ãã ããã³ããS.Vã ã·ãã§ã«ãã³ã
ã€ã³ã颿°è¡åã®åºæå€ã䜿çšããéç·åœ¢éèªåŸã·ã¹ãã ã®æ°åŠã¢ãã«ã®ãã€ããã¯ã¹ã®å®æ§çç¹åŸŽã®ç ç©¶
åé¡ã®å£°æ
éäžå®æ°ãæã€éç·åœ¢éèªåŸã·ã¹ãã ã®æ°åŠã¢ãã«ã®ãã€ããã¯ã¹ã®å®æ§çç¹åŸŽãç ç©¶ããã¿ã¹ã¯ã¯éåžžã«ç·æ¥ã§ãã éç·åœ¢çŸè±¡ã®çè«ãšåŸãããå¿çšçµæã®éçºã¯ããã®åé¡ã解決ããããã®ããŸããŸãªæ¹æ³ãçã¿åºããŸã[1-3]ã
äžè¬çãªå Žåãèå¥ãããã¯ã©ã¹ã®ã·ã¹ãã ïŒä»¥äžãã·ã¹ãã ãïŒã®æ°åŠçã¢ãã«ã®ãã€ããã¯ã¹ã¯ãéå®åžžä¿æ°ãæã€æ¬¡ã®éåžžã®éç·åœ¢ç©ååŸ®åæ¹çšåŒã«ãã£ãŠèšè¿°ãããŸãã
AïŒDïŒxïŒtïŒ=GïŒDïŒfïŒtïŒ+HïŒxãfãtïŒ qquadïŒ1ïŒ
ã©ãã§ D ç¬ç«å€æ°ã«é¢ããäžè¬å埮åã®æŒç®å t ; AïŒDïŒ -æ£æ¹åœ¢ãé åº Lx å€é
åŒãå«ãè¡å D ãã㊠Dâ1 èŠçŽ Dâ1 -äžéãå¯å€ã®ç©åæŒç®å t ;
GïŒDïŒã¯ãµã€ãºã®é·æ¹åœ¢è¡åã§ã L x timesL f ããã®å€é
åŒ D ãã㊠Dâ1 èŠçŽ ; xïŒtïŒ ãã㊠fïŒtïŒ -ã·ã¹ãã 座æšã®ãããªãã¯ã¹åïŒæ±ããããŠãã解決çïŒããã³ããããã«å¯Ÿããå€éšã®åœ±é¿ã HïŒxãfãtïŒ -å åãéå®åžžä¿æ°ã§ããç©ã®åã®åœ¢åŒã®è¡ãå«ãåè¡åãããã³ä»»æã®å°æ°ã®æç床ã§ããŒãããå§ãŸããä»»æã®è§£ããã³å€éšã®åœ±é¿ããã®ä»»æã®æ¬¡æ°ããã³ä»»æã®å€é床ã®ç©åã®å€å
žçãªåŸ®å
äžããããåææ¡ä»¶äžã§ã®éç·åœ¢éèªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ã®èšç® Dnx rïŒ0âïŒ=Dnx rïŒt â0ïŒ ã r=1,2ã...ãL x ã 0â=tâ 0 ã n in[0;Mâ1] äžããããåŠç¿ééå
ã«ååšãããã¹ãŠãèŠã€ããããšã«ãªããŸã [t 0;T] æ¹çšåŒïŒ1ïŒã®è§£ã§ãããå€ãã®ã¢ã«ãŽãªãºã ããã³æ°åŠã®åé¡ã«é¢é£ããŠããŸãã ãããã®åé¡ã®æ¬è³ªã¯ãç®çãšãã解決çã®è³ªçç¹åŸŽã®å®¢èгçãªå€æ§æ§ã決å®ããŸãã
äžè¬çãªå ŽåãåŒïŒ1ïŒã®æ±ããããŠããè§£ã®ãã€ããã¯ã¹ã®æ§è³ªã¯äºæž¬äžèœã§ããããã¯ãéžæãããåææ¡ä»¶ããã©ã¡ãŒã¿ãŒã®æ¯çãããã³ãã®ç¹æ§ã®ã¿ã€ãã«å¯Ÿãããã·ã¹ãã ã®æ¯é
çãªéç·åœ¢ããã³éå®åžžç¹æ§ã®çºçŸåœ¢åŒã®äŸåæ§ã«ãããã®ã§ãã äžè¬çãªå Žåãæ¹çšåŒã®æ±ããããè§£ã®ã€ã³ããã¯ã¹ ïŒ1ïŒ äžèŠåã§ãã·ã¹ãã ã®ãã€ããã¯ã¹ãããããæ±ºå®è«çã«ãªã¹ã«äœäžãããŸã[2-4]ã ãã®ãã€ããã¯ã¹ãç¹åŸŽä»ãããæã
ã¯æ¹çšåŒã®æãŸãã解決çã§ ïŒ1ïŒ åŸ®åå¯èœãªãã®ãå«ã第1çš®ã®ãã¬ãŒã¯ãããã³ç¬¬2çš®ã®ãã¬ãŒã¯ãå¯èœã§ãã ãããã®ãœãªã¥ãŒã·ã§ã³ã®ç¹ç°æ§ã¯ãéåžžãåæ§ãã«é¢é£ä»ããããŠããããšã§ãã åçã€ã³ãžã±ãŒã¿ã®ééãé«éãšäœéã§äº€äºã«å€æŽãããã®ééå
ã§ã屿å®å®æ§ããäžå®å®æ§ãžããŸãã¯ãã®éãžã®ç§»è¡ãå¯èœã§ãã 屿çãªäžå®å®æ§ã®çŽæ¥çãªçµæã¯ãè§£ã®ãæ··åãã§ãããéç·åœ¢éèªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ãæ°å€çã«èšç®ãããã®å®æ§çç¹åŸŽãåæããã¿ã¹ã¯ãéåžžã«è€éã«ããŸã[5]ã éç·åœ¢éèªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ã®å¯èœæ§ã®ãã宿§ç倿§æ§ã¯ããã®åº§æšãã©ã¡ããªãã¯é¢ä¿ã®å€é³ç¯ç¹ãã®çµæã§ãããæ¹çšåŒã®è¿äŒŒè§£ã®ã¿ãå¯èœã«ããŸã ïŒ1ïŒ ããããã®æ°å€çæ¹æ³ã䜿çšãã[6-8]ã å€ãã®æ°å€çæ¹æ³ãããããããã®èšèšã¹ããŒã ã¯åžžã«æ¹åãããŠããŸãã ãã ãããããã®ãããããæ¹çšåŒã®æãŸããè§£ã®æ¯ãèãã®æ§è³ªéã®é¢ä¿ãŸãã¯ãã¿ãŒã³ãéãã圢ã§ç¢ºç«ããããšã¯ã§ããŸãã ïŒ1ïŒ ãã®æ¹çšåŒã®æ
å ±ã€ã³ãžã±ãŒã¿ã ãã®ãããªé¢ä¿ãåºå¥ããããã«åºã¥ããŠæ¹çšåŒã®å®æ§çç¹åŸŽãšç¹æ§ã®ç¹æ§ã®åæãæŽçããã¿ã¹ã¯ ïŒ1ïŒ çè«çã«ãå¿çšçã«ãéèŠã§ãã åœŒå¥³ã®æ±ºå®ã¯ãéç·åœ¢ããã³éå®åžžçŸè±¡ã«ãããå æé¢ä¿ã®å
容ãçè§£ããããã®å¥ã®ã¹ããããæå³ããŸãã
ãã®èšäºã§ã¯ãæ
å ±ææšãšããŠã®ãã€ããã¯ã¹æ¹çšåŒã«å¯Ÿå¿ããéç·åœ¢éèªåŸåºæå€ã·ã¹ãã ã®ãã€ããã¯ã¹ã®äœ¿çšã«åºã¥ãåé¡ã®è§£æ±ºçãæäŸããŸã ïŒ1ïŒ ãã®æ¹çšåŒã®è§£ã®åºæå€ã«ãã颿°ã€ã³ãè¡åãšåè§£ã èšç®ã®åºç€ãšããŠãè§£æçæ°å€æ³ã䜿çšãããŸãããããã¯ããã®èšç®ç¹æ§ã«ãããŠã¿ã¹ã¯ã«å¯Ÿå¿ããŸã[9ã10]ã å®äŸãæäŸãããŸãã
æ±ããããæ¹çšåŒã®è§£ã®å®æ§çç¹åŸŽã®æ
å ±ææšã®æ§æ ïŒ1ïŒ ãã®æ¹çšåŒã®ãã©ã¡ãŒã¿ãŒãšè§£èªäœã®éå®åžžã€ã³ãžã±ãŒã¿ãŒã®çžäºäœçšã決å®ãããã®ãå«ããããšããå§ãããŸãã ç·åœ¢å®åžžã·ã¹ãã ã§ã¯ããã®ãã€ããã¯ã¹ã¯æ¹çšåŒã«ãã£ãŠèšè¿°ãããŸã ïŒ1ïŒ ã§ HïŒxãfãtïŒ=const ããã®ãããªæ
å ±ã€ã³ãžã±ãŒã¿ã¯ã«ãŒãã§ã lambda nãn=1,2ã...ãN 次ã®ç¹æ§æ¹çšåŒïŒ
AïŒpïŒ=0 qquadïŒ2ïŒ
ã©ãã§
AïŒpïŒ -è¡ååŒ
AïŒDïŒ æŒç®åã眮ãæãããšã
D ãªãã¬ãŒã¿ãŒããš
p ã
æ¹çšåŒã®æ ¹ã®æ§è³ªãšæ°å€ ïŒ2ïŒ ãå®å®æ§ãšãåæ§ããå«ããç§»è¡ããã»ã¹ã«ãããç·åœ¢èªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ã®ãã¹ãŠã®æ©èœãšç¹æ§ã決å®ããŸã[1,7,8]ã å€éšã®åœ±é¿ãå®åžžç¶æ
ã®æ§è³ªãæç¢ºã«æ¯é
ãããããç·åœ¢èªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ã¯ãåç¡éã®æéééã§å®å
šã«äºæž¬å¯èœã§ãã
éç·åœ¢ã®éèªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ã®ææšã決å®ããéã«ããã®ãããªæ
å ±éçŽçã§ããªãåçŽãªæç€ºãããéžæã¯ãŸã äžå¯èœã§ãã ããããçŸåšã®ç·æ¥ã®å®è·µèŠæ±ã§ã¯ãèšç®ã«ã¢ã¯ã»ã¹å¯èœã§ãããæ
å ±å
容ã®èгç¹ãã蚱容å¯èœãªã·ã¹ãã ã®ææšãéžæããå¿
èŠããããŸãã ç·åœ¢ã®å Žåãšåãããã«é²ããšãå¿
èŠãªæ
å ±ã€ã³ãžã±ãŒã¿ãšããŠã«ãŒããèæ
®ãããšããææ¡ã¯è«ççã§ã lambda nãn=1,2ã...ãN æ¹çšåŒ ïŒ2ïŒ ããã®åœ¢æã¯è¡ååŒã®èšç®ã«é¢é£ä»ããããŸã AïŒpïŒ è¡å AïŒDïŒ æ¹çšåŒã®éžæãããç·åœ¢éšå ïŒ1ïŒ ã çµæã®æ
å ±ã€ã³ãžã±ãŒã¿ãŒã®ã»ãã³ãã£ãã¯ã³ã³ãã³ãã®è§£é lambda nãn=1,2ã...ãN ãããã®éžæãããæ¬è³ªçã«éæ¢ããŠããã€ã³ãžã±ãŒã¿ãšéç·åœ¢éèªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ã®å®æ§çç¹åŸŽãšã®é¢ä¿ã¯ã段éçã§ãã£ãŠãæå³ã®ããèå¥ã«ã¯åœ¹ç«ããªãããããããŸãã§ãã ãŸããæ¹çšåŒ ïŒ1ïŒ è¡å AïŒDïŒ ãŒããŸãã¯éç·åœ¢éšåã«ãã匷調衚瀺 HïŒxãfãtïŒ ãã®æ¹çšåŒã®æ¬¡ã«ãæ¹çšåŒã®æ ¹ ïŒ2ïŒ äžè¬çã«äžåšãŸãã¯ãã®ååšããããã£ãŠã³ã³ãã³ãã¯ãæ¬è³ªçã«æ¡ä»¶ä»ãã§äž»èгçã§ã[9]ã
ãããã£ãŠãéç·åœ¢éèªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ã®èš±å®¹å¯èœãªæ
å ±ã€ã³ãžã±ãŒã¿ã®éžæã®ç®æšå
åã¯ããã®ååšã®æ¡ä»¶ã§ãããæ¹çšåŒã®æãŸããè§£ã®æ°å€ã€ã³ãžã±ãŒã¿ãšã®æ°åŠçé¢ä¿ã§ã ïŒ1ïŒ ã ãã®æ¡ä»¶ã¯ãçåŒã®å Žåã«æºããããšãã§ããŸã ïŒ1ïŒ ç·åœ¢éšåè¡å AïŒDïŒ ç¹å®ã®æ¹æ³ã§ããããªãã¯ã¹ã«ãããã€ã©ã€ããŸãã¯è£è¶³ HïŒxãfãtïŒ éç·åœ¢éšå[9,10]ã ãã®ãããªãããªãã¯ã¹ã®éžæãŸãã¯è¿œå AïŒDïŒ ãããªãã¯ã¹ã®ãã HïŒxãfãtïŒ ãããããããŸããªæ¹æ³ã§ã ãã®å Žåã«å®è¡ããã倿ã¯ãã¹ãŠåçã®æ§è³ªã§ããå¿
èŠãããããã®çµæãã·ã¹ãã ã®ãã€ããã¯ã¹ã¯å€æŽãããŸããã ãããªãã¯ã¹ã®éžæãŸãã¯è¿œå ã®çµæãšã㊠AïŒDïŒ ãããªãã¯ã¹ã®ãã HïŒxãfãtïŒ æ ¹ã®å¿
èŠãªæ°åŠçé¢ä¿ãéæãããŸã lambda nãn=1,2ã...ãN æ¹çšåŒ ïŒ2ïŒ æ¹çšåŒã®æãŸããè§£ã®æ°å€ ïŒ1ïŒ ã·ã¹ãã ãã€ããã¯ã¹ã®æ°å€èšç®ã®ã¹ãããã«ãã£ãŠæ±ºå®ããã颿£çãªç¬éã ãããã£ãŠãæ¹çšåŒã®ãããã®å€æã®çµæãšã㊠ïŒ1ïŒ ã«ãŒã lambda nãn=1,2ã...ãN æ¹çšåŒ ïŒ2ïŒ æ°å€ææšãšå®æ§çç¹æ§ã®äž¡æ¹ã«é¢ããŠãæéã«äŸåããæ©èœãç²åŸããŸãã
éå®åžžã«ãŒããããã㣠lambda nãn=1,2ã...ãN æ¹çšåŒ ïŒ2ïŒ ã察å¿ããè¡å倿ãå®è¡ããããã®ã¿ãŒã²ããåºæºããªãå Žå AïŒDïŒ ããã®ãããªç¹æ§ã®åºçŸã«ã€ãªããããããã®ã«ãŒãã®å¿
èŠãªæçãªç¹æ§ãããèªäœã§ä¿èšŒããããšã¯ã§ããŸããã éç·åœ¢ãªããžã§ã¯ãã®ãã€ããã¯ã¹ã®å®æ§çç¹åŸŽã®æãŸããç ç©¶ã¯ã圢æãŸãã¯å€æã®ã¿ãŒã²ããåºæºãšããŠæ¢åã®ãããªãã¯ã¹ãéžæããããšã«ããæ±ºå®ãããŸã AïŒDïŒ æ¹çšåŒ ïŒ1ïŒ ãã®æ¹çšåŒã«å¯Ÿå¿ããã€ã³ã颿°è¡åãšã®äžèŽã®æ¡ä»¶[4-8]ã ãã®ãããªåé¡ã解決ããããã®ã¢ã«ãŽãªãºã ã¯ã[10]ã§èª¬æãããŠããŸãã ãããªãã¯ã¹ã®åœ¢æãŸãã¯å€æã®çµæãšã㊠AïŒDïŒ ãããªãã¯ã¹ã®ãã HïŒxãfãtïŒ é¢æ°ã€ã³ãè¡åã®éå®åžžæ ¹ lambda nãn=1,2ã...ãN æ¹çšåŒ ïŒ2ïŒ ã€ã³ãè¡åã®åºæå€ã®ç¶æ
ãååŸããŸãã
éå®åžžåºæå€ lambda nãn=1,2ã...ãN 颿°ã€ã³ãè¡åæ¹çšåŒ ïŒ1ïŒ æ°å€è§£æ³ã®ã¹ãããã«ãã£ãŠæ±ºå®ããã颿£çãªç¬éã«ã¯ãç¹å®ã®ã»ãã³ãã£ãã¯ã³ã³ãã³ãããããŸã[4-8]ã éç·åœ¢éèªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ã®å±æç¹æ§ã§ããããã颿£æéã¢ãŒã¡ã³ãtã«å¯Ÿå¿ããç¹ã®ç¡éã«å°ããªè¿åã§ããã€ããã¯ã¹æ¹çšåŒã®è§£ã®ãã€ãããã¯ã€ã³ãžã±ãŒã¿ã®å®å®æ§ãšå€åçãç¹åŸŽä»ããŸã ïŒ1ïŒ ã æ¹çšåŒã®ç¹ç°ç¹ã®è¿å ïŒ1ïŒ åºæå€ lambda nãn=1,2ã...ãN 颿°ã€ã³ãè¡åã«ãããäœçžå¹³é¢äžã§äœçžè»éã®åŒåãšåçºã®é åãåºå¥ããããšãã§ãããã®æ¹çšåŒã®æ¢åã®è§£ã®éçç¶æ
ã«é¢ããäºæž¬ãå¯èœã«ãªããŸã[6-8]ã 颿£æå»ã«å¯Ÿå¿ããåºæå€ lambda nãn=1,2ã...ãN éç·åœ¢éèªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ã®å®æ§çç¹åŸŽãšç¹æ§ãç¹åŸŽä»ããæ±ºå®ããã€ã³ã颿°è¡åã¯ããã®é¢ä¿ã®æ°åŠçç¹åŸŽãšæ
å ±ææšãèå¥ããã¿ã¹ã¯ã®é¢é£æ§ã決å®ããŸãã ãã®åé¡ã®è§£æ±ºçã¯ãéžæãããéå®åžžæ
å ±ã€ã³ãžã±ãŒã¿éã®æ°åŠçé¢ä¿ã®ç¢ºç«ã«é¢é£ããŠããŸã lambda nãn=1,2ã...ãN éç·åœ¢éèªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ãšããã®ãã€ããã¯ã¹ã®èšç®ã«äœ¿çšãããæ°å€æ³ã®èšç®ã¹ããŒã ã®ãã©ã¡ãŒã¿ãŒã ãã®ç®æšãéæããããã«å¿
èŠãªæ¡ä»¶ã¯ã察å¿ããåæéšåã®éžæãããã¡ãœããã®èšèšã¹ããŒã ã«ååšããããšã§ãã ã¡ãœããã®ãã®åæéšåã®èšç®ã¢ã«ãŽãªãºã ã¯ãã€ã³ã颿°è¡åã®åºæå€ãèšç®ããæ©èœãšäžèŽããŠããå¿
èŠãããããããã®æ°å€ãšéç·åœ¢éèªåŸã·ã¹ãã ã®åç座æšãšã®æ°åŠçé¢ä¿ãæäŸããå¿
èŠããããŸãã å®åŒåãããèŠä»¶ã¯ãå¯å€æ¬¡æ°ã®ã¯ã³ã¹ãããåææ°å€æ³ã«ãã£ãŠå®å
šã«æºããããŸã[9ã10]ã
éç·åœ¢éèªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ãèšç®ããããã®è§£æçæ°å€çæ¹æ³
è§£æçæ°å€çææ³ã®åœ¢æãžã®åæ©ã¯ãæ¹çšåŒã®è§£ãçµ±äžããããšãã顿ã§ãã ïŒ1ïŒ åäžã®å€æã®ã¿ã䜿çšããŸãã ããã¯ããã€ã©ãŒçŽæ°ã«ããæãŸããè§£ã®èšè¿°ãšãæèµ·ãããåé¡ã®ä»£æ°åã®ããã®ã©ãã©ã¹ç©åã®ãã®åŸã®é©çšãæå³ããŸãã
æ¹çšåŒã«ãã£ãŠéžæããããã€ããã¯ã¹ãèšç®ããããã®è§£æçæ°å€çæ¹æ³ ïŒ1ïŒ æå®ãããåŠç¿ééå
ã®ã·ã¹ãã ã®ã¯ã©ã¹ [t 0;T] åæãšæ°å€ã®2ã€ã®éšåã§æ§æãããŸãã
ãã®ã¡ãœããã®åæéšåã¯ãäžè¬åããã颿°ãã©ãã©ã¹å€æãããã³é¢æ°ã®ã¹ãçŽæ°ã®è£
眮ã«åºã¥ããŠããŸãã åæéšåã®æé ã¯ãåŸç¶ã®åèšç®ã¹ãããã®å®è¡ã«å
è¡ããæ¬¡ã®ããã«ãªããŸãã ãŸãã察å¿ããã¹ãçŽæ°ã®ã·ã¹ãã ã®å€éšã®åœ±é¿ãšéå®åžžãã©ã¡ãŒã¿ãŒãèšè¿°ãã颿°ãæ¡åŒµãããšãšãã«ããããªãã¯ã¹ã«ãããããã®ãœãªã¥ãŒã·ã§ã³ã®éåžžã®ã³ã³ããŒãã³ããæ£åŒã«èšè¿°ããããšã«ããã HïŒxãfãtïŒ æ¹çšåŒ ïŒ1ïŒ å¯Ÿå¿ããã¹ãçŽæ°ã䜿çšããŠããã®æ¹çšåŒã®å³èŸºãåè¡åã«å€æããŸãããã®è¡åã®ã¹ãèŠçŽ ã¯è¡èŠçŽ ãšããŠæ©èœããŸãã ãããã®ã¹ãçŽæ°ã®ä¿æ°ã¯ãã·ã¹ãã ã®å€éšã®åœ±é¿ãšéå®åžžãã©ã¡ãŒã¿ãŒã®ã¹ãçŽæ°ã®æ¢ç¥ã®ä¿æ°ãããã³æ±ããããããã€ãã®è§£ã®æ£èŠæåã®ã¹ãçŽæ°ã®æªç¥ã®ä¿æ°ã§è¡šããããããäžè¬ã«äžæã§ãã å®è¡ãããæäœã¯å
ã®æ¹çšåŒãå°ããŸã ïŒ1ïŒ ã©ãã©ã¹ç©å倿ã®ãã®åŸã®ã¢ããªã±ãŒã·ã§ã³ã«å¿
èŠãªåœ¢åŒã«ã ä¿®æ£ãããæ¹çšåŒã倿ããã©ãã©ã¹ ïŒ1ïŒ ãããŠãCramerã®ã«ãŒã«ã«åŸã£ãŠãçµæã®ä»£æ°æ¹çšåŒãç»åã«å¯ŸããŠè§£ããŸã X lïŒpïŒ æ±ãããã解決ç x lïŒtïŒãl in[1ãL x] 次ã®åŒãååŸããŸãã
X lïŒpïŒ= fracBl lïŒpïŒAïŒpïŒ= frac sum limits i=0inftyBl l.N+J lâipN+J lâi sum limits Ni=0A ipiã qquadïŒ3ïŒ
ã©ãã§ N in mathbbN;J l in mathbbZ
äžè¬çãªå ŽåãåŒïŒ3ïŒã§è¡šãããåæ°æç颿° J l geq0 ééã£ãŠãããåççãªå
šäœã®åèšãšããŠè¡šãããšãã§ããŸã X âlïŒpïŒ æ£ããåæ°ã®æçæ° X +lïŒpïŒ æ©èœã æ£ããåæ°æç颿°ã®ãã®åŸã®åè§£ X +lïŒpïŒ ç¡éé ç¹ã®è¿åã«ããããŒã©ã³çŽæ°ã§ã¯ãåŒã倿ããŸã ïŒ3ïŒ æ¬¡ã®ããã«ïŒ
X lïŒpïŒ=X âlïŒpïŒ+X +lïŒpïŒ= sum âJ lj=0S ljpâj+ frac sum limits inftyi=1B lNâipNi sum limits Ni=0A ipi== sum âJ lj=0S ljpâj+ frac sum limits inftyi=0B l.Nâiâ1pNâi sum limits Ni=0A ipi frac1p== sum âJ lj=0S l.jpâj+ sum inftyi=0R l.ipâïŒi+1ïŒã qquadïŒ4ïŒ
ãªããº
S l.j ã
B l.Nâi ã
R l.i åŒã«å«ãŸãã
ïŒ4ïŒ ãåŒã®è¡šèšãèæ
®ããŠ
ïŒ3ïŒ ãæ¬¡ã®åŒ[9,10]ã§èšç®ãããŸãã
S lãâJ l= fracBl l.N+J lA N;
S lãâJ l+j= fracBl l.N+J l+jâ sum limits jâ1k=0S l.âJ l+kA Nâj+kA N
ã
ã©ãã§
j=1,2ã...ãJ l;B l.Nâi=Bl l.Nâiâ sum Nâik=0S l.âN+i+kA k
ã©ãã§
i=1,2ã...;S l.âr=0ã ãã
r>J l; beginalignïŒR l.0= fracB lNâ1A N;ïŒR li= fracB lNâ1âiâ sum limits iâ1k=0R lkA Nâi+kA Nã endalign qquadïŒ5ïŒ
ã©ãã§
i=1,2ã...æåŸã®å¹³çã®å³åŽã®åèšã®æ¡ä»¶
ïŒ4ïŒ ç»åã®ããŒã©ã³ã·ãªãŒãºã®äž»èŠéšåãšéåžžéšåããããã圢æãã
X lïŒpïŒ æ±ãããã解決ç
x lïŒtïŒãl in[1;L x] ç¡éé ç¹ã®è¿ãã ç»åã®ãªãªãžãã«
X lïŒpïŒ äžè¬åãããæ©èœãæäŸããŸã
x lïŒtïŒãl in[1;L x] åæ°ãå«ã
x âlïŒtïŒ ãããŠå®æçã«
x +lïŒtïŒ ã³ã³ããŒãã³ãã
ãã®ãããç®çã®ãœãªã¥ãŒã·ã§ã³ã®ã¡ãœããã®åæéšåãå®è¡ããåŸ
x lïŒtïŒãl in[1;L x] æ¹çšåŒ
ïŒ1ïŒ æ¬¡ã®èª¬æã衚瀺ãããŸãã
x lïŒtïŒ=x âlïŒtïŒ+x +lïŒtïŒ= sum âJ lj=0S lj rm delta jïŒtïŒ+ sum inftyi=0R l.iti/iïŒã qquadïŒ6ïŒ
ã©ãã§
rm delta jïŒtïŒ -ãŒãããã®ã€ã³ãã«ã¹é¢æ°
âJ l èæ
®ãããèšç®ééã®åæç¹ã§å®çŸ©ããã-th次ãå«ã;
S l.j -ã€ã³ãã«ã¹é¢æ°ã®éã¿ä¿æ°;
R l.i è§£ã®æ£èŠæåã®å±éä¿æ°ã¯
x +lïŒtïŒ æšªåº§æšãå«ãèæ
®ãããèšç®ééã®åæç¹ã®å³è¿åã®ã¹ãçŽæ°ã§
t=0+ [9,10]ã
åãåã£ããã©ãŒã
ïŒ6ïŒ åžæãããœãªã¥ãŒã·ã§ã³ã®èª¬æ
x lïŒtïŒãl in[1;L x] ã¯ãéç·åœ¢éèªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ã®å®æ§çç¹åŸŽã®åæã«é¢é£ããããã€ãã®åºæ¬çãªãã€ã³ããåæ ããŠããŸãã ã©ãã©ã¹ç©å倿ã䜿çšãããšãçŸåšã®èšç®ééã®éå§ç¹ã«å¯Ÿå¿ãããã€ã³ãã§ãæ¢ç¥ã®åææ¡ä»¶ããåææ¡ä»¶ãžã®æ£ããé·ç§»ã決å®ãããç®çã®è§£ã®æ¹çšåŒã匷調衚瀺ãããŸãã
ïŒ1ïŒ ååšããå Žåãæåã®çš®é¡ã®äŒæ©ã 説æã®ååš
ïŒ6ïŒ ç¹ç°æå
x âlïŒtïŒ æ¢åã®åŸ®åå¯èœãªç¬¬1çš®ã®ã®ã£ãããåºå¥ããå¯èœæ§ã瀺ããŸãã è§£ã®ç¹ç°æåã¯
x âlïŒtïŒ ååšããå Žåãã¡ãœããã®åæéšåã®çŸåšã®èšç®ã¹ãããã®éå§ã«å¯Ÿå¿ãã颿£æéã§ã®æ±ºå®ã«äœ¿çšã§ããŸãã
éåžžã®ãœãªã¥ãŒã·ã§ã³ã³ã³ããŒãã³ã
x +lïŒtïŒ èª¬æããæ¬¡ã®ããã«
ïŒ6ïŒ ã¯ãã¹ãçŽæ°ã§è¡šãããçŸåšã®èšç®ééã§ã®èšç®ã«ã¯ãã¡ãœããã®æ°å€éšåã䜿çšãããŸãã ã¡ãœããã®æ°å€éšåã¯ãç¬ç«å€æ°ã®é¢æ£åã«åºã¥ããŠããŸã
t ã çŸåšã®èšç®ééã§
rm[t kâ1;t k] rmã rmt k=t kâ1+h k ã¡ãœããã®æ°å€éšåã®å®è£
ã¯ãé©åãªã¹ããããµã€ãºã®éžæããå§ãŸããŸãã
h=h k ã ãã®éžæã¯ã次ã®çåŒ[9.10]ã«ãã£ãŠç®¡çãããŸãã
h=q rm tauã qquadïŒ7ïŒ
ã©ãã§
0<q<1ãéçå€
tau çŸåšã®èšç®ã¹ãããã®é·ã
h å¹³çã«å«ãŸãã
ïŒ7ïŒ ãéåžžã®æåã®ã¹ãçŽæ°ã®æ°å€çåªå¢ãèšç®ããããã®çŸåšã®ééã®åæã®ç ç©¶ã®çµæããããŸã
x +r\å·ŠïŒt\å³ïŒ å¿
èŠãªãœãªã¥ãŒã·ã§ã³
x rïŒtïŒr=1,2ã dotãL x ã çŸåšã®èšç®ã¹ãããã®é·ã
h=h k å¹³çã«åŸã£ãŠéžæ
ïŒ7ïŒãéç·åœ¢éèªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ã®å®æ§çç¹åŸŽãåæããããã®å€ãã®éèŠãªæ¡ä»¶ã確å®ã«æºãããããªãã®ã§ãããŸããçŸåšã®èšç®ééã§[t_kâ1;t_k],t_k=t_kâ1+h_k éåžžã®ã³ã³ããŒãã³ããœãªã¥ãŒã·ã§ã³ã®ãã¹ãŠã®ã¹ãçŽæ° x_r+(t)ãããã«é
眮ããã颿°ã«åæãããã€ã©ãŒã©ã³ã¯ã«ãªããŸããããã¯ãèæ
®ãããæéééå
ã«ç®çã®ãœãªã¥ãŒã·ã§ã³ãååšããããšã瀺ããŸããx_r+(t)èšç®æé å
šäœã«è«ççãªæå³ãšå®éçãªäŸ¿å®ãäžããã第äºã«ãå¹³çã«åŸã£ãŠéžæ(7) èšç®ã¹ãããå€ h=h_k 颿£æå»ã§ã®èšç®æé ã®æ°å€å®å®æ§ãæäŸããŸã t=t_k ããããã®å€ x_l+(t_k;I_l) éåžžã®ã³ã³ããŒãã³ã x_l+(t) æ±ãããã解決ç x_l(t),lâ[1;L_x] ã
è§£ã®ããããã®å€ã®èšç® x_l+(t_k;I_l) è§£ã®æ£èŠæåã®ãã€ã©ãŒçŽæ°ã®å¶éã«é¢é£ x_l+(t) åœŒã®æåã®éšåçãªåèš I_lã¡ã³ããŒããã®å Žåã«çºçããç³»åã®æ®å·®ã¡ã³ããŒã¯ãããŒã«ã«èšç®ãšã©ãŒã圢æããåžžã«å¶éããã[9ã10]ã§äžããããåŒã䜿çšããäžéæšå®ã«å©çšã§ããŸãã第äžã«ãæ©å¹
h=h_k éåžžã®ã³ã³ããŒãã³ãã®å€åçã«åžžã«å¯Ÿå¿ãã x_r+(t)åžæãããœãªã¥ãŒã·ã§ã³ããã®çµæã¯ããœãªã¥ãŒã·ã§ã³ã®éåžžã®ã³ã³ããŒãã³ãã®ã¹ãçŽæ°ã®åæã«é¢ããç ç©¶ã®çµç¹ã«ãã£ãŠä¿èšŒãããŸãx_r+(t)察å¿ããæ°å€ã®éåæ°ãèæ
®ããããšã«ããããããã®ã¡ã³ããŒã¯ããããã®ã¹ãçŽæ°ã®ä¿æ°ã®ãã¹ãŠã®å¯èœãªçµã¿åããã«ãã£ãŠåœ¢æããã颿£æéã§ã®ãããã®ã³ã³ããŒãã³ããœãªã¥ãŒã·ã§ã³ããæé次æ°ã®å°é¢æ°ã®å€ã決å®ããŸããt=t_kâ1 ã
第åã«ãå¹³ç (7) èšç®ã¹ãããå€ h=h_k äžäœè©äŸ¡ã®æé ãæŽçã§ããŸã |Îx_l+(t;I_l)|t=t_k è¿äŒŒå€èšç®ã®çµ¶å¯Ÿåèšèª€å·® x_l+(t_k;I_l) éåžžã®ã³ã³ããŒãã³ã x_l+(t) æ±ãããã解決ç x_l(t),lâ[1;L_x] ã
åèšèšç®èª€å·®ãšã¯ã2ã€ä»¥äžã®èšç®ã¹ããããå®è¡ããåŸã«èç©ããã誀差ãæå³ããããããã§å±æçãªèšç®èª€å·®ãçºçããŸããã ãããå¹³çã«åŸã£ãŠéžæãã(7) çŸåšã®èšç®ã¹ãããã®å€ h=h_k è§£ã®æ£èŠæåã®ãã€ã©ãŒçŽæ°ãå¶éãã x_l+(t) åœŒã®æåã®éšåçãªåèš I_l çšèªãããããã®å€ãèšç®ãã x_l+(t_k;I_l),t_k=t_kâ1+h_kãœãªã¥ãŒã·ã§ã³ã®ãã®ã³ã³ããŒãã³ããæ¬¡ã«ãçŸåšã®ã¹ãããã§è©äŸ¡ããh=h_k ããŒã«ã«èšç®ãšã©ãŒãäžéæšå®å€ãèšç® |Îx_l+(t;I_l)|,t=t_kåèšèšç®ãšã©ãŒããã®æ¹æ³ã§åŸãããæ°å€çµæã¯ã颿£æéãå¯èœã«ããŸãt=t_k 瞊座æšè»žã§ãæªç¥ã®æ£ç¢ºãªå€ãå«ã1次å
ééãéžæããŸã x_l+(t_k) éåžžã®ã³ã³ããŒãã³ã x_l+(t)ç®çã®ãœãªã¥ãŒã·ã§ã³ãåãå
¥ããããè¡šèšæ³ã§ã¯ããã®ééã¯é¢æ£æéã§t=t_k 次ã®äºéäžçåŒã«ã€ããŠèª¬æããŸããx_l+(t_k;I_l)â|Îx_l+(t_k;I_l)|â€x_l+(t_k)â€x_l+(t_k;I_l)+|Îx_l+(t_k;I_l)|.(8)
å¹³ç
(6) ãããŠäºéäžçåŒ (8) çŸåšã®èšç®ã¹ãããã§ã®æ°å€è§£ææ³ã®èšç®æé ã®çµæã説æãã h=h_k ã
æå®ã®åŠç¿ééã§æ¬¡ã®èšç®ã¹ããããå®è¡ããã«ã¯ [t_0;T] 瞊座æšè»žã¯éã ãå³ã«ã·ãããããŸã h_k ã
ãã®åŸãäºéäžçåŒããéžæ (8) ã§ l=r,r=1,2,âŠ,L_xåææ¡ä»¶ã®ããããã®å€ã«ã€ããŠã¯ãã¡ãœããã®åæéšåãšæ°å€éšåã«ã€ããŠèª¬æããæé ãç¹°ãè¿ããŸãã### **éç·åœ¢éèªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ã®æ
å ±ææšãšåææ°å€æ³ã®èšç®ã¹ããŒã ã®ãã©ã¡ãŒã¿ãŒã®é¢ä¿ã確ç«ãã**åŒã®åæ(3) æ¹çšåŒãèæ
®ã«å
¥ãã (2) 極éã®æ°åŠçé¢ä¿ã確ç«ããããšã«ããããã®ç®æšãéæã§ããããšã瀺ããŠããŸã
rm lambda nã rmn=1,2ã...ãN rm ç»å
X lïŒpïŒ æ±ãããã解決ç
x lïŒtïŒãl in[1;L x] éåžžã®ã³ã³ããŒãã³ãã®å®æ§çãªæ©èœãšããããã£ã®åçãªã€ã³ãžã±ãŒã¿
x +lïŒtïŒ ãã®æ±ºå®ã®ã ãœãªã¥ãŒã·ã§ã³ã®éåžžã®ã³ã³ããŒãã³ãã®åçãªææšãšããŠ
x +lïŒtïŒãl in[1;L x] è«ççãã€å®è³ªçã«åæ©ä»ããããä¿æ°ã®æ€èš
R l.i 説æã«å«ãŸãã
ïŒ6ïŒ ãã¯ãŒã·ãªãŒãºã ãªããºèšç®
R l.i ååž°åŒã䜿çšããŠã¡ãœããã®åæéšåã§å®è¡ããŸã
ïŒ5ïŒ ã ãããªãã¯ã¹åæã䜿çšããŠãããã®åŒã倿ãããšãæ°ãã圢åŒã®èšé²ãè¡ãããä¿æ°éã®å¿
èŠãªæ°åŠçé¢ä¿ãæç€ºçãªåœ¢åŒã§ç¢ºç«ãããŸã
R l.i 決å®ã®éåžžã®éšå
x +lïŒtïŒ ãšæ¥µ
rm lambda nã rmn=1,2ã...ãN rm ç»å
X +lïŒpïŒ ãã®ã³ã³ããŒãã³ãã ä¿æ°ãèšç®ããããã®æ°ããåŒ
R l.i [8]ã«èšèŒãããŠããŸãã ãããã£ãŠãããšãã°ããã¹ãŠã®æ¥µã
rm lambda nã rmn=1,2ã...ãN rm ç»å
X +lïŒpïŒ ä¿æ°ãèšç®ããããã®åçŽãªåŒ
R l.i 次ã®åœ¢åŒããããŸã[8]ïŒ
R l.i= sum Nn=1r l.n\ã©ã ã inãi in ge left| bfZ right|ã qquadïŒ9ïŒ
ãªã㺠r l.n ãã®å Žåãæ¬¡ã®åŒã§èšç®ããŸãã
r l.n= frac sum limits im=1B âl.Nâ1âm\ã©ã ã âmnN+ sum limits Nâ1m=1ïŒNâmïŒA âNâm\ã©ã ã âmnã qquadïŒ10ïŒ
ãªããº
B âl.Nâ1âmãm in\å·Š| bfZ\å³| ãããŠ
A ârãr=1,2ã...ãNâ1 åŒã§
ïŒ10ïŒ ä¿æ°ã«é¢é£
B l.Nâ1âmãA r åŒã«å«ãŸãã
ïŒ4ïŒ ãæ¬¡ã®é¢ä¿ã«ããïŒ
beginalignïŒB âl.Nâ1âm= fracB l.Nâ1âmA N;ïŒA âr= fracâA rA Nã endalign
ãã©ãŒãã¥ã©
ïŒ9ïŒ èª¬æãæžãããšãã§ããŸã
ïŒ6ïŒ éåžžã®ã³ã³ããŒãã³ãã®ã¹ãçŽæ°
x +lïŒtïŒ ãã®å Žåã®æãŸãã解決çã¯ãæ¬¡ã®æ°ãããã©ãŒã [8]ã«ãããŸãã
x +lïŒtïŒ= sum inftyi=0 fracR l.it iiïŒ= sum inftyi=0 sum N mn=1 fracR [n]lit iiïŒã QquadïŒ11ïŒ
ã©ãã§
N m -ãã®å ŽåãåçŽãªã€ã¡ãŒãžããŒã«ã®æ°
X +lïŒpïŒ ã
圢æããã説æ
ïŒ11ïŒ éåžžã®ã³ã³ããŒãã³ãã®æ¡ä»¶
x +lïŒtïŒ æ±ãããã解決ç
x lïŒtïŒãl in[1;L x] 次ã®åçã®è¡šçŸïŒ
x +lïŒtïŒ= sum N mn=1x [n]lïŒtïŒã qquadïŒ12ïŒ
æ§æéšå
x [n]l 次ã®èª¬æããããŸãã
x [n]lïŒtïŒ= sum inftyi=0 fracR [n]l.it iiïŒã qquadïŒ13ïŒ
çžäºæ¥ç¶ãããå¹³çã·ã¹ãã ïŒ11ïŒâïŒ13ïŒ å¹³çã®æå倿ã®çµæ ïŒ6ïŒ ãœãªã¥ãŒã·ã§ã³ã®éåžžã®ã³ã³ããŒãã³ãã®åæèª¬æ x +lïŒtïŒ ã ããã«ããã°ãèšç®ã®åã¹ãããã§ã極ã§ã®è§£ã®ãã®æåã®åè§£ãå¯èœã§ã rm lambda nã rmn=1,2ã...ãN rm 圌女ã®ç»å X +lïŒpïŒ ã äºæ³éããåè§£ã¯çµ¶å¯Ÿçãªæ§è³ªã§ã¯ãããŸããããªããªããååž°çã«èšç®ãããä¿æ°ãéã㊠B âl.Nâ1âmãm in\å·Š| bfZ\å³| åŒã«å«ãŸãã ïŒ10ïŒ ãéç·åœ¢éå®åžžã·ã¹ãã ã®å Žåããã®ãã€ããã¯ã¹ã®åœ¢æã§æ¯é
çãªãã¹ãŠã®èŠçŽ éã®é¢ä¿ã¯åžžã«ä¿æãããŸã ïŒ13ïŒ æåº ïŒ12ïŒ ã éåžžã®ã³ã³ããŒãã³ãã®åè§£ x +lïŒtïŒ æ±ãããã解決ç x lïŒtïŒãl in[1;L x] å¹³çã®ã·ã¹ãã ã«ãã£ãŠèšè¿°ããã ïŒ11ïŒâïŒ13ïŒ ã¯ãè§£ã®ååšãšäžææ§ã調ã¹ãæé ã®åœ¢åŒåãèšç®ã¹ãããã®éžæãããã³ãã®ãããªèšç®ã®çµ¶å¯Ÿå±æèª€å·®ã®æšå®ã«é¢é£ããèšç®ã³ã¹ãã®æé©åã«é¢é£ããããã€ãã®ç¹å¥ãªåé¡ã®è§£æ±ºã«æåããŸãã[9]ã
èŠçŽãããšãéç·åœ¢éèªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ã®å®æ§çç¹åŸŽãç ç©¶ããããã«ã次ã®ã¢ã«ãŽãªãºã ãå®åŒåããŸãã æåã«ãå
ã®æ¹çšåŒã®åçã®å€æãå®è¡ããŸã ïŒ1ïŒ ãããªãã¯ã¹ãæ°ã«ãªãã·ã¹ãã ãã€ããã¯ã¹ AïŒDïŒ ã€ã³ã颿°è¡åãšäžèŽããæ¥µ rm lambda nã rmn=1,2ã...ãN rm ç»å X +lïŒpïŒ ãã®è¡åã®åºæå€ãšäžèŽããŸãã ãœãªã¥ãŒã·ã§ã³ã®éåžžã®ã³ã³ããŒãã³ãã®åŸç¶ã®åè§£ x +lïŒtïŒ ãããã®æ°å€ã«ã€ããŠã¯ãå¿
èŠãªç ç©¶ã®ããã®èšèšã¹ããŒã ãç·šæããæ©äŒãæäŸããŸãã ã·ã¹ãã ã®ãã€ããã¯ã¹ã®å®æ§çç¹åŸŽã®éå®åžžæ
å ±ã€ã³ãžã±ãŒã¿ã®åœ¹å²ã§ã¯ãæå®ã®ç ç©¶ééã®å€åãèšè¿°ãã颿°ãæ€èšããŸã åºæå€ æ©èœçãªã€ã³ãè¡åãšèŠçŽ åè§£ 決å®ã®éåžžã®éšå ã æ¹çšåŒã®æãŸããè§£ã®ææ¡ãããåè§£ã¹ããŒã åºæå€ã«ãã£ãŠããã®æ¹çšåŒã«å¯Ÿå¿ãã颿°ã€ã³ãè¡åã¯ããèªäœç°åžžã§ãã ããã«ãããæåŸ
ãããçµæã®æ°èŠæ§ããã®è§£éãããã³ãã®åŸã®ã¢ããªã±ãŒã·ã§ã³ã®èŠéããæ±ºãŸããŸãã ãã®ãããªåé¡ã«ã€ããŠã®å€æã®å®å
šæ§ã¯æéã®åé¡ã§ããããããããã®ãã¡ã®ããã€ãã«ã€ããŠã®ã¿èšåããŸãã
éå®åžžåºæå€ã®å®æ°éšã®ç¬Šå· 颿£æéããšã®é¢æ°ã€ã³ãè¡å åèŠçŽ ã«é¢ããå®å®æ§ãšäžå®å®æ§ã®ééã®å¢çãåºå¥ã§ããããã«ãã åè§£ ã ãã®ãããªæ
å ±ã¯ãæææ±ºå®ã®éåžžã®æ§æèŠçŽ ã®å®å®æ¡ä»¶éã®å æé¢ä¿ãèå¥ããããã«éèŠã§ãã ããã³èŠçŽ èªäœã®åæ§ã®æ¡ä»¶ ãã®ã³ã³ããŒãã³ãã éåžžã®ã³ã³ããŒãã³ãã®å®å®æ§ãŸãã¯äžå®å®æ§ã®æ¡ä»¶ æ±ãããã解決ç ãã®å Žåããããã¯éå®åžžåºæå€éã®ååšã®çµæã«ãªããŸã 1ã€ä»¥äžã®æ¯é
çãªãã®ã®æ©èœçã€ã³ãè¡åãããã³ãããã®æ§è³ªã®å€åãå«ããç ç©¶ééã«ããããããã®æ¯é
çãªæ°ã®çžäºäœçšã®ç¹æ§ã
åè§£èŠçŽ ã®åçã€ã³ãžã±ãŒã¿ éå®åžžåºæå€ãšçµã¿åãããŠ é¢æ°ã€ã³ãè¡åã¯ãäºéäžçåŒã§èšè¿°ãããéç·åœ¢éèªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ãèšç®ããçµæã®ç°ãªãè§£éã®åæäœçœ®ã決å®ããŸã ã äºéäžçåŒã®ææšã®èšç®ã«ãããæ°åŠçé¢ä¿ãšçžé¢ äžå¹³çã®ãããªäºéäžçåŒ ãããã察å¿ããåè§£èŠçŽ ã«ã€ã㊠ãã·ã¹ãã ã®åçããããã£ã®äžèŠåæ§ã«ãããåè§£ã®èŠçŽ éã®ç¹åŸŽçãªé¢ä¿ãšçµã¿åããã匷調ããããã®åºç€ãšããŠæ©èœããŸã æ¹çšåŒã®æãŸããè§£ ãã©ã¡ãŒã¿ã®å€åãšã·ã¹ãã ã®å€éšã®åœ±é¿ã«æãææã§ãã ãã®å Žåã«åŸãããçµæã®åæã«ãããåå²ã®çºçãæ±ºå®ããæ¡ä»¶ããŸãã¯äœçžè»éã®ãæ··åãã«ã€ãªããåææ¡ä»¶ã®ç¯å²ãéžæããããšãå¯èœã«ãªããŸã[5]ã
äžããããåŠç¿ééã®å€åãè¡šãæ©èœã®å®æ§çç¹åŸŽãšç¹æ§ éå®åžžåºæå€ ãããã®é¢æ°ã®é£ç¶æ§ãšå調æ§ã極å€ç¹ã®ååšããã®ãããªæ°ã®æ§è³ªã®å€åæ§ããããã®å®éšã®ç¬Šå·ãå«ãæ©èœçã€ã³ãè¡åã¯ãééããªãæ¹çšåŒã®å
éšå æé¢ä¿ã®æ¬è³ªãåæ ããŠããŸã ã ãã®çµæããããã®é¢æ°ã®æ©èœãšããããã£ã¯ãéç·åœ¢éèªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ã®å®æ§çæ©èœã®é«åºŠã«é©å¿æ§ã®ããã€ã³ãžã±ãŒã¿ã§ãã ã³ã³ãã³ãã¹ãã¯ãã«ã®å€æ§æ§ãšãã®ãããªã·ã¹ãã ãã€ããã¯ã¹ã®ææšã®çºçŸã®å€åæ§ã¯ãŸã 決å®ãããŠããããããã¯ç¬ç«ããã¿ã¹ã¯ãæ§æãããã®è§£æ±ºçã¯ããããããéç·åœ¢ã®åŠç¿å¯Ÿè±¡ã®è€éã§ææ§ãªåäœãããå®å
šã«çè§£ããããã®åºçºç¹ãšããŠåœ¹ç«ã€ã§ãããã ãããã®æ©èœææšãšéç·åœ¢éèªåŸã·ã¹ãã ã®å®æ§çç¹åŸŽãšã®é¢ä¿ã®åé¢ãšåé¡ã¯ãéåžžã®ãã€ããã¯ã¹ãŸãã¯æ±ºå®è«çã«ãªã¹ãžã®ç§»è¡ã®æ¡ä»¶ã®æ±ºå®ãå«ããéç·åœ¢ããã³éå®åžžçŸè±¡ã®åæã®ããã®æ°ããèšç®ã¢ã«ãŽãªãºã ã®åºçŸã«ã€ãªããã¯ãã§ã[2-5]ã
ãããã«
å¹³çã®ã·ã¹ãã ã«ãã£ãŠèª¬æããã æ¹çšåŒã®æãŸããè§£ã®æ£èŠæåã®åè§£ ã¯ãéç·åœ¢éèªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ãåæããããã®ç¬ç«ããã³ã³ãã¥ãŒãã£ã³ã°ããŒã«ãšããŠã颿°ã€ã³ãè¡åã®åºæå€ãå°å
¥ããã¢ã¯ãã£ãã«ããŸãã åè§£èŠçŽ ã®æ©èœãšåçããããã£ãçæããŸãã ã æ¬¡ã®äŸã«ç€ºãããã«ããã®ãããªæ©èœã®åæãšåè§£èŠçŽ ã®åçç¹æ§ éç·åœ¢ãã€ããã¯ã¹ã®ç¹æ§ã®1ã€ã§ãããåæ§ã[1,4,5]ã®ååšã«é¢ããæ°ããæ¡ä»¶ã®ç¹å®ã«ã€ãªãããŸãã
åè¿°ã®ããšãèŠçŽãããšãéç·åœ¢ãã€ããã¯ã¹ã®å®æ§çç¹åŸŽãšç¹æ§ã®çºçŸã«ã¯å€ãã®å€çš®ãããããããã¯å€èгæ¡ä»¶ãšçºçŸã®åœ¢æ
ã®äž¡æ¹ã®ç¹ã§å€æ§ã§ããããšã«æ³šæããŠãã ããã ãã®ãããªãã€ããã¯ã¹ã®ç¹æ§ãšããŠã®äžèŠåæ§ã¯ãäŸå€ã§ã¯ãªãæšæºã§ã[2]ã éç·åœ¢éèªåŸã·ã¹ãã ã®ãã®ãããªè€éã§äºæž¬äžå¯èœãªãã€ããã¯ã¹ã®çç±ã¯ããã€ããã¯ã¹æ¹çšåŒã®å
éšãã©ã¡ããªãã¯é¢ä¿ã®æ§é ãšæ§æã«åºæã®ãã®ã§ã ã ãã¡ããããã®ãããªé¢ä¿ã®å
æ¬çãªææšã®æ§æèŠçŽ ã®1ã€ã¯åºæå€ã§ã æ©èœçãªã€ã³ãè¡åã ãã€ããã¯ã¹æ¹çšåŒã®æãŸããè§£ã®åè§£ã«åºã¥ããéç·åœ¢éèªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ã®å®æ§çç¹åŸŽã®åæ ãããããåºæå€ã®1ã€ã«å¯Ÿå¿ããã³ã³ããŒãã³ãã« æ©èœçãªã€ã³ãè¡åã¯ããããã®ã³ã³ããŒãã³ãéã®è«ççããã³æ°åŠçãªé¢ä¿ãç¶æããªãããé¢é£ããç ç©¶ãšæ°ããæ¹æ³è«ã宿œããããã®ææ¡ãããã¢ãããŒãã®æ¬è³ªãåæ ããŠããŸãã
äŸ
ãã®æ¹çšåŒã«å¯Ÿå¿ããã€ã³ã颿°è¡åã®åºæå€ã«ããåçæ¹çšåŒã®è§£ã®åè§£ã«åºã¥ãéç·åœ¢èªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ã®å®æ§çç¹åŸŽã®ç ç©¶ã
ãŠããã©ãŒã ã§ èæ
®ãããéç·åœ¢èªåŸã·ã¹ãã ã®ãã€ããã¯ã¹æ¹çšåŒã®åœ¢åŒã¯æ¬¡ã®ãšããã§ãã
$$衚瀺$$ \ begin {equation} \ left \ | \ begin {array} {cc} {a \ _ {1.1} ^ {[1]} D + a \ _ {1.1} ^ {[0]}}ïŒ{0} \\\\ {a \ _ {2.1 } ^ {[0]}}ïŒ{a \ _ {2.2} ^ {[1]} D} \ end {array} \ã\ right \ | \ã\å·Š\ | \ã\ begin {array} {c} {x \ _ {1}ïŒtïŒ} \\\\ {x \ _2ïŒtïŒ} \ end {array} \ right \ | = \å·Š\ | \ begin {array} {c} {g \ _ {1.1} ^ {[0]}} \\\\ {0} \ end {array} \ right \ | fïŒtïŒ+ \ left \ | \ begin {é
å} {c} {h \ _ {1.1} x \ _ {1} ^ 2ïŒtïŒx \ _2ïŒtïŒ} \\\\ {h \ _ {2.1} x \ _ {1} ^ {2 }ïŒtïŒx \ _ {2}ïŒtïŒ} \ end {array} \ right \ |ã\ qquadïŒ14ïŒ\ end {equation} $$ display $$
ã©ãã§
æ¹çšåŒã®èª¬æã«ç€ºãããŠãããã©ã¡ãŒã¿ãŒã®å€ã代å
¥ããåŸ ããã®æ¹çšåŒã®æ¬¡ã®çµ±äžããã圢åŒãååŸããŸããã
$$衚瀺$$ \ begin {equation} \ left \ | \ begin {array} {cc} {D {\ rm + B + 1}}ïŒ{0} \\\\ {-B}ïŒ{D} \ end {array} \ right \ | \ã\å·Š\ | \ begin {array} {c} {x \ _ {1}ïŒtïŒ} \\\\ {x \ _ {2}ïŒtïŒ} \ end {array} \ right \ | = \å·Š\ | \ begin {array} {c} {A} \\\\ {0} \ end {array} \ right \ | \ãã«ã¿\ _ {1}ïŒtïŒ+ \å·Š\ | \ begin {array} {c} {x \ _ {1}ïŒtïŒ^ {2} x \ _ {2}ïŒtïŒ} \\\\ {-x \ _ {1}ïŒtïŒ^ {2 } x \ _ {2}ïŒtïŒ} \ end {array} \ right \ | ã \ end {åŒ} \ qquadïŒ15ïŒ$$衚瀺$$
æ¹çšåŒ
ãbrusselatorãæ¹çšåŒãšããŠç¥ãããã¯ããã®è§£ã®å®æ§çç¹åŸŽããã©ã¡ãŒã¿éã®é¢ä¿ã«å®è³ªçã«äŸåããããããŠããŒã¯ã§ãã
ãããŠ
[4]ã ã§
å®å®ãããªããããµã€ã¯ã«ãååšããHopfåå²ããããŸãã
å®å®ããå®åžžè§£ç¹ã«è¡ããŸã
æ¡ä»¶ã«å¯Ÿå¿
ã åå²é¢ä¿
æ¹çšåŒã®è§£ã®ç¹åŸŽãšç¹æ§ã®çºçŸã®æ§è³ªã®å¢çãèšå®ããŸã
ãã©ã¡ãŒã¿ãŒéã®é¢ä¿ã«å¿ããŠ
ãããŠ
ã æ¹çšåŒã®è§£ã®ãã€ããã¯ã¹ã®å岿§
ãã®æ¹çšåŒã«å¯Ÿå¿ãã颿°ã€ã³ãè¡åã®åºæå€ã®éå®åžžç¹æ§ã®ç¹åŸŽãããã³åè§£èŠçŽ ã®ãã€ããã¯ã¹ã«åæ ãããŸã
ã
ãã®ãããªåºæå€ã«ãããããã®è§£ã®ã ãã®é¢ä¿ã®æ°åŠçç¹åŸŽãšå æé¢ä¿ã®ç¹å®ã¯ãæ€èšäžã®ã·ã¹ãã ã®ãã€ããã¯ã¹ã®å®æ§çç¹åŸŽã®ç ç©¶ã«å¯Ÿããææ¡ãããã¢ãããŒãã®æ¹æ³è«çåºç€ãæ§æããŸãã
ããã«å¿ããŠãããªãã¯ã¹ãåãã
æ¹çšåŒã®éžæãããç·åœ¢éšå
ãããªãã¯ã¹ã®ãã
ã€ã³ãè¡åãšã®äžèŽãä¿èšŒããããã«ãã·ã¹ãã ã®ãã€ããã¯ã¹ã«é¢ããæ¬¡ã®åçã®èª¬æãåŸãŸãã[9,10]ïŒ
$$衚瀺$$ \ begin {equation} \ left \ | \ begin {array} {cc} {D + B + 1 {\ rm -2R} \ _ {1.0} {\ rm R} \ _ {2.0}}ïŒ{{\ rm -R} \ _ {1.0} ^ {2}} \\\\ {-B + {\ rm 2R} \ _ {1.0} {\ rm R} \ _ {2.0}}ïŒ{D + {\ rm R} \ _ {1.0} ^ {2}} \ end {array} \ right \ | \ã\å·Š\ | \ begin {array} {c} {x \ _ {1}ïŒtïŒ} \\\\ {x \ _ {2}ïŒtïŒ} \ end {array} \ right \ | = \å·Š\ | \ begin {array} {c} {A} \\\\ {0} \ end {array} \ right \ | \ãã«ã¿\ _ {1}ïŒtïŒ+ \å·Š\ | \ begin {array} {c} {x \ _ {1}ïŒtïŒ^ {2} x \ _ {2}ïŒtïŒ{\ rm -2R} \ _ {1.0} {\ rm R} \ _ { 2.0} x \ _ {1}ïŒtïŒ{\ rm -R} \ _ {1.0} ^ {2} x \ _ {2}ïŒtïŒ} \\\\ {-x \ _ {1}ïŒt ïŒ^ {2} x \ _ {2}ïŒtïŒ+ {\ rm 2R} \ _ {1.0} {\ rm R} \ _ {2.0} x \ _ {1}ïŒtïŒ+ {\ rm R} \ _ {1.0} ^ {2} x \ _ {2}ïŒtïŒ} \ end {array} \ right \ | ã\ end {equation} \ quadïŒ16ïŒ$$衚瀺$$
ã©ãã§ ãããŠ è§£ã®æ£èŠæåã®å±éã«ãããéãŒãä¿æ° ã¹ãçŽæ°ã§ã æ¹çšåŒãå®è¡ããããšã«ãã æ¬¡ã®åœ¢åŒã®åææ°å€æ³ã®åæéšåã®èšç®æé ç®çã®ãœãªã¥ãŒã·ã§ã³ã«ã€ããŠæ¬¡ã®èª¬æãå
¥æããŸããã
ã©ãã§
-åžæãããœãªã¥ãŒã·ã§ã³ã®éåžžã®ã³ã³ããŒãã³ãã®ã¹ãçŽæ°ã®ä¿æ°
èšç®åŒã«ããèšç®
ã§
ãããŠ
éå®åžžåºæå€ã®äœ¿çš
颿°ã€ã³ãè¡åæ¹çšåŒ
ã
åžæãããœãªã¥ãŒã·ã§ã³ã®ããã«åœ¢æ æ¹çšåŒ 説æ ç¹ç°ãªæåãå«ãŸãªããã®ã æå®ã®èª¿æ»éé[0;ã®åèšç®ã¹ãããã§ã®åææ°å€æ³ã®æ°å€éšå 10]ã¯ãæšæºã¹ããŒã ã«åŸã£ãŠå®è£
ãããŸãã èšç®ã®çµ¶å¯ŸããŒã«ã«ãšã©ãŒã®æå®ã®å¶éã¬ãã«ã䜿çšããã·ã¹ãã ã®ãã€ããã¯ã¹ã®èšç®çµæ ããã³åææ¡ä»¶ å Žåã®ããã« å³1ã«ç€ºãã å³ãããããããã«ãèæ
®ãããéç·åœ¢èªåŸã·ã¹ãã ã®ãã€ããã¯ã¹ã¯ãå®å®ãããªããããµã€ã¯ã«ã«ãã£ãŠç¹åŸŽä»ããããŸã[4]ã ãã®ãããªãã€ããã¯ã¹ã®ç¹åŸŽã¯ããåæ§ããã€ãŸã ç¹æ§æ¹çšåŒã®é«éããã³äœéå€åã®ã»ã¯ã·ã§ã³ã®äº€ä»£ ã ãã ãã å³2ãããããããã« ãéç·åœ¢ã®å Žåãšç·åœ¢ã®å Žåã®åºæ¬çãªéãã¯ãææ°ã ãã®ãããªãé€å»ãã¯äžå®ã§ã¯ãªããæéãšãšãã«ç¶ç¶çã«å€åããŸãã æééé[3-4]ã[8-9]ã§ãç®çã®è§£ãååã«éãå€åãããšãäžå®å®ãªã€ã³ãžã±ãŒã¿ ããã€ããã¯ã¹ã®ãã®ç¹åŸŽãåæ ããŠãæ¯èŒçé«ãå€ã«éããæå€§100ãŠãããã«éããŸãã æéãã æ±ºå®ã®ããªãé
ãå€åã§ééã®å§ãŸããæ±ºå®ããææš æééé[4ã8]ã§1ã«è¿ãå€ãåãé£ç¶ããŠæžå°ãããããã®ãœãªã¥ãŒã·ã§ã³ã«é«éã³ã³ããŒãã³ãããªãããšã瀺ããŸãã ãããã£ãŠãéç·åœ¢ãã€ããã¯ã¹ã®å®æ§çç¹åŸŽãšããŠã®ãåæ§ãã¯ãéå®åžžã€ã³ãžã±ãŒã¿ãŒã«ãã£ãŠç¹åŸŽä»ããããŸã ã éç·åœ¢ãã€ããã¯ã¹ã®æ¬è³ªãåæ ãããã®ã€ã³ãžã±ãŒã¿ãŒã®ç¶ç¶çãªå€åã¯ãèªå·±çµç¹åã®åºæ¬ååãæããã«ããŠããŸãã åºæå€ã®èšç®æ¹æ³ ã€ã³ãè¡åã¯ãèšç®ã®2çªç®ã®ã¹ãããããå§ãŸããèšç®ãããè¿äŒŒåæå€ã®é¢æ°ã§ãããããªãã®ã§ã ãããŠ åžæãããœãªã¥ãŒã·ã§ã³ã é çªã«ãåŒã«åŸã£ãŠ ã ããããã®åºæå€ã¯åçã¡ããªãã¯ãçŽæ¥æ±ºå®ããŸã çŸåšã®èšç®ã¹ãããã®æåŸã«ç®çã®ãœãªã¥ãŒã·ã§ã³ã ãããã£ãŠãèšç®ã®åã¹ãããå
ã§ããã€ããã¯ã¹å¶åŸ¡ããããã£ãŠéå®åžžã®ãåæ§ãã€ã³ãžã±ãŒã¿ ãã®ãã€ããã¯ã¹ã¯ãæ¹çšåŒèªäœã®å
éšåº§æš-ãã©ã¡ããªãã¯é¢ä¿ãä»ããŠå®è¡ãããŸã ã ãããã®å
éšé¢ä¿ã¯ãåçã€ã³ãžã±ãŒã¿ãŒãä»ããŠå®è£
ãããŸãã æ±ºå®ã® äžæ¹ã§ã¯ãåºæå€ã«äŸåããŸã æ©èœçãªã€ã³ãè¡åããããŠäžæ¹ã§ããåæ§ããæ±ºå®ãã ã·ã¹ãã ã®éç·åœ¢ãã€ããã¯ã¹ã èšãæããã°ãã·ã¹ãã ã®éç·åœ¢ãã€ããã¯ã¹ã¯é©å¿å¶åŸ¡ã®ãã¹ãŠã®æ©èœãåããŠããŸãããªããªãããã®ãã€ããã¯ã¹ã®åè³ªç¹æ§ã§ããçµæã§ãããåæ§ãã¯ãã®ãã€ããã¯ã¹ã«ãã£ãŠçæãããã€ã³ãè¡åã®åºæå€ãä»ããŠå æé¢ä¿ãçæããããã§ãã

å³1 æ¹çšåŒã®è¿äŒŒè§£ A = 2ã®å ŽåãB = 6æ¹çšåŒã®æãŸããè§£ã®ææš ã
æããã«ãªã£ããåæ§ãçŸè±¡ã®è§£æã«å¿
èŠãªèšç®çµæãå³ã«ç€ºããŸãã 2-4ã ãããã®çµæã¯ã衚çŸã«åºã¥ããŠå®è£
ãããçµæã«å¯Ÿå¿ããŠããŸãã - ã§ ãã㊠åè§£ãœãªã¥ãŒã·ã§ã³ æ¹çšåŒ åºæå€ã«ãã æ©èœçãªã€ã³ãè¡åã ãããã£ãŠãããšãã°ãå³2ã¯ãéå®åžžåºæå€ã®å®æ°éšãšèæ°éšã®å€åã®ã°ã©ãã瀺ããŠããŸã 颿°ã€ã³ãè¡åæ¹çšåŒ ã ãããã®ã°ã©ãã«ããã°ãç·åœ¢èªåŸã·ã¹ãã ã®å Žåã®ããã«ããåæ§ãã¯ãã¢ãžã¥ããæ³ãšããæå€§æ ¹ãšæå°æ ¹ã®å®æ°éšã®çµ¶å¯Ÿå€ã®äºãããã®è·é¢ã«ãã£ãŠç¹åŸŽä»ããããŸãã

ïŒaïŒ

ïŒbïŒ
å³2ã åºæå€ã®å®éšïŒaïŒããã³èéšïŒbïŒã®ãã€ããã¯ã¹ A = 2ãB = 6ã®é¢æ°ã€ã³ãè¡å

å³3 2ã€ã®ã³ã³ããŒãã³ãã®ææïŒaïŒããã³èæ°ïŒbïŒã®ãã€ããã¯ã¹ïŒ13ïŒã æ±ãããã解決ç åŒïŒ16ïŒA = 2ãB = 6

å³4 2ã€ã®ã³ã³ããŒãã³ãã®ææïŒaïŒããã³èæ°ïŒbïŒã®ãã€ããã¯ã¹ïŒ13ïŒã (16) A = 2, B = 6
[0-10] , ã , ã , .2, , . , , . , , , , . : ã
, , ã , ã ã [0 -2,5] [4 -6,5], , , .1,3,4 , , ã , ã , . ã , . , - .
[3 â 4] [7 â 8], , .1,3,4 , , , ã , , , . ã , .2 . ã , . -. , , .3 , ã , .4, , , ã , , ã .
, , , .5-8. ,

å³5 (16) A = 2, B = 5


å³6 () () (16) A = 2, B = 5
å³7 () () (13) (16) A = 2, B = 5
å³8 () () (13) (16) A = 2, B = 5, ,
.5 ã§ , , , : ã , .6-8, ã§ ãã㊠ã
.6 ãã㊠ã .6 , . .2 , , . , , , , , , .
.5 , «». , , . ã , - . , «» , , , .
ã , . , .3,4 .7,8 , , ã ã , ã . .7,8 . , , , - ã ã
:
åç
§è³æ
- .., .., .. . â .: , 1990. â 256 .
- . . . â .: , 1985. â 423 .
- .. . . â.: , 2000. â352 .
- ., ., . . / . è±èªãã .. , .. (.) â .: , 1990. â512 .
- .., .., .., .. .- .: , 1991.-240.
- .., .., .. MATLAB / -
. â ., 1996. â192 . - .. . â .: , 1997. â 206 .
- .., .., .. . â.: ., 1989. â 447 .
- .., .. - . â , . ., , - , 2002. â 368 .
- Bychkov Yu.A.ãScherbakov S.V. éäžããã³ååžããéå®åžžãã©ã¡ãŒã¿ãæã€åçã·ã¹ãã ã®æ±ºå®è«çéç·åœ¢ã¢ãã«ã®è§£æçããã³æ°å€çèšç®ã第2çââãæ¹èšããã³è£è¶³ãSPbãïŒSPbGETUãLETIãã®åºç瀟ã2014幎ã-388 pã