ãã£ãŒãã©ãŒãã³ã°ãã¯ãããžãŒããã°ããç解ã§ããããã«èšèšãããã·ãªãŒãºã®æåã®èšäºã玹ä»ããŸãã MNISTïŒææžãæ°åã®åé¡ïŒãšCIFAR-10ïŒå°ããªç»åã®10ã¯ã©ã¹ãžã®åé¡ïŒé£è¡æ©ãè»ãé³¥ãç«ã鹿ãç¬ãã«ãšã«ïŒã®é©åãªããã©ãŒãã³ã¹ãåŸãããã«ãåºæ¬ååããéèŠãªæ©èœã«ç§»è¡ããŸãã銬ãè¹ããã©ãã¯ïŒã
æ©æ¢°åŠç¿æè¡ã®éäžçãªéçºã«ãããã¢ãã«ã®ãããã¿ã€ããè¿
éã«èšèšããã³æ§ç¯ã§ããã ãã§ãªããåŠç¿ã¢ã«ãŽãªãºã ã®ãã¹ãã«äœ¿çšãããããŒã¿ã»ããïŒäžèšã®ãã®ãªã©ïŒã«ç¡å¶éã«ã¢ã¯ã»ã¹ã§ããããã€ãã®éåžžã«äŸ¿å©ãªãã¬ãŒã ã¯ãŒã¯ãç»å ŽããŸããã ããã§äœ¿çšããéçºç°å¢ã¯KerasãšåŒã°ããŸãã æã䟿å©ã§çŽæçã§ããããšãããããŸããããåæã«ãå¿
èŠã«å¿ããŠã¢ãã«ãå€æŽããã®ã«ååãªè¡šçŸåãåããŠããŸãã
ãã®ã¬ãã¹ã³ã®çµããã«ãå€å±€ããŒã»ãããã³ïŒMLPïŒãšåŒã°ããåçŽãªæ·±å±€åŠç¿ã¢ãã«ãã©ã®ããã«æ©èœããããç解ããMeristã§ããªãã®ç²ŸåºŠãåŸãããã«Kerasã§ãããæ§ç¯ããæ¹æ³ãåŠã³ãŸãã 次ã®ã¬ãã¹ã³ã§ã¯ãç»åãåé¡ããéã®ããè€éãªåé¡ã解決ããæ¹æ³ïŒCIFAR-10ãªã©ïŒã«ã€ããŠèª¬æããŸãã
ïŒäººå·¥ïŒãã¥ãŒãã³
ã深局åŠç¿ããšããçšèªã¯ããåºãæå³ã§ç解ã§ããŸãããã»ãšãã©ã®å Žåã ïŒäººå·¥ïŒãã¥ãŒã©ã«ãããã¯ãŒã¯ã®åéã§äœ¿çšãããŸã ã ãããã®æ§é ã®èãæ¹ã¯çç©åŠããåçšãããŠããŸãããã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ãç°å¢ããç¥èŠãããç»åã®è³ãã¥ãŒãã³ã«ããåŠçãšãææ決å®ãžã®ãããã®ãã¥ãŒãã³ã®é¢äžãæš¡å£ããŸãã åäžã®äººå·¥ãã¥ãŒãã³ã®åäœåçã¯ãæ¬è³ªçã«éåžžã«åçŽã§ãã å
¥åãã¯ãã«ã®ãã¹ãŠã®èŠçŽ ã®å éåãèšç®ããŸã éã¿ãã¯ãã«ãäœ¿çš ïŒåæ§ã«ããã€ã¢ã¹ã®è¿œå ã³ã³ããŒãã³ã ïŒããã®åŸã掻æ§åé¢æ° Ïãçµæã«é©çšã§ããŸãã
æã人æ°ã®ããã¢ã¯ãã£ããŒã·ã§ã³æ©èœã®äžã§ïŒ
- æçé¢æ°ïŒ Ï ïŒ z ïŒ= z ;
- ã·ã°ã¢ã€ãé¢æ°ãã€ãŸãããžã¹ãã£ãã¯é¢æ°ïŒããžã¹ãã£ãã¯ïŒïŒ ããã³åæ²ç·æ£æ¥ïŒTanhïŒïŒ
- åç·åœ¢é¢æ°ïŒæŽæµç·åœ¢ãReLUïŒ
åœåïŒ1950幎代ããïŒãããŒã»ãããã³ã¢ãã«ã¯å®å
šã«ç·åœ¢ã§ãããã€ãŸããã¢ã€ãã³ãã£ãã£ã®ã¿ã掻æ§åé¢æ°ãšããŠæ©èœããŠããŸããã ããããäž»èŠãªã¿ã¹ã¯ã¯æ¬è³ªçã«éç·åœ¢ã§ããããšãå€ãããããä»ã®ã¢ã¯ãã£ããŒã·ã§ã³é¢æ°ã®åºçŸã«ã€ãªããããšãããã«æããã«ãªããŸããã ã·ã°ã¢ã€ãé¢æ°ïŒååã¯ç¹æ§Såã°ã©ãã«ç±æ¥ïŒ 㯠ã zããŒãã«è¿ãå Žåã®ãã€ããªè§£ã«å¯Ÿãããã¥ãŒãã³ã®åæãäžç¢ºå®æ§ããã¢ããªã³ã°ãã zãä»»æã®æ¹åã«å€äœããå Žåã®é«é飜åãšçµã¿åãããŸãã ããã«ç€ºã2ã€ã®é¢æ°ã¯éåžžã«äŒŒãŠããŸãããåæ²ç·æ£æ¥ã®åºåå€ã¯åºé[-1ã1]ã«å±ããããžã¹ãã£ãã¯é¢æ°ã®ç¯å²ã¯[0ã1]ã§ãïŒãããã£ãŠãããžã¹ãã£ãã¯é¢æ°ã¯ç¢ºçãè¡šçŸããã®ã«ãã䟿å©ã§ãïŒã
è¿å¹Žã深局åŠç¿ã§æºç·åœ¢é¢æ°ãšãã®ããªãšãŒã·ã§ã³ãåºãæ®åããŠããŸã-ã¢ãã«ãéç·åœ¢ã«ããç°¡åãªæ¹æ³ãšããŠç»å ŽããŸããïŒãå€ãè² ã®å ŽåããŒãã«ãªããŸããïŒããæçµçã«ã¯æŽå²çã«äººæ°ã®ããã·ã°ã¢ã€ãé¢æ°ãããæåããŸããããŸããçäœãã¥ãŒãã³ãé»æ°çã€ã³ãã«ã¹ãäŒéããæ¹æ³ãšã®æŽåæ§ãåäžããŠããŸãã ãã®ããããã®ã¬ãã¹ã³ã®äžç°ãšããŠãåç·åœ¢é¢æ°ïŒReLUïŒã«çŠç¹ãåœãŠãŸãã
åãã¥ãŒãã³ã¯ããã®éã¿ãã¯ãã«ã«ãã£ãŠäžæã«æ±ºå®ãããŸã ãããã³åŠç¿ã¢ã«ãŽãªãºã ã®äž»ãªç®çã¯ãäºæž¬èª€å·®ãæå°åããããã«ãæ¢ç¥ã®å
¥åããŒã¿ãšåºåããŒã¿ã®ãã¢ã®ãã¬ãŒãã³ã°ãµã³ãã«ã«åºã¥ããŠãã¥ãŒãã³ã«éã¿ã®ã»ãããå²ãåœãŠãããšã§ãã ãã®ãããªã¢ã«ãŽãªãºã ã®å
žåçãªäŸã¯åŸé
éäžæ³ã§ãç¹å®ã®æ倱é¢æ°ã«å¯Ÿã㊠ãã®é¢æ°ã®æ倧ã®æžå°ã®æ¹åã«éã¿ãã¯ãã«ãå€æŽããŸãã
ããã§ã ηã¯åŠç¿çãšåŒã°ããæ£ã®ãã©ã¡ãŒã¿ãŒã§ãã
æ倱é¢æ°ã¯ããã©ã¡ãŒã¿ãŒã®çŸåšã®å€ã§ææ決å®ãè¡ãéã«ãã¥ãŒãã³ãã©ãã»ã©äžæ£ç¢ºã§ããããšããèãæ¹ãåæ ããŠããŸãã ã»ãšãã©ã®ã¿ã¹ã¯ã«é©ããæ倱é¢æ°ã®æãç°¡åãªéžæã¯ã äºæ¬¡é¢æ°ã§ãã ç¹å®ã®ãã¬ãŒãã³ã°ãµã³ãã« ããã¯ã yã®ã¿ãŒã²ããå€ãšç¹å®ã®å
¥åã®ãã¥ãŒãã³ã®å®éã®åºåå€ãšã®å·®ã®2ä¹ãšããŠå®çŸ©ãããŸã ïŒ
ãããã¯ãŒã¯ã«ã¯ããã詳现ãªåŸé
éäžã¢ã«ãŽãªãºã ãèæ
®ããå€æ°ã®ãã¬ãŒãã³ã°ã³ãŒã¹ããããŸãã ç§ãã¡ã®ã±ãŒã¹ã§ã¯ããã¬ãŒã ã¯ãŒã¯ããã¹ãŠã®æé©åãåŠçãããããä»åŸã¯ããŸã泚ç®ããŸããã
ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒããã³ãã£ãŒãã©ãŒãã³ã°ïŒã®æŠèŠ
ãã¥ãŒãã³ã®æŠå¿µãå°å
¥ããã®ã§ããããã¥ãŒãã³ã®åºåãå¥ã®ãã¥ãŒãã³ã®å
¥åã«æ¥ç¶ããããšãå¯èœã«ãªãã ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®åºç€ãç¯ããŸã ã äžè¬ã«ããã¥ãŒãã³ãå±€ã圢æãã1ã€ã®å±€ã®ãã¥ãŒãã³ãåã®å±€ã®åºåãåŠçããçŽæ¥äŒæãã¥ãŒã©ã«ãããã¯ãŒã¯ã«çŠç¹ãåœãŠãŸãã æã匷åãªãã®ãããªã¢ãŒããã¯ãã£ïŒ å€å±€ããŒã»ãããã³ ãMLPïŒã§ã¯ã1ã€ã®å±€ã®ãã¹ãŠã®åºåããŒã¿ã次ã®å³ã®ããã«æ¬¡ã®å±€ã®ãã¹ãŠã®ãã¥ãŒãã³ã«æ¥ç¶ãããŸãã
åºåãã¥ãŒãã³ã®éã¿ãå€æŽããã«ã¯ãç¹å®ã®æ倱é¢æ°ã䜿çšããäžèšã®åŸé
éäžæ³ãçŽæ¥äœ¿çšã§ããŸããä»ã®ãã¥ãŒãã³ã®å Žåããããã®æ倱ãå察æ¹åã«ïŒè€éãªé¢æ°ã®åŸ®åèŠåã䜿çšããŠïŒäŒæããå¿
èŠãããã éäŒæã¢ã«ãŽãªãºã ãéå§ããŸã ã åŸé
éäžæ³ãšåæ§ã«ããã¹ãŠã®èšç®ã¯ãã¬ãŒã ã¯ãŒã¯ã«ãã£ãŠå®è¡ããããããã¢ã«ãŽãªãºã ã®æ°åŠçæ£åœåã«ã¯æ³šæãæããŸããã
æ®éè¿äŒŒå®çã«ãããšãã·ã°ã¢ã€ããã¥ãŒãã³ã®1ã€ã®é ãå±€ãæã€ååã«åºãå€å±€ããŒã»ãããã³ã§ããTsybenkoã¯ãäžããããééã§å®å€æ°ã®é£ç¶é¢æ°ãè¿äŒŒã§ããŸãã ãã®å®çã®èšŒæã¯å®çšçã§ã¯ãªãããã®ãããªæ§é ã«å¯Ÿããå¹æçãªãã¬ãŒãã³ã°ã¢ã«ãŽãªãºã ãæäŸããŸããã çãã¯æ·±å±€åŠç¿ãæäŸããŸãã å¹
ã®ä»£ããã«æ·±ããå¢ãããŸãã å®çŸ©ã§ã¯ãè€æ°ã®é ãå±€ãæã€ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ãã¹ãŠãã£ãŒããšèŠãªãããŸãã
æ·±ãã®ç§»åã«ããããã¥ãŒã©ã«ãããã¯ãŒã¯ã®å
¥åã«çã®å
¥åãæäŸããããšãã§ããŸãããããŸã§ãåäžå±€ãããã¯ãŒã¯ã«ã¯ãç¹æ®ãªæ©èœã䜿çšããŠå
¥åããæœåºãããéèŠãªæ©èœãæäŸãããŠããŸããã ããã¯ã ã³ã³ãã¥ãŒã¿ãŒããžã§ã³ ã é³å£°èªèã èªç¶èšèªåŠçãªã©ã®ããŸããŸãªã¯ã©ã¹ã®ã¿ã¹ã¯ãç°ãªãã¢ãããŒããå¿
èŠãšãããããã®åééã®ç§åŠçååã劚ããããšãæå³ããŠããŸããã ãããããããã¯ãŒã¯ã«è€æ°ã®é ãå±€ãå«ãŸããŠããå Žåãå
¥åããŒã¿ãæããã説æããäž»èŠãªæ©èœãèå¥ããæ¹æ³ãåŠç¿ããæ©èœãç²åŸããããããšã³ãããŒãšã³ãåŠç¿ã®äœ¿çšãèŠã€ããããšãã§ããŸãïŒå
¥åãšåºåã®éã®åŸæ¥ã®ããã°ã©ã å¯èœãªåŠçãªãïŒãŸããäž»èŠãªå±æ§ãååŸããããã®é¢æ°ãå°åºããå¿
èŠããªããªã£ãããã å¹
åºãã¿ã¹ã¯ã®åããããã¯ãŒã¯ã ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ãæ€èšãããšãã«ãè¬çŸ©ã®ç¬¬2éšã§äžèšã®ã°ã©ãã£ãã¯ç¢ºèªãè¡ããŸãã
Deep MLPãMNISTã«é©çšãã
ããã§ãå¯èœãªéãåçŽãªãã£ãŒããã¥ãŒã©ã«ãããã¯ãŒã¯ïŒ2ã€ã®é ãå±€ãæã€MLPïŒãå®è£
ããMNISTããŒã¿ã»ããããææžãæ°åãèªèããã¿ã¹ã¯ã«é©çšããŸãã
次ã®ã€ã³ããŒãã®ã¿ãå¿
èŠã§ãã
from keras.datasets import mnist
次ã«ãã¢ãã«ã®ããã€ãã®ãã©ã¡ãŒã¿ãŒãå®çŸ©ããŸãã ãããã®ãã©ã¡ãŒã¿ãŒã¯ããã¬ãŒãã³ã°ã®éå§åã«æŽç·Žãããããšãæ³å®ãããããããã°ãã°ãã€ããŒãã©ã¡ãŒã¿ãŒãšåŒã°ããŸãã ãã®ããã¥ã¢ã«ã§ã¯ãäºåã«éžæãããå€ã䜿çšããŸãããåŸç¶ã®ã¬ãã¹ã³ã§ãããã®æ¹è¯ã®ããã»ã¹ã«ããã«æ³šæãæããŸãã
ç¹ã«ã以äžãå®çŸ©ããŸãã
batch_size-åŸé
éäžã¢ã«ãŽãªãºã ã®1åã®å埩ã§åæã«åŠçããããã¬ãŒãã³ã°ãµã³ãã«ã®æ°ã
num_epochs-ãã¬ãŒãã³ã°ã»ããå
šäœã®ãã¬ãŒãã³ã°ã¢ã«ãŽãªãºã ã®å埩åæ°ã
hidden_ââsize -2ã€ã®é衚瀺MLPã¬ã€ã€ãŒã®ããããã®ãã¥ãŒãã³ã®æ°ã
batch_size = 128
ããã§ã¯ãMNISTãããŠã³ããŒãããŠãããã€ãã®ååŠçãè¡ããŸãã Kerasã䜿çšãããšãããã¯éåžžã«ç°¡åã«å®è¡ãããŸãããªã¢ãŒããµãŒããŒããNumPyã©ã€ãã©ãªã®é
åã«ããŒã¿ãçŽæ¥èªã¿èŸŒãã ãã§ãã
ããŒã¿ãæºåããã«ã¯ãæåã«ç»åã1次å
é
åã®åœ¢åŒã§æ瀺ãïŒåãã¯ã»ã«ãåå¥ã®å
¥åãã£ãŒãã£ãšèŠãªãããïŒãåãã¯ã»ã«ã®åŒ·åºŠå€ã255ã§é€ç®ããŠãæ°ããå€ãåºé[0ã1]ã«åãŸãããã«ããŸãã ããã¯ãããŒã¿ãæ£èŠåããéåžžã«ç°¡åãªæ¹æ³ã§ã;以éã®ã¬ãã¹ã³ã§ä»ã®æ¹æ³ã«ã€ããŠèª¬æããŸãã
åé¡åé¡ãžã®è¯ãã¢ãããŒãã¯ç¢ºççåé¡ã§ãããã®åé¡ã§ã¯ãåã¯ã©ã¹ã«1ã€ã®åºåãã¥ãŒãã³ããããå
¥åèŠçŽ ããã®ã¯ã©ã¹ã«å±ãã確çãäžããŸãã ããã¯ããã¬ãŒãã³ã°åºåãçŽæ¥ãšã³ã³ãŒãã£ã³ã°ã«å€æããå¿
èŠãããããšãæå³ããŸããããšãã°ãç®çã®åºåã¯ã©ã¹ã3ã§ãåèš5ã€ã®ã¯ã©ã¹ãããïŒ0ã4ã®çªå·ãä»ããããŠããïŒãé©åãªçŽæ¥ãšã³ã³ãŒãã£ã³ã°ã¯[0ã0ã0ã1ã0]ã§ãã Kerasããã®æ©èœããã¹ãŠæäŸããŠãããããšãç¹°ãè¿ããŸãã
num_train = 60000
ãããŠä»ãç§ãã¡ã®ã¢ãã«ãå®çŸ©ããæãæ¥ãŸããïŒ ãããè¡ãã«ã¯ã3ã€ã®å¯ãªã¬ã€ã€ãŒã®ã¹ã¿ãã¯ã䜿çšããŸããããã¯ãå®å
šã«æ¥ç¶ãããMLPã«å¯Ÿå¿ãã1ã€ã®ã¬ã€ã€ãŒã®ãã¹ãŠã®åºåãåŸç¶ã®ã¬ã€ã€ãŒã®ãã¹ãŠã®å
¥åã«æ¥ç¶ãããŸãã æåã®2ã€ã®å±€ã®ãã¥ãŒãã³ã«ã¯ReLUããæåŸã®å±€ã«ã¯softmaxã䜿çšããŸãã ãã®æŽ»æ§åé¢æ°ã¯ãå®æ°å€ãæã€ãã¯ãã«ã確çãã¯ãã«ã«å€æããããã«èšèšãããŠããã jçªç®ã®ãã¥ãŒãã³ã«å¯ŸããŠæ¬¡ã®ããã«å®çŸ©ãããŠããŸãã
ä»ã®ãã¬ãŒã ã¯ãŒã¯ïŒTansorFlowãªã©ïŒãšåºå¥ããKerasã®æ³šç®ãã¹ãæ©èœã¯ãã¬ã€ã€ãŒãµã€ãºã®èªåèšç®ã§ãã å
¥åã¬ã€ã€ãŒã®æ¬¡å
ãæå®ããã ãã§ãKerasã¯ä»ã®ãã¹ãŠã®ã¬ã€ã€ãŒãèªåçã«åæåããŸãã ãã¹ãŠã®ã¬ã€ã€ãŒãå®çŸ©ããããã次ã®ããã«å
¥åããŒã¿ãšåºåããŒã¿ãèšå®ããã ãã§ãã
inp = Input(shape=(height * width,))
ããã§ãæ倱é¢æ°ãæé©åã¢ã«ãŽãªãºã ãããã³åéããã¡ããªãã¯ã決å®ããå¿
èŠããããŸãã
確ççåé¡ãæ±ããšãã¯ãæ倱é¢æ°ãšããŠãäžã§å®çŸ©ããäºä¹èª€å·®ã§ã¯ãªããã¯ãã¹ãšã³ããããŒã䜿çšããã®ãæåã§ãã ç¹å®ã®åºå確çãã¯ãã«ã®å Žå å®éã®ãã¯ãã«ãšæ¯èŒ ãæå€±ïŒ kçªç®ã®ã¯ã©ã¹ïŒã¯æ¬¡ã®ããã«å®çŸ©ãããŸãã
äž»ã«ãã®é¢æ°ã¯ã¯ã©ã¹ã®æ£ããå®çŸ©ã«å¯Ÿããã¢ãã«ã®ä¿¡é Œæ§ãæ倧åããããã«èšèšãããŠãããä»ã®ã¯ã©ã¹ã«å
¥ããµã³ãã«ã®ç¢ºçã®ååžãæ°ã«ããªããããæ倱ã¯ç¢ºççãªã¿ã¹ã¯ã§ã¯æžå°ããŸãïŒããšãã°ãåºåå±€ã®ããžã¹ãã£ãã¯/ãœããããã¯ã¹é¢æ°ã䜿çšïŒ ïŒäºæ¬¡èª€å·®é¢æ°ã¯ãæ®ãã®ã¯ã©ã¹ã«é¥ã確çãã§ããã ããŒãã«è¿ããªãããã«ããåŸåããããŸãïŒã
䜿çšãããæé©åã¢ã«ãŽãªãºã ã¯ãäœããã®åœ¢ã®åŸé
éäžã¢ã«ãŽãªãºã ã«äŒŒãŠããŸããéãã¯ã ãã¬ãŒãã³ã°ã¬ãŒã ηãéžæãããæ¹æ³ã®ã¿ã§ãã ãããã®ã¢ãããŒãã®åªããæŠèŠãããã§çŽ¹ä»ããŸãã次ã«ãéåžžã¯è¯å¥œãªããã©ãŒãã³ã¹ã瀺ãAdamãªããã£ãã€ã¶ãŒã䜿çšããŸãã
ã¯ã©ã¹ã¯ãã©ã³ã¹ãåããŠããããïŒåã¯ã©ã¹ã«å±ããææžãæ°åã®æ°ã¯åãã§ãïŒã 粟床ã¯é©åãªã¡ããªãã¯ïŒæ£ããã¯ã©ã¹ã«å²ãåœãŠãããå
¥åããŒã¿ã®å²åïŒã«ãªããŸãã
model.compile(loss='categorical_crossentropy',
æåŸã«ããã¬ãŒãã³ã°ã¢ã«ãŽãªãºã ãå®è¡ããŸãã ããŒã¿ã®ãµãã»ãããåãé€ããŠãã¢ã«ãŽãªãºã ãïŒãŸã ïŒããŒã¿ãæ£ããèªèããŠããããšã確èªããããšããå§ãããŸãããã®ããŒã¿ã¯æ€èšŒã»ãããšãåŒã°ããŸãã ããã§ã¯ããã®ç®çã®ããã«ããŒã¿ã®10ïŒ
ãåé¢ããŸãã
Kerasã®ãã1ã€ã®åªããæ©èœã¯ãç²åºŠã§ããã¢ã«ãŽãªãºã ã®ãã¹ãŠã®ã¹ãããã®è©³çŽ°ãªãã°ã衚瀺ããŸãã
model.fit(X_train, Y_train,
Train on 54000 samples, validate on 6000 samples Epoch 1/20 54000/54000 [==============================] - 9s - loss: 0.2295 - acc: 0.9325 - val_loss: 0.1093 - val_acc: 0.9680 Epoch 2/20 54000/54000 [==============================] - 9s - loss: 0.0819 - acc: 0.9746 - val_loss: 0.0922 - val_acc: 0.9708 Epoch 3/20 54000/54000 [==============================] - 11s - loss: 0.0523 - acc: 0.9835 - val_loss: 0.0788 - val_acc: 0.9772 Epoch 4/20 54000/54000 [==============================] - 12s - loss: 0.0371 - acc: 0.9885 - val_loss: 0.0680 - val_acc: 0.9808 Epoch 5/20 54000/54000 [==============================] - 12s - loss: 0.0274 - acc: 0.9909 - val_loss: 0.0772 - val_acc: 0.9787 Epoch 6/20 54000/54000 [==============================] - 12s - loss: 0.0218 - acc: 0.9931 - val_loss: 0.0718 - val_acc: 0.9808 Epoch 7/20 54000/54000 [==============================] - 12s - loss: 0.0204 - acc: 0.9933 - val_loss: 0.0891 - val_acc: 0.9778 Epoch 8/20 54000/54000 [==============================] - 13s - loss: 0.0189 - acc: 0.9936 - val_loss: 0.0829 - val_acc: 0.9795 Epoch 9/20 54000/54000 [==============================] - 14s - loss: 0.0137 - acc: 0.9950 - val_loss: 0.0835 - val_acc: 0.9797 Epoch 10/20 54000/54000 [==============================] - 13s - loss: 0.0108 - acc: 0.9969 - val_loss: 0.0836 - val_acc: 0.9820 Epoch 11/20 54000/54000 [==============================] - 13s - loss: 0.0123 - acc: 0.9960 - val_loss: 0.0866 - val_acc: 0.9798 Epoch 12/20 54000/54000 [==============================] - 13s - loss: 0.0162 - acc: 0.9951 - val_loss: 0.0780 - val_acc: 0.9838 Epoch 13/20 54000/54000 [==============================] - 12s - loss: 0.0093 - acc: 0.9968 - val_loss: 0.1019 - val_acc: 0.9813 Epoch 14/20 54000/54000 [==============================] - 12s - loss: 0.0075 - acc: 0.9976 - val_loss: 0.0923 - val_acc: 0.9818 Epoch 15/20 54000/54000 [==============================] - 12s - loss: 0.0118 - acc: 0.9965 - val_loss: 0.1176 - val_acc: 0.9772 Epoch 16/20 54000/54000 [==============================] - 12s - loss: 0.0119 - acc: 0.9961 - val_loss: 0.0838 - val_acc: 0.9803 Epoch 17/20 54000/54000 [==============================] - 12s - loss: 0.0073 - acc: 0.9976 - val_loss: 0.0808 - val_acc: 0.9837 Epoch 18/20 54000/54000 [==============================] - 13s - loss: 0.0082 - acc: 0.9974 - val_loss: 0.0926 - val_acc: 0.9822 Epoch 19/20 54000/54000 [==============================] - 12s - loss: 0.0070 - acc: 0.9979 - val_loss: 0.0808 - val_acc: 0.9835 Epoch 20/20 54000/54000 [==============================] - 11s - loss: 0.0039 - acc: 0.9987 - val_loss: 0.1010 - val_acc: 0.9822 10000/10000 [==============================] - 1s [0.099321320021623111, 0.9819]
ã芧ã®ããã«ããã®ã¢ãã«ã¯ãã¹ãããŒã¿ã»ããã§çŽ98.2ïŒ
ã®ç²ŸåºŠãéæããŸããããã¯ã ããã§èª¬æããè¶
çŸä»£çãªã¢ãããŒãã«ãã£ãŠã¯ããã«åªããŠãããšããäºå®ã«ããããããããã®ãããªåçŽãªã¢ãã«ã«ãšã£ãŠéåžžã«äŸ¡å€ããããŸã ã
ãã®ã¢ãã«ãããäžåºŠå®éšããããšããå§ãããŸããããŸããŸãªãã€ããŒãã©ã¡ãŒã¿ãŒãæé©åã¢ã«ãŽãªãºã ãã¢ã¯ãã£ããŒã·ã§ã³é¢æ°ãè©ŠããŠãé ãå±€ãè¿œå ãããªã©ã æçµçã«ã¯ã99ïŒ
ãè¶
ãã粟床ãéæã§ããã¯ãã§ãã
ãããã«
ãã®æçš¿ã§ã¯ããã£ãŒãã©ãŒãã³ã°ã®åºæ¬æŠå¿µãæ€èšŒããKerasãã¬ãŒã ã¯ãŒã¯ã䜿çšããŠåçŽãª2å±€ã®ãã£ãŒãMLPãæ£åžžã«å®è£
ããMNISTããŒã¿ã»ããã«é©çšããŸãããããããã¹ãŠã30è¡æªæºã®ã³ãŒãã§å®è¡ããŸããã
次åã¯ãMLPã倧容éç»åïŒCIFAR-10ãªã©ïŒã«é©çšããéã«çºçããåé¡ã®ããã€ãã解決ããç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒCNNïŒãèŠãŠãããŸãã