±ãŒã¹ã§ããããšãç¥ãããŠããŸãïŒ

ã§

ïŒ ããã¯ãç·åå
¥ãšç·æå€±ã
ã«ã€äºä¹ååžãæã€ã©ã³ãã 倿°ã®åèšãšããŠèšè¿°ã§ããããšãæå³ããŸããã€ãŸãããããèªäœã
ã«ã€äºä¹éã§ããããšãæå³ããŸãã
ãããŸããã

çµæã®ããæçãªååŒ

ãããŠ

æå€±ã®çµ¶å¯Ÿå€ã§äžæ¡ç®

ã ããããç·åå
¥

ïŒã«æ£èŠå

ïŒããã³åèšæå€±

ïŒåæ§ã«æ£èŠå

ïŒã¯ãèªç±åºŠã®ãã
ã«ã€äºä¹ååžã«ãã£ãŠèšè¿°ãããŸã

ãããŠ

ãããã£ãŠïŒ
ã©ãã§

ãããŠ

ã
ãããã®æ°éã®æ¯çã¯æ¬¡ã®ããã«ãªããŸãã
ã©ãã§

ç·åå
¥

ç·æå€±ã 圌ãã®æ
床

-å©ççã
次ã«ãæ¬¡ã®æ°éãæ€èšããŸãã
ãã®å€ã¯ããæ£èŠåãããå©çèŠå ããã€ãŸãååŒããšã®å¹³åæå€±ã«å¯Ÿããå¹³ååå
¥ã®æ¯çãšããŠè§£éã§ããŸãã ãã®æ°éã®ååžãèŠãŠã¿ãŸãããïŒ
åŸãããå€ãèªç±åºŠã®æ°ã«æ£èŠåãããéã®
ã«ã€2ä¹ã®æ¯çã¯ã
ãã£ãã·ã£ãŒååžãæã¡ãŸãã
ãããã£ãŠããã°ããã¥ãŒãã®ååžãçµ±èš

æ¢ç¥ã®æ°ã®åçæ§ããããç空äžã®ç圢ãã¬ãŒããŒãã®å©çèŠå

äžæ¡ç®

ãåŸãªæ
å ±ã
æªç¥ã®å Žåã®äžè¬åã«é²ãåã«

ãããŠ

ããå®å
šã«ã©ã³ãã ã§ã¯ãªããåžå Žã§ã®ãç圢ã®ãã¬ãŒããŒãã®è¡åãèããŠã¿ãŸãããïŒãã®ç°å¢ããžã§ãŒã¯ããçæ³çãªã¬ã¹ããšåŒã³ãŸãããïŒã
ã...å®ç§ãªã¬ã¹ã®äžã
次ã«ãããå°ãè€éãªç¶æ³ãèããŠã¿ãŸããããåžå Žãäžè¬åããããã©ãŠã³éåã§ããå Žåã§ãã ã€ãŸããã©ã³ãã ãšã¯ç°ãªããã¡ã¢ãªããããŸãã ãã®å ŽåãåŒ
ïŒ2.2ïŒã¯æ¬¡ã®åœ¢åŒãåããŸãã
ã©ãã§

-ããŒã¹ãææ°ãæç³»åã®ãã©ã¯ã¿ã«ç¹æ§ãç¹åŸŽä»ããå€ã§ãHausdorff-Bezikovichãã©ã¯ã¿ã«æ¬¡å
ã«é¢é£

次ã®ããã«ïŒ

ã ããŒã¹ãææ°ã¯å€ãåãããšãã§ããŸã

ã
ã§

æç³»åã¯ãã¡ã¢ãªãæããªãã©ã³ãã ãªãã®ã«çž®éããŸããããã¯ãäžèšã§æ€èšããã±ãŒã¹ã«å¯Ÿå¿ããŸãã ã§

ã·ãªãŒãºã¯ãæ¢åã®ãã¬ã³ãã®æ¹åã倿Žããããã«çµ¶ããåªåããŠããŸããã€ãŸãããã®ã·ãªãŒãºã«ã¯èšæ¶ããããŸãã ã§

ã·ãªãŒãºã«ã¯èšæ¶ããããŸãããæ¢åã®åŸåãç¶æããããšåªåããŸã;ãã®ãããªã·ãªãŒãºã¯æ°žç¶çãæ±ºå®è«çãšåŒã°ããŸãã ããŒã¹ãææ°ã0.5ãšåŒ·ãç°ãªãã»ã©ãããæç¢ºãªã«ãªã¹çãŸãã¯æ±ºå®è«çãªç¹æ§ãã·ãªãŒãºã§è¡šçŸãããŸãã
ç°ãªãåžå Žã¯ãããŒã¹ãææšã®ç°ãªãå€ã«ãã£ãŠç¹åŸŽä»ããããããã«ããããã¯æã
å€åããå¯èœæ§ããããŸãã æç³»åã®å€ããããŒã¹ãææ°ãèšç®ã§ããŸãã ãããã£ãŠãå©ççãè©äŸ¡ãããšãã¯ãå€ãèæ
®ããããšãã§ããŸã

åæãããæŠç¥ã®ååŒãè¡ãããã®ãšåãæéã®å€ãã®èŠç©ã«åºã¥ããŠèšç®ãããŸãã RSçµ±èšããŠã§ãŒãã¬ããããŒã¹ã®æ¹æ³ãªã©ãããŒã¹ãææ°ãè©äŸ¡ããããã®ããã€ãã®æšæºæé ããããŸãã
ã©ã³ãã ååŒæŠç¥ãããŒã¹ãã€ã³ãžã±ãŒã¿ãŒHã䜿çšããŠåžå Žã§æ©èœãããšä»®å®ãã
ïŒ3.1ïŒãèæ
®ããŠãåŒ
ïŒ2.3ïŒã¯æ¬¡ã®åœ¢åŒãåããŸãã
æããã«ã

ãã®åŒã¯
ïŒ2.3ïŒãšåçã§ãã
æ®å¿µãªãããåæåœ¢åŒã®åŒ
ïŒ3.2ïŒã¯çµ±åãããŠããŸããã ãããã£ãŠãHurstã€ã³ãžã±ãŒã¿ãŒã䜿çšããåžå Žã§ã®ã©ã³ãã ååŒã®å ŽåãååŒã®éå§æãšçµäºæã®çžå Žã®å·®ã®çµ¶å¯Ÿå€ã®ååžïŒååŒã®çµ¶å¯ŸçµæïŒãèŠã€ãã

æ°å€ã¢ããªã³ã°ã䜿çšããŸãã
Pythonã䜿çšããŠã·ãã¥ã¬ãŒã·ã§ã³ãè¡ããŸããã
ã¢ããªã³ã°ã¯æ¬¡ã®ããã«å®è¡ãããŸã
1ïŒã·ãã¥ã¬ãŒã·ã§ã³ãã©ã¡ãŒã¿ãŒãèšå®ããŸãã

-å®éšãµã³ãã«ã®é;

-ãã¹ãã°ã©ã ãæ§ç¯ããããã®ç¯å²ã®æ°
2ïŒ
ææ°ååžããã©ã³ãã 倿°ã®ãµã³ãã«distEãšãããªã¥ãŒã Nã®
æ£èŠååžéã®ãµã³ãã«distNãããããçæããŸãã
3ïŒé¢ä¿
ïŒ3.1 ïŒãäžããããå Žåããã¹ããµã³ãã«distTãäœæããŸããåãµã³ãã«ã®å€ã¯ãdistNãšdistEã®å¯Ÿå¿ããå€ããèšç®ãããŸãã

4ïŒçµæã®ååžã®å Žåããã¹ãã°ã©ã ã¯Måã®ç¯å²ïŒç¯å²å
ã®ãããæ°ïŒããäœæãããŸãã åŸããããã¹ãã°ã©ã ãããKåã®æåã®ç¯å²ãéžæãããŸãããããã®æ°ã¯ãŒãã§ã¯ãããŸããã ãŸããæåã®ç¯å²ã®ãããæ°ãæ£èŠåããŸãã
5ïŒåŸããããã¹ãã°ã©ã ã«åºã¥ããŠãååžã¿ã€ããè¿äŒŒãããŸãã
import matplotlib.pyplot as plt import numpy as np from scipy import stats def testH(N, M, H, p): distE = np.random.exponential(1, N) distN = np.random.normal(0, 1, N) distT = abs(distN * distE**H) if p == 1: plt.figure(1) plt.hist(distT, M) plt.title('H='+str(H)) [y, x] = np.histogram(distT, M) K = 0; for i in range(M): if y[i] > 0: K = i else: break y = y * 1.0 / y[0] x = x[1:K] y = y[1:K] return getCoeff(x, y, p, 'H='+str(H))
ããŒã¹ãææ°0.1ã0.3ã0.5ã0.7ã0.9ã«ã€ããŠåŸãããååžã®ãã¹ãã°ã©ã ã®äŸã以äžã«ç€ºããŸãã
ãã¹ãã°ã©ã ã®äžè¬çãªå€èгã¯ãååŸããååžã宿°ãŸã§ã次ã®åœ¢åŒã®é¢æ°ã§èšè¿°ã§ããããšã瀺ããŠããŸãã
ååžãã©ã¡ãŒã¿ãŒãæ€çŽ¢ããã«ã¯ã次ã®ã¢ã«ãŽãªãºã ã䜿çšããŸãã
1ïŒäžããŸããã

-ãã¹ãã°ã©ã ç¯å²ã®éå¿

-æåã®ç¯å²ã®ãããæ°ã«æ£èŠåãããç¯å²ã®ãããæ°ã
2ïŒæ¬¡ã«ãæåã®ç¯å²ãç¡èŠããŠã倿ãå®è¡ããŸãã
)
ãããŠ
))
3ïŒæå°äºä¹æ³ã䜿çšããŠãç·åœ¢ååž°ãã©ã¡ãŒã¿ãŒãèŠã€ããŸã

ãããŠ

ãã®ãããª

4ïŒåä¿¡ã«åºã¥ããŠ

åãå
¥ããïŒ

ã
ãã©ã¡ãŒã¿

æ£èŠåã®ãšã©ãŒãè£æ£ããŸãã
ä¿æ°ãèšç®ããæé ã®ãªã¹ãã以äžã«ç€ºããŸãã
def getCoeff(x, y, p, S): X = np.log(x) Y = np.log(-np.log(y)) n = len(X) k = (sum(X) * sum(Y) - n * sum(X * Y)) / (sum(X) ** 2 - n * sum(X ** 2)) b = (sum(Y) - k * sum(X)) / n if p == 1: plt.figure(2) plt.plot(np.exp(X), np.exp(-np.exp(Y)), 'b', np.exp(X), np.exp(-np.exp(k * X + b)), 'r') plt.title(S) plt.show() return k
以äžã¯ã0.1ã0.3ã0.5ã0.7ã0.9ã®ããŒã¹ãå€ïŒéç·ïŒãšãã®ã¢ãã«ïŒèµ€ç·ïŒã®ãã¹ãã°ã©ã ã®ãšã³ãããŒãã®äŸã§ãã
ããŒã¹ãææ°ã0.5ãã倧ããå Žåãã¢ããªã³ã°ã®ç²ŸåºŠã¯é«ããªããŸãã
ä»ãäŸåé¢ä¿ãèŠã€ããŸã

ãã

ã ãããè¡ãã«ã¯ãäžé£ã®å€ãã·ãã¥ã¬ãŒãããŸã

ããŸããŸãª

æ©èœçãªé¢ä¿ã確ç«ããããšããŸãã
å€ã®ã¢ãã«åã«äœ¿çšããŸãã

0.01åäœã§0.01ãã0.99ãŸã§ã ãŸããåå€ã«å¯ŸããŠ

å€

20åèšç®ãããå¹³åãããŸããã
if __name__ == "__main__": N = 1000000; M = 100; Z = np.zeros((99, 2)) for i in range(99): Z[i, 0] = (i + 1) * 0.01 for j in range(20): W = float('nan') while np.isnan(W): W = testH(N, M, (i + 1) * 0.01, 0) Z[i, 1] += W Z[i, 1] *= 0.05 print Z[i, :] X = Z[:, 0].T Y = Z[:, 1].T plt.figure(1) plt.plot(X, Y) plt.show()
çµæã®äŸåé¢ä¿ã®åœ¢åŒã¯æ¬¡ã®ãšããã§ãã
ã°ã©ãã¯æªãã ã·ã°ã¢ã€ãã«äŒŒãŠãããããã·ã°ã¢ã€ãã®åœ¢ã®ãã¿ãŒã³ãæ¢ããŸãã
æå°äºä¹æ³ã«ããæ°å€æå°åæé ã«ãããæ¬¡ã®çµæãåŸãããŸãã

åèš2次誀差ã¯çŽ0.005ã§ãã
以äžã¯å®éšäŸåã®ã°ã©ãã§ã
)
ïŒéãç·ïŒããã³åŒ
ïŒ3.4ïŒã«ããã¢ãã«ïŒèµ€ãç·ïŒïŒ
ååŸããèŠåæ§ã¯ã次ã®å Žåã«ã®ã¿æå¹ã§ããããšã«æ³šæããŠãã ããã

ãããŠ

ã ãããã£ãŠãå°æ¥ãããã®æ¡ä»¶ãæºãããããšèŠãªãïŒãããã®æ¡ä»¶ã確å®ã«æºããïŒã察å¿ããã€ã³ããã¯ã¹ãçç¥ããŸãã
ããã§ãæšå®å€ã«ã€ããŠ
ïŒ3.3ïŒããã³
ïŒ3.4ïŒãèæ
®ã«å
¥ããŸã

ãã©ã³ã¶ã¯ã·ã§ã³ã®çµ¶å¯Ÿå€ã®ååžãç¥ã£ãŠããŸãã
ã©ã³ãã 倿°ã®å€æã®ååžããããã£ã䜿çšããŠã
ïŒ3.4ïŒã®å€æ°ã眮ãæããŸãã
次ã«ïŒ
ããã¯ãèªç±åºŠã®æ°ãæã€
ã¬ã³ãååžãæã€éã®ç¢ºçå¯åºŠã®é¢æ°ã§ã
%7D%7D)
ã¹ã±ãŒã«ã®åäžãã©ã¡ãŒã¿ãŒã ãããåæã«ãåŒ
ïŒ3.6ïŒ ã æ¬¡ã®ããã«æžãæããå¿
èŠããããŸãã
äžéçµæãèŠçŽããã«ã¯ïŒ
ããŒã±ããããŒã¹ãæ
å ±ãæã€

ã·ã¹ãã ããã¹ãããã®ãšåãå±¥æŽã®æéã«ã€ããŠèšç®ãããšãå€ãèŠã€ããããšãã§ããŸã

åŒ
ïŒ3.4ïŒã䜿çšããŸãã å¹³åååŒåŒ·åºŠãèŠã€ããããšãã§ããŸãã

ããã³ãã©ã¡ãŒã¿ãŒ

ãã©ã³ã¶ã¯ã·ã§ã³çµæçšã äžèšã§ææ¡ããåŒãçã«ãªãããã«ã¯ãå€ãäžããå¿
èŠããããŸã

ãããŠ

ãŠãããã«ã ãããè¡ãããã«ãæ£èŠåãå®è¡ããŸãã

ã©ãã§

-çµæ

ãã©ã³ã¶ã¯ã·ã§ã³ïŒçµæã®ç¬Šå·ã«é¢ä¿ãªãïŒã ãã®å€æã¯
ïŒ3.1ïŒãã
å§ãŸããŸãã
ïŒ3.7ïŒã«ãããšãæ°é

ãã©ã¡ãŒã¿ä»ãã®
ã¬ã³ãååžãæã€
)
ã ãããã£ãŠãæ°é
ã«ã€äºä¹ååž c

èªç±åºŠã
ãããŸããã

åå
¥äŸ¡å€ã®ããåçæ§ã®é«ãååŒ

ãããŠ

æå€±ã䌎ã

ïŒæ£ã®å€ïŒã 次ã«ãæ€èš
)
ããã³
ïŒ3.7ïŒ ãæ°é
%7D%5E%7BK(H)%7D)
ãããŠ
%7D%5E%7BK(H)%7D)
èªç±åºŠã®éãæã€
ã«ã€äºä¹ååžãæã€
)
ãããŠ
)
ããã«å¿ããŠã
ãããã£ãŠãå€ïŒ
ãã£ãã·ã£ãŒååžc
%2C%202k_LK(H)%5Cright%5D)
èªç±åºŠïŒäžè¬çãªå Žåãèªç±åºŠã®æ°ã¯éæŽæ°ã«ãªããããåžå Žã®ãã©ã¯ã¿ã«ç¹æ§ãçŸããŸãïŒã
å€ãšåŒã¶

æ£èŠåãããäžè¬çãªå©ççã ã§

äžè¬åãããå©çå åã¯ãç§ãã¡ã«éŠŽæã¿ã®ããæ£èŠåãããå©çå åã«çž®éããŸã
ïŒ2.9ïŒ ã
æçµçãªäžè¬å
ããã§ãã©ã³ãã ãªåžå Žã§ãçç¶ã®ãã¬ãŒããŒãã調ã¹ãæ£èŠåãããå©ççã®ååžãèŠã€ããŸããã æ¬¡ã«ãçµæã¯ã枬å®å¯èœãªéã§ããããŒã¹ãææ°ã§è¡šãããä»»æã®ãã©ã¯ã¿ã«æ¬¡å
ãæã€åžå Žã®å Žåã«äžè¬åãããŸããã
ããã§ãäžè¬åæ£èŠåå©çä¿æ°ãšåŒã°ããå€ãåŸãããŸãããããã¯ããã©ã³ã¶ã¯ã·ã§ã³ã®çµæã«é¢ããæ
å ±ã䜿çšããŠèšç®ãããŸãïŒã¡ãªã¿ã«ãã¹ãã¬ãããèæ
®ããããã«èª¿æŽããããšãå¿ããªãã§ãã ããïŒæå€±ããæžç®ããŠåå
¥ã«å ç®ããŸãïŒã æ¹æ³è«ã®æ±çšæ§ãé«ããããã«ããã©ã³ã¶ã¯ã·ã§ã³ã®éã¯äžå®ãšèŠãªããããããã¹ãŠããã€ã³ãã§æž¬å®ããŸãã å¹³åãã©ã³ã¶ã¯ã·ã§ã³æéãšãã©ã³ã¶ã¯ã·ã§ã³çµæã®ååžã®æšæºåå·®ãæ£èŠåããããšãå¿ããªãã§ãã ããã

ã©ãã§

-çµæ

ãåŸãªæ
å ±ã
çŸæç¹ã§åŸããããã¹ãŠã®çµæã¯ãæ¢ç¥ã®æ°ã®åçæ§ã®ããååŒãšæå€±ãçããããååŒã«çµã³ä»ããããŠããŸããããã¯ãæ¢ç¥ã®åèšååŒæ°ã®
äºé
ååžãæã€ã©ã³ãã 倿°ã§ããã
ãã¢ãœã³ã«åŸã£ãŠååžããã©ã³ãã 倿°ã§ããããŸãã
æ°ããè¡šèšæ³ã玹ä»ããŸãã äžããããåçæ§ã®ããæ°ã«å¯Ÿããäžè¬åãããæ£èŠåãããå©çä¿æ°
ïŒ3.8ïŒ 
ãããŠäžæ¡ç®ã®é

ååŒïŒæ¢ç¥ã®ããŒã¹ãã€ã³ãžã±ãŒã¿ãŒ

ïŒã¯

èªç±åºŠã®ãã
ãã£ãã·ã£ãŒååžãæã¡ãŸã
%2C%202k_LK(H)%5Cright%5D)
ã
次ã«ãåçæ§ã®ããååŒãšæå€±ã䌎ãååŒã®æ°ã®
äºé
ååžãããã³åååŒã§åçãŸãã¯æå€±ãçºçãããå¯èœæ§ãèæ
®ããŠãå€ãå°å
¥ããŸã

-ãã©ã³ã¶ã¯ã·ã§ã³ã®åèšæ°ã®ã¿ãèæ
®ããäžè¬åãããæ£èŠåãããå©ççã ãã®å€ã«ã¯ã次ã®ååžããããŸãã
ã©ãã§
)
-èªç±åºŠã®ãã
ãã£ãã·ã£ãŒååžå¯åºŠ

ãããŠ

ãããã³å€
)
åŒ
ïŒ3.4ïŒã§èšè¿°ãããŸãã

-ããŒã¹ãã€ã³ãžã±ãŒã¿ã
å®éã«ã¯ãååã«å€§ãã

åŒ
ïŒ4.1ïŒã¯äžå®å
šãªåèšã§è¿äŒŒã§ããŸãã
ã©ãã§

ãããŠ

ïŒ

ïŒåçæ§ã®é«ãååŒæ°ã®å¯èœãªå€ã®ç¹å®ã®ãµãã»ãããå¶éããŸãã
ããã§ããã©ã³ã¶ã¯ã·ã§ã³ã®æ°ãåç
§ããã«ãäžè¬çãªæ£èŠåãããå©çèŠå ãèæ
®ããŸãããå¹³åååŒåŒ·åºŠã®ã¿ãèæ
®ããŸã

ããã³æŠç¥ãã¹ãæé

ïŒ

ã ãã©ã³ã¶ã¯ã·ã§ã³ã®ç·æ°ã
ãã¢ãœã³ã«ãã£ãŠåé
ããããšãããšã

次ã®ååžã«ãªããŸãã
ãŸãã¯ãç¯å²å
ã®èæ
®ããããã©ã³ã¶ã¯ã·ã§ã³æ°ã«ã€ããŠ

ïŒ
çµæã®ååžã䜿çšããŠãæ¢ç¥ã®å¹³åååŒæéãšæ¢ç¥ã®ãã©ãã£ãªãã£ãšããŒã¹ãã€ã³ãžã±ãŒã¿ãŒãæã€æ¢ç¥ã®åžå Žæéã®ååŒåŒ·åºŠã§
ïŒ3.8ïŒã«åŸã£ãŠèšç®ãããäžè¬åæ£èŠåå©çå åã®æææ§ãæ€èšŒã§ããŸãã ãã¹ãã¢ããªã±ãŒã·ã§ã³ã®æ¹æ³è«ã¯ã
ãã£ãã·ã£ãŒãã¹ãã®å ŽåãšãŸã£ããåãã§ãã ãããå®è¡ããã«ã¯ãå¯åºŠé¢æ°ã
ïŒ4.1ïŒ ïŒãŸãã¯
ïŒ4.1 *ïŒ ïŒã§ãã£ãã·ã£ãŒååžé¢æ°ã«çœ®ãæããèšç®ãããäžè¬åå©çå åã®å€ãåŒæ°ãšããŠçœ®ãæããã ãã§ååã§ãã åŸããã確çå€ã¯å€ãšæ¯èŒããå¿
èŠããããŸã

ã©ãã§

-éèŠåºŠã®ã¬ãã«ãå¿
èŠã§ãã ãã®ã¬ãã«ãè¶
ããå Žåãèšç®ãããçµ±èšã¯ãååŒã·ã¹ãã ã®ã©ã³ãã æ§ã«é¢ãã仮説ïŒãç空äžã®ãã¬ãŒããŒã®ç圢æ§ãïŒãæåŠããå¯èœæ§ããããŸãã
ãããã«
ãã®ä»äºã§ææ¡ãããã¢ãããŒãã¯ãåžå Žã®ãã©ãã£ãªãã£ãšãã©ã¯ã¿ã«ç¹æ§ããªãã³ã«ååŒã®åŒ·åºŠãšãã©ã³ã¶ã¯ã·ã§ã³ã®å¹³åæéãèæ
®ã«å
¥ããäžè¬åãããæ£èŠåãããå©çå åã®æ§ç¯ã«åºã¥ããŠãã©ã³ãã ãªæ¹æ³ã§åæ§ã®çµæãåŸã確çã«é¢ããŠéæãããçµæã®æææ§ã®çµ±èšçãã¹ããæ§ç¯ããããšãå¯èœã«ããŸãã ãã¹ãã䜿çšãããšãã·ã¹ãã ã®ä¿¡é Œæ§ã瀺ãããã«
å¿
èŠãªæ¡ä»¶ãæºãããŠãã
ããšã«ã€ããŠãç¹å®ã®éèŠåºŠã§è©±ãããšãã§ããŸãã ããããåŸãããçµæã¯
ååãªæ¡ä»¶ã§ã¯ãããŸãã...
æ®å¿µãªãããç§ã¯ãã¹ããç¥ããŸããããã®çµæã¯ã確ãã«ä¿¡é Œã§ããæŠç¥ãæç¢ºã«æ¡çšããã®ã«ååã§ãã