ãžã¥ãªã¢ã»ãã£ãªã¢ãã¯ãšã®ã³ã©ãã¬ãŒã·ã§ã³ã
ã¯ããã«
ãã®ãããªåè
å
šäœãåºå°ã«é£ãã§ãç匟ããªããäœããã©ãã«ãåå
ã«ããªããšæ³åããŠãã ãã...

ãããŠãããã§ãããšãã°ãé²/é²ã®å°ããªé§ãäºæããã«è¡šç€ºããããããŸãã¯ãããå€å°æªããªããŸã-ãã...ãããŠãããªãã¯æè¿ãããŸãããç®æšãšããŠã®ã¿ïŒ

#poralize-ããããä»ã§ã¯æ°åŠçãªãã€ã¢ã¹ã§ãããã©ã®ããã«è¡ãã®ããä»ã¯ç解ã§ããŸãã
ãããŠãäžè¬çã«ã¯ãäŸãã°Yandexã§èšãããŠããããã«ãäºæããééããé害ç©/é害ç©ãåé¿ããå¿
èŠãããå Žåãå€ããããŸãã
æ°åŠè
ã®äºçŽã , . : - , , , .
ããŒã1-ãåçŽãªåããã®ã¢ãã«
åçŽãªåãã¯ããããã·ã³ã®ã³ã°ã ãã§ãªããåçãªããžã§ã¯ãã®æãåçŽãªã¢ãã«ã§ããã次ã®å·®åã¢ãã«ã§è¡šãããŸãã
$$衚瀺$$ \ãããx = uã\ xïŒt_0ïŒ= x_0ã$$衚瀺$$
ã©ã㧠$ inline $ xïŒtïŒ\ in R ^ n \ u \ in P \ãµãã»ããR ^ n $ inline $ ã-control limited $ inline $ PïŒ| u | <c_u $ inline $ ïŒé床ã¯ç¡éã§ã¯ãªããããè«ççã§ãïŒãããã³ $ã€ã³ã©ã€ã³$ R ^ n $ã€ã³ã©ã€ã³$ - $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ 次å
ãŠãŒã¯ãªãã空éïŒãã®äŸã§ã¯ãã芧ã®ãšããã2次å
ã§ååã§ãïŒã å€ãã® $ã€ã³ã©ã€ã³$ M $ã€ã³ã©ã€ã³$ -ç§ãã¡ã®ããŒã¹ãããªãã¡ ããã§ç§ãã¡ã¯å®å
šã§å¥å
šãªç¶æ
ã«æ»ããããšæã£ãŠããŸã $ã€ã³ã©ã€ã³$ x_1 $ã€ã³ã©ã€ã³$ ã
ããã«ããäœãåŸãããŸããïŒ æ¹çšåŒãç©åãããšãéåã®è»è·¡ãã€ãŸãçŽç·ãåŸãããŸã $ã€ã³ã©ã€ã³$ xïŒtïŒ= ut + C $ã€ã³ã©ã€ã³$ ãã€ãŸãã管çãæ瀺ãããŠããå Žåã¯ãããã«é£ã³ãŸãã ãããã£ãŠãå¹²æžããªãå Žåãå¶åŸ¡ãã¯ãã« $ã€ã³ã©ã€ã³$ u $ã€ã³ã©ã€ã³$ åããã¯ãã«ãšæŽå $ã€ã³ã©ã€ã³$ x_1-x_0 $ã€ã³ã©ã€ã³$ ã
ãã®ã¢ãã«ã®ãã©ã¹ã¯ãåæã®æ¥µåºŠã®ã·ã³ãã«ãããã€ãã¹ã§ã-æ
£æ§ã®ãªãåãã®ã¿ãã¢ãã«åããŸãããæ
£æ§ã®åãã®ã¢ããªã³ã°ã¯æ¬¡ã®ããã«ãªãïŒåçŽåãããïŒã®ã§ãããã»ã©æãã¯ãããŸããïŒ
$$衚瀺$$ \ ddot x = u \å³ç¢å°\å·Š\ {\ begin {array} {rcl} \ dot x_1ïŒ=ïŒx_2 \\ \ dot x_2ïŒ=ïŒuã \ end {array} \ rightã$$衚瀺$$
ãããŠã察å¿ããã¿ã€ãã®ã¢ãã«ã«å°ãåŸã§é²ã¿ãŸãã
説æããã¢ãã«ã¯ãåçãªæ©èœãåæ ããŠããŸãã æµãè¿œå ãã $ã€ã³ã©ã€ã³$ v $ã€ã³ã©ã€ã³$ å¯èœãªéãã®æ¹æ³ã§ç§ãã¡ã劚ããããšãã人ïŒ
$$衚瀺$$ \ãããx = u-vã\ãxïŒt_0ïŒ= x_0ã\ã\ååšTïŒxïŒTïŒ\ in Mã\ã\ forall t <TïŒxïŒtïŒ\ notin Nã\ãu \ in P \ãµãã»ããR ^ nã\ãv \ in Q \ãµãã»ããR ^ n $$ display $$
ããã§ã¯ãåæ§ã«å¶éããã管ç $ã€ã³ã©ã€ã³$ QïŒ| v | <c_v $ã€ã³ã©ã€ã³$ ã
åæã«ãæµãã©ãã«é ããŠããããäºåã«ç¥ãããšã¯ã§ããŸããããåæã«ã圌ã¯ãã¹ãŠãç¥ã£ãŠãããç§ãã¡ãè¿ããé£ã¶éãèªåãåŸ
ã£ãŠããã®ã§ã圌ã®ã³ã³ãããŒã«ã®å©ããåã㊠$ã€ã³ã©ã€ã³$ v $ã€ã³ã©ã€ã³$ ç§ãã¡ãããããæã«å
¥ããŠãã ãã $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ ã
ç§ãã¡ã®ç®æšã¯ $ã€ã³ã©ã€ã³$ M $ã€ã³ã©ã€ã³$ ãããããšãä¿èšŒ $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ ãå®éã«äœãåé¿ããŠããã®ããç¥ãå¿
èŠããããé
ããæ©ããé害ãèŠã€ããŸãã æ
£æ§ã®ãªãåãã®å ŽåãæåŸãã2çªç®ã®ç¬éãŸã§äœãããããªãå ŽåããããŸãããã®å Žåãé床ãã¯ãã«ïŒããã³ãããã«å¿ããŠè»éïŒãå¹²æžããåžžã«é ãããããšãã§ããããã§ãã
åæã«ãã芧ã®ãšããã<<å±±>>åã®å¹²æžã¯ã倧ããªé害ã§ã¯ãããŸããåããªããããææªã®ç¶æ³ã§ã¯ãããŸãããæµãæ©åããŠããå Žåã¯ããã«æªãã®ã§ãããã«ããã€ãã®ç¹ãè°è«ããå¿
èŠããããŸãã
- åé¿ããã«ã¯ãæµããã倧ããªåçèœåãå¿
èŠã§ããããã§ãªããã°ãé
ããæ©ãã圌ãã¯ç§ãã¡ãæãŸããŸãã $ã€ã³ã©ã€ã³$ Q $ã€ã³ã©ã€ã³$ ããæå³ã§ã¯å°ãªãã¯ãã§ã $ã€ã³ã©ã€ã³$ P $ã€ã³ã©ã€ã³$ ;
- æµã«ãã£ãŠå¶åŸ¡ãããé害ç©ã®ã»ãããåžé¢ã«ããŸã;ããã§ãªããã°ãé害ç©ã®ã»ããããæ³ç·ãåé¿ããæŠç¥ãé©çšããå Žå $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ -åé¿ã§ããŸããã
äžèšã®ãã¥ãŒãªã¹ãã£ãã¯ãªåŒæ°ã䜿çšããŠã空éå
ã®æ¬¡ã®æ¡ä»¶äžã§äžèšã®åé¡ã解決ããæ¹æ³ã確èªããŸãã $ã€ã³ã©ã€ã³$ R ^ 2 $ã€ã³ã©ã€ã³$ ïŒ
$$ display $$ \ begin {array} {rcl} \ dot {x} _1ïŒ=ïŒu_1-v_1ã\\ \ dot {x} _2ïŒ=ïŒu_2-v_2ã \ end {array} $$衚瀺$$
ããã« $ã€ã³ã©ã€ã³$ x_1ã\ x_2 $ã€ã³ã©ã€ã³$ -ãªããžã§ã¯ãã®åº§æš $ã€ã³ã©ã€ã³$ x $ã€ã³ã©ã€ã³$ é£è¡æ©ã§ $ã€ã³ã©ã€ã³$ xïŒtïŒ= [x_1ïŒtïŒã\ x_2ïŒtïŒ] ^ {T} \ in \ mathbb {R} ^ 2. $ inline $
ãªããžã§ã¯ããç¹ããåãå§ãã $ inline $ xïŒt_0ïŒ= [3ã\ 4] ^ {T} \ in \ mathbb {R} ^ 2. $ inline $
管çå¶é $ã€ã³ã©ã€ã³$ uïŒtïŒã\ vïŒtïŒ$ã€ã³ã©ã€ã³$ 圢ããã
- $ã€ã³ã©ã€ã³$ uïŒtïŒ\ in P \ãµãã»ãã\ mathbb {R} ^ 2ã\ P = S_ {1}ïŒ[0ã\ 0] ^ {T}ïŒ$ inline $ -ååŸ1ã®å;
- $ã€ã³ã©ã€ã³$ vïŒtïŒ\ in Q \ãµãã»ãã\ mathbb {R} ^ 2ã\ Q = S_ {0.9}ïŒ[0ã\ 0] ^ {T}ïŒ$ inline $ -ååŸ0.9ã®åã
æåã®ãã¬ãŒã€ãŒã¯ãã·ã¹ãã ã®è»è·¡ãæéæéã§ç«¯æ«ã»ããã«è»¢éããããšããŸã $ã€ã³ã©ã€ã³$ M = S_ {1}ïŒ[12ã\ 6] ^ {T}ïŒ$ã€ã³ã©ã€ã³$ -ç¹ãäžå¿ãšããååŸ1ã®å $ã€ã³ã©ã€ã³$ [12ã\ 6] ^ {T} $ã€ã³ã©ã€ã³$ è€æ°ã®å¹²æžãåé¿ããªãã $ã€ã³ã©ã€ã³$ N = S_ {2}ïŒ[8ã\ 5] ^ {T}ïŒ$ã€ã³ã©ã€ã³$ -ç¹ãäžå¿ãšããååŸ2ã®å $ã€ã³ã©ã€ã³$ [8ã\ 5] ^ {T} $ã€ã³ã©ã€ã³$ ã
æåã®ãã¬ã€ã€ãŒãã²ãŒã ãæ£åžžã«å®äºããæé $ã€ã³ã©ã€ã³$ T = 36.0 $ã€ã³ã©ã€ã³$ ã
ã·ã¹ãã ã®è»è·¡ãšæåã®ãã¬ãŒã€ãŒã®ã³ã³ãããŒã«ã次ã®å³ã«ç€ºããŸãã
ã·ã¹ãã ã®è»è·¡ã 
æåã®å¶åŸ¡ã³ã³ããŒãã³ãã®æéäŸåæ§ã 
2çªç®ã®å¶åŸ¡ã³ã³ããŒãã³ãã®æéäŸåæ§ã 
ãã®ã¢ãããŒãã«ã¯ãæããã«ããã€ãã®æ¬ ç¹ããããŸãã
- 極端ãªå€ã®éã®ãžã£ãŒã¯ãã³ã³ãããŒã«ã«å€§ããªè² è·ãäžãããããå®çšçãªèŠ³ç¹ããã¯å€æ°ã®ã¹ã€ããã
- ãã®çµæãã¿ãŒã²ããã«åãã£ãŠé£è¡ããã®ã§ã¯ãªããå¹²æžãåé¿ããŠç«¯æ«ã»ãããæãããã«æ©ãåããŸãã
- å³å¯ã«éåžžã®å¹²æžãŸã§é£ã¶å Žåã®å¯ŸåŠæ¹æ³ã¯æ確ã§ã¯ãããŸãããåé¿ã¯ããã®åã®ã¹ããããæããŠããã®ãšåããã€ã³ãã§å®è¡ãããŸããã€ãŸããã¢ã«ãŽãªãºã ãã«ãŒãããå¯èœæ§ããããŸãã
- ãã¥ãŒãªã¹ãã£ãã¯ã¯ãã¡ããè¯ãã®ã§ãæ
£æ§ãªããžã§ã¯ããã©ããããã¯æ確ã§ã¯ãããŸããããçŸå®ã¯ããè€éã§ãã
ããŒã2-ã¢ãã«ã¯ãåçŽãªåäœãã®ãŸãŸã§ãããã¹ã€ããã®æ°ã¯æžããŸã
ã¢ãã«ã¯åçŽã§ãããå¹³é¢ã«æ²¿ã£ãŠä»»æã®ãã€ã³ãããä»»æã®ãã€ã³ãã«ç§»åã§ããããïŒããã¯å°æ¥ã®éèŠãªä»®å®ã§ãããçŸæç¹ã§ã¯ã¡ã¢ãåãã ãã§ãïŒã次ã®ããã«æšè«ããããšã劚ãããã®ã¯ãããŸããã
äžæ©å
ãèããŠã¿ãŸãããïŒã·ã¹ãã ãæåã«ã¿ãŒã²ããã«åãããã次ã®ã¹ãããã§éžè±ãå§ããå Žåãã·ã¹ãã ã2ã€ã®ã¹ãããã§å°éããããã«ãããäžéã¿ãŒã²ãããšããŠæããã€ã³ããèŠã€ããããšãã§ããŸãã ã§ããŸãã ç§ãã¡ã®ä»®å®-ã¯ãã
åãäŸã§ãäœãèµ·ãããèŠãŠã¿ãŸãããã æåã®ãã¬ã€ã€ãŒãã²ãŒã ãæ£åžžã«å®äºããæéã¯ã $ã€ã³ã©ã€ã³$ T = 36.0 $ã€ã³ã©ã€ã³$ åã« $ã€ã³ã©ã€ã³$ T = 11.5 $ã€ã³ã©ã€ã³$ ã åãæ¿ãåæ°ã倧å¹
ã«æžå°ããŸããã 泚æããŠãã ãã-å°ãªããšãäžæ©å
ãå¹æçã«èããŠãã ãã ãããŠäžè¬çã«å¥åº·ã«è¯ã ã
ã·ã¹ãã ã®è»è·¡ãšæåã®ãã¬ãŒã€ãŒã®å¶åŸ¡ã³ã³ããŒãã³ãã次ã®å³ã«ç€ºããŸãã
ã·ã¹ãã ã®è»è·¡ã 
æåã®å¶åŸ¡ã³ã³ããŒãã³ãã®æéäŸåæ§ã 
2çªç®ã®å¶åŸ¡ã³ã³ããŒãã³ãã®æéäŸåæ§ã 
ããŒã3-ã¢ãã«ã¯ãŸã ãåçŽãªåããã«ãããŸãããããã§<< normal >>ã®è¿äŒŒã§åé¡ã解決ããŸã
äžåºŠã«1ã€ã®ã»ãããåé¿ã§ãããããè¿œå ã®ã»ãããæ§ç¯ããããšã劚ãããã®ã¯äœããããŸããããããåé¿ããïŒããããæéã¹ãããã®æ¹è¯ãå ããŠïŒãããšã¯ç°ãªããã€ã³ãã«å°éããããšãä¿èšŒãããŸããç§ãã¡ãä»ãããšããã ãããŠã次ã®ããã«ããŸãã
è»éã®è¿œå ã®åé¿ã»ããã®æ§ç¯ã

ã€ãŸããè¿œå ã®ã»ãããäœæããã ãã§ããããããåé¡ããã€ã³ããäžå¿ãšããŠã§ã¯ãªããå³ã®ããã«ããããã®å€äœãå«ããŠåé¿ããŸãã
ããŒã4-æ°åŠçåºç€
ããã§ããæ
£æ§ãªããžã§ã¯ãã®å¶åŸ¡ãæ§ç¯ããã«ã¯ãçè«ã«æ²¡é ããå¿
èŠããããŸãããã®å ŽåãåçŽãªãã¥ãŒãªã¹ãã£ãã¯ãªè°è«ãæ©èœããªããªããããã«å¿ããŠããœãªã¥ãŒã·ã§ã³ã®çè«çæ ¹æ ãéžæããå¿
èŠãããããã§ãã ããããªãã é床ã®æ laz ååãªæéããªãå Žåã¯ãã»ã¯ã·ã§ã³ãã¹ãããããŠçµæãããã«äœ¿çšã§ããŸããèå³ãããå Žåã¯ãããã«èª¿ã¹ãŠãã ããã
åºç€ãšããŠãLev Semenovich Pontryagin [1]ã«ãã£ãŠããåœã§éçºããã埮åã²ãŒã ã®çè«ã䜿çšããŸãïŒããã誰ã§ãããããããªãå Žåã¯ãå¿
ãèªãã§ãã ããã ã
ããã解決ããã«ã¯ã2ã€ã®ã»ãããå¿
èŠã§ãã
- æåã®ãã¬ãŒã€ãŒãååŸã§ããå Žæ-æåã®ãã¬ãŒã€ãŒã®å°éå¯èœæ§ã
- æåã®ãã¬ã€ã€ãŒã®2çªç®ã®ãã¬ã€ã€ãŒã®è¿œè·¡ãå®äºããããšãã§ããŸãã
åæ§ã«ããããã®æ§ç¯æ¹æ³ãå®éã«å®è£
ãããŠããŸãã
æåã®ã»ããã§ã¯ãå¹²æžããªãå Žåãæéã»ãããå«ãããã«æ§ç¯ã§ãããã©ããã¯å€ããå°ãªããæ確ã§ã $ã€ã³ã©ã€ã³$ M $ã€ã³ã©ã€ã³$ -ããã¯ã²ãŒã ãæ£åžžã«å®äºããããšãæå³ããŸããç§ãã¡ã¯ã§ããŸãã-ããã¯ã²ãŒã ãåã«å®äºã§ããªãããšãæå³ããŸãã çè«çã«ã¯ã次ã®ããã«æ§ç¯ãããŸã-åæããå§ãŸãåãã€ã³ã $ã€ã³ã©ã€ã³$ x_0 $ã€ã³ã©ã€ã³$ å©çšå¯èœãªãã¹ãŠã®ã³ã³ãããŒã«ãåæããããšã«ãããååŸã§ããã»ãããæ§ç¯ããŸã $ã€ã³ã©ã€ã³$ \ãã«ã¿t $ã€ã³ã©ã€ã³$ ããã®åŸæäœãç¹°ãè¿ããŸãã è€éã«èŠããŸãããåžéåãšç·åœ¢ã·ã¹ãã ã®å Žåãåžè§£æè£
眮ã䜿çšããŠãã¹ãŠãæ ¹æ¬çã«ç°¡çŽ åã§ããŸãããµããŒãé¢æ°ãšå¯Ÿå¿ããã°ãªããã®å°å
¥[4]ã ãã®ãããªã»ããã®æ§ç¯ã¯ãæåã®ãã¬ã€ã€ãŒãæãåé¡ã解決ããŸãããããã¿ã¹ã¯AãšåŒã³ãŸãããã
å¹²æžãªãã§å€ãã®$ M $ãç®æã㊠ã 
2çªç®ã®ã»ããïŒ2çªç®ã®ãã¬ã€ã€ãŒãç§ãã¡ãæãŸããããšãã§ããåé¿ããå¿
èŠãããã»ããïŒã«ã€ããŠã¯ãããã¯ããè€éã§ã-æãèŠãŠãã ããïŒ
- äžæ¹ã§ãæµããã¢ãããŒããããå Žåãèœåã®åªäœæ§ãèæ
®ããŠãæµããé ãããã»ã©æãŸããå¯èœæ§ãé«ããªããŸããããã«ã¯å³å¯ãªèª¬æãå¿
èŠã«ãªããŸãã
- äžæ¹ãæµãããé ããããå Žåããã®åªäœæ§ãèæ
®ããŠãæµã¯ã©ã®ãããªå Žåã§ãç§ãã¡ãæãŸããããšãã§ããŸããã
ã€ãŸããéžè±ããã»ããã¯ãäžæ¹ã§ïŒæ¥è¿ãããšãïŒå€§ãããªããã¢ãŒã¯ã®å察åŽïŒé¢ãããšãïŒã§é¿ããå¿
èŠããããã®ããããããã«å€§ãããªãå¯èœæ§ããããŸãã
矀è¡ã®åé¿ $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ ã 
å¶ç¶ïŒ è«äºïŒ ããã¯æããŸãã ãBack to the Futureãã®ãæ空é£ç¶äœãã®Docã®ããã«ããã1ã€ã®å€æ°ãããããšãæãåºããŠãã ãã-æéã§ãããåŒçšç¬Šã§åŒçšããããæ¥è¿ãããã³ã移åããšããçšèªã¯ãè»è·¡ã«æ²¿ã£ãã·ã¹ãã ã®åäœãšããŠè§£éãããŸãçŽç·éåãšäžèŽãããŠãŒã¯ãªãã空éã®è·é¢ã«ãã£ãŠç¹åŸŽä»ããããããšã¯ç¢ºãã§ã¯ãããŸããã ããããç¹å®ã®ãã€ã³ãã«ç§»åããéããé è¿ãããã³ãè¿ã¥ããŠããããšããæŠå¿µã¯éåžžã«ããç¹åŸŽä»ããããŠããŸãã
ãã®å Žåãåé¿ããå¿
èŠãããã»ããããã§ã¯ãªããåé¿ã®ã³ã³ãããŒã«ãæ§ç¯ããŸããã $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ ãã»ããå
ã®å¯Ÿå¿ããæéééã«è¿ã¥ããŸã§ã«ãå€æåŸã®ã»ããããïŒæåã®ãã¬ã€ã€ãŒã®åªäœæ§ã«ããæžå°ããŸãïŒ $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ -ã€ãŸã çãåŽé¢ãæã€æåã®ãã¬ãŒã€ãŒã«åããããäžçš®ã®ãã¡ã³ãã«ãæ§ç¯ãããããããã§ã«å§ããŸãã ã²ãŒã ã®ãã¹ãŠã®ç¬éã«ãã®ãããªã»ãããæ§ç¯ãããããåé¿ããããšã§ãæåã®ãã¬ã€ã€ãŒãåé¿ããåé¡ã解決ããŸãããããåé¡BãšåŒã³ãŸãããã
ãããã£ãŠãäžè¬çãªç®¡çã¯æåã®ãã¬ãŒã€ãŒã®ç®¡çã§ãããããåæç¹ã§ãããã®ãµãã¿ã¹ã¯ã®1ã€ã ãã解決ããŸãã
次ã«ããªããžã§ã¯ãã®åãã圢åŒåããŸã $ã€ã³ã©ã€ã³$ x $ã€ã³ã©ã€ã³$ 㧠$ã€ã³ã©ã€ã³$ x $ã€ã³ã©ã€ã³$ -次å
ãŠãŒã¯ãªãã空é $ã€ã³ã©ã€ã³$ \ mathbb {R} ^ n $ã€ã³ã©ã€ã³$ 次ã®åŸ®åæ¹çšåŒç³»ïŒ
$$衚瀺$$ \ããã{x} = A x + B u-C vã$$衚瀺$$
ã©ã㧠$ inline $ x \ in \ mathbb {R} ^ nã\ u \ in P \ãµãã»ãã\ mathbb {R} ^ pã\ v \ in Q \ãµãã»ãã\ mathbb {R} ^ q $ inline $ ; $ã€ã³ã©ã€ã³$ Pã\ Q $ã€ã³ã©ã€ã³$ -ãŠãŒã¯ãªãã空éããã®åžã³ã³ãã¯ãéå $ inline $ \ mathbb {R} ^ pã\ \ mathbb {R} ^ q $ inline $ ; $ã€ã³ã©ã€ã³$ Aã\ Bã\ C $ã€ã³ã©ã€ã³$ -å®æ°è¡åã $ inline $ A \ in \ mathbb {R} ^ {n \ times n}ã\ B \ in \ mathbb {R} ^ {n \ times p}ã\ C \ in \ mathbb {R} ^ {n \ times q} $ã€ã³ã©ã€ã³$ ããã¹ãŠã®ååšãäžææ§ãç¶ç¶æ§ãä¿èšŒããŸã $ã€ã³ã©ã€ã³$ t \ ge t_0 $ã€ã³ã©ã€ã³$ ã³ãŒã·ãŒåé¡ã®è§£æ±ºçã
ãã¯ãã« $ã€ã³ã©ã€ã³$ u $ã€ã³ã©ã€ã³$ æåã®ãã¬ã€ã€ãŒããã¯ã¿ãŒãèªç±ã«äœ¿ãã $ã€ã³ã©ã€ã³$ v $ã€ã³ã©ã€ã³$ 2çªç®ã®ãã¬ã€ã€ãŒãèªç±ã«äœ¿çšã§ããŸãã
éå㯠$ã€ã³ã©ã€ã³$ t = t_0 $ã€ã³ã©ã€ã³$ åæç¶æ
ãã $ã€ã³ã©ã€ã³$ïŒx_0ã\ t_0ïŒ$ã€ã³ã©ã€ã³$ ã«ããŒã°ã®æž¬å®å¯èœãªæ©èœã®åœ±é¿äžã§é²è¡ãã $ inline $ uïŒtïŒ\ in Pã\ vïŒtïŒ\ in Q $ inline $ ã
㧠$ã€ã³ã©ã€ã³$ \ mathbb {R} ^ n $ã€ã³ã©ã€ã³$ ããã€ãã®ç©ºã§ãªãåžééåã¯åºå¥ãããŸã $ã€ã³ã©ã€ã³$ M $ã€ã³ã©ã€ã³$ ãã㊠$ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ ã å€ãã® $ã€ã³ã©ã€ã³$ M $ã€ã³ã©ã€ã³$ æåã®ãã¬ãŒã€ãŒã®ç«¯æ«ã»ããã§ãã æåã®ãã¬ã€ã€ãŒã®ç®æšã¯ãã€ã³ã¯ã«ãŒãžã§ã³ãéæããããšã§ã $ inline $ xïŒt_1ïŒ\ in M $ inline $ ããã€ãã®ããã« $ã€ã³ã©ã€ã³$ t_1 \ ge t_0 $ã€ã³ã©ã€ã³$ ã å€ãã® $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ 2çªç®ã®ãã¬ãŒã€ãŒã®ç«¯æ«ã»ãããš1çªç®ã®ãã¬ãŒã€ãŒã®å¹²æžã»ããã§ãã 2çªç®ã®ãã¬ãŒã€ãŒã®ç®æšã¯ãã€ã³ã¯ã«ãŒãžã§ã³ãéæããããšã§ã $ inline $ xïŒt_1 'ïŒ\ in N $ inline $ ããã€ãã®ããã« $ã€ã³ã©ã€ã³$ t_1 '\ ge t_0 $ã€ã³ã©ã€ã³$ ã ãã€ã³ãã®æåã®ãããã®ç¬éã« $ã€ã³ã©ã€ã³$ xïŒtïŒ$ã€ã³ã©ã€ã³$ ã« $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ ã²ãŒã ã¯2çªç®ã®ãã¬ãŒã€ãŒã«ãã£ãŠæ£åžžã«å®äºãããšèŠãªãããŸãã æåã®ãã¬ãŒã€ãŒã®è¿œå ã®ã¿ã¹ã¯ã¯ããã€ã³ããæã€ããšãé¿ããããšã§ã $ã€ã³ã©ã€ã³$ xïŒtïŒ$ã€ã³ã©ã€ã³$ ã« $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ ã
ã²ãŒã ã¯ããã€ã³ãã®æåã®ãããæã«æåã®ãã¬ãŒã€ãŒã«ãã£ãŠæ£åžžã«å®äºãããšèŠãªãããŸã $ã€ã³ã©ã€ã³$ xïŒtïŒ$ã€ã³ã©ã€ã³$ ã« $ã€ã³ã©ã€ã³$ M $ã€ã³ã©ã€ã³$ éå»ã®ãã¹ãŠã®æç¹ã§ãã€ã³ãã $ã€ã³ã©ã€ã³$ xïŒtïŒ$ã€ã³ã©ã€ã³$ ãããããªã $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ ã ãããã£ãŠããã¬ã€ã€ãŒã®ç®æšã¯äžèŽããããã€ã³ã $ã€ã³ã©ã€ã³$ xïŒtïŒ$ã€ã³ã©ã€ã³$ æŠãéšéã®åœ±é¿ãåããŠãã $ã€ã³ã©ã€ã³$ uïŒtïŒã\ vïŒtïŒ$ã€ã³ã©ã€ã³$ ã
å·®åã²ãŒã ã«ã€ããŠã¯ã第1ãã¬ã€ã€ãŒãšç¬¬2ãã¬ã€ã€ãŒã®èŠ³ç¹ããåå¥ã«æ€èšããŸãã
AïŒæåã®ãã¬ã€ã€ãŒãç¥ã£ãŠããããšãåæãšããŠããŸãïŒ
- 競åãã管ç察象ãšã³ãã£ãã£ã®åçæ©èœ $ã€ã³ã©ã€ã³$ x $ã€ã³ã©ã€ã³$ ãã€ãŸãè¡å $ã€ã³ã©ã€ã³$ Aã\ Bã\ C $ã€ã³ã©ã€ã³$ ãã»ãã $ã€ã³ã©ã€ã³$ Pã\ Q $ã€ã³ã©ã€ã³$ ;
- ã²ãŒã ã®åæç¶æ
$ã€ã³ã©ã€ã³$ïŒx_0ãt_0ïŒ$ã€ã³ã©ã€ã³$ ;
ãŸããæåã®ãã¬ã€ã€ãŒãå€ãã®ããšãæ€åºã§ãããšä»®å®ãããŸã $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ æéå
ã« $ã€ã³ã©ã€ã³$ \ã·ãŒã¿> 0 $ã€ã³ã©ã€ã³$ ãã®å€ã¯ä»¥äžã§å®çŸ©ãããŸãã
æåã®ãã¬ã€ã€ãŒã®æŠç¥ãå®çŸ©ãã $ inline $ uïŒtïŒ= UïŒx_0ãt_0ãv_tïŒ\ cdotïŒïŒ$ inline $ ä»»æã®æž¬å®å¯èœãªé¢æ°ã®ã»ããã§å®çŸ©ãããããããšã㊠$ inline $ vïŒtïŒ\ in Qã\ t \ ge t_0 $ inline $ ãããã³æ¬¡ã®ããããã£ãææããŠããŸãïŒä»»æã®æž¬å®å¯èœ $ inline $ vïŒtïŒ\ in Qã\ t \ ge t_0 $ inline $ æ©èœ $ inline $ uïŒtïŒ= UïŒx_0ãt_0ãv_tïŒ\ cdotïŒïŒ$ inline $ ã§æž¬å®å¯èœ $ã€ã³ã©ã€ã³$ t $ã€ã³ã©ã€ã³$ ãã㊠$ inline $ uïŒtïŒ\ in P $ inline $ ã
ã¿ã¹ã¯AïŒåæç¶æ
ãèŠã€ãã $ã€ã³ã©ã€ã³$ïŒx_0ãt_0ïŒ$ã€ã³ã©ã€ã³$ æåã®ãã¬ã€ã€ãŒã¯ãä»»æã®æž¬å®å¯èœãªãã®ã«ã²ãŒã ã®çµãããæäŸãããããªæŠç¥ãæã£ãŠãã $ inline $ v \ in Q $ inline $ æçµçãªç¬éãããé
ãã¯ãããŸããã ãã®ãããªæ¡ä»¶ $ã€ã³ã©ã€ã³$ïŒx_0ãt_0ïŒ$ã€ã³ã©ã€ã³$ åé¡Aã®è§£æ±ºçãšåŒã°ããŸã
BïŒ 2çªç®ã®ãã¬ãŒã€ãŒã«ã¯ãã²ãŒã ã®é²è¡ç¶æ³ã«é¢ããå®å
šãªæ
å ±ããããŸãã
2çªç®ã®ãã¬ã€ã€ãŒã®æŠç¥ãå®çŸ©ãã $ã€ã³ã©ã€ã³$ vïŒtïŒ= VïŒx_0ãt_0ãu_tïŒ\ cdotïŒïŒ$ inline $ ä»»æã®æž¬å®å¯èœãªé¢æ°ã®ã»ããã§å®çŸ©ãããããããšã㊠$ inline $ uïŒtïŒ\ in Pã\ t \ ge t_0 $ inline $ ãããã³æ¬¡ã®ããããã£ãææããŠããŸãïŒä»»æã®æž¬å®å¯èœ $ inline $ uïŒtïŒ\ in Pã\ t \ ge t_0 $ inline $ æ©èœ $ã€ã³ã©ã€ã³$ vïŒtïŒ= VïŒx_0ãt_0ãu_tïŒ\ cdotïŒïŒ$ inline $ ã§æž¬å®å¯èœ $ã€ã³ã©ã€ã³$ t $ã€ã³ã©ã€ã³$ ãã㊠$ inline $ vïŒtïŒ\ in Q $ inline $ ã
ã¿ã¹ã¯BïŒåæç¶æ
ãèŠã€ãã $ã€ã³ã©ã€ã³$ïŒx_0ãt_0ïŒ$ã€ã³ã©ã€ã³$ 2çªç®ã®ãã¬ãŒã€ãŒã¯ãä»»æã®æž¬å®å¯èœãªãã®ã«ã²ãŒã ã®çµäºãæäŸãããããªæŠç¥ãæã£ãŠããŸã $ inline $ u \ in P $ inline $ æçµçãªç¬éãããé
ãã¯ãããŸããã ãã®ãããªæ¡ä»¶ $ã€ã³ã©ã€ã³$ïŒx_0ãt_0ïŒ$ã€ã³ã©ã€ã³$ åé¡Bã®è§£æ±ºçãåŒã³åºããŸãã
ä»®å®ãã $ã€ã³ã©ã€ã³$ M = M ^ 1 + M ^ 2 $ã€ã³ã©ã€ã³$ ã©ã㧠$ã€ã³ã©ã€ã³$ M ^ 1 $ã€ã³ã©ã€ã³$ -空éã®ç·åœ¢éšå空é $ã€ã³ã©ã€ã³$ \ mathbb {R} ^ n $ã€ã³ã©ã€ã³$ ã $ã€ã³ã©ã€ã³$ M ^ 2 $ã€ã³ã©ã€ã³$ -åžã³ã³ãã¯ãã $ã€ã³ã©ã€ã³$ M ^ 2 \ãµãã»ããL ^ 1ã\ L ^ 1 \ oplus M ^ 1 = \ mathbb {R} ^ n $ inline $ ã åæ§ã« $ã€ã³ã©ã€ã³$ N = N ^ 1 + N ^ 2 $ã€ã³ã©ã€ã³$ ã©ã㧠$ã€ã³ã©ã€ã³$ N ^ 1 $ã€ã³ã©ã€ã³$ -空éã®ç·åœ¢éšå空é $ã€ã³ã©ã€ã³$ \ mathbb {R} ^ n $ã€ã³ã©ã€ã³$ ã $ã€ã³ã©ã€ã³$ N ^ 2 $ã€ã³ã©ã€ã³$ -åžã³ã³ãã¯ãã $ã€ã³ã©ã€ã³$ N ^ 2 \ãµãã»ããL ^ 1ã\ L ^ 1 \ oplus N ^ 1 = \ mathbb {R} ^ n $ inline $ ã åæã« $ã€ã³ã©ã€ã³$ \ pi $ã€ã³ã©ã€ã³$ -çŽäº€èšèšã®ãªãã¬ãŒã¿ãŒ $ã€ã³ã©ã€ã³$ \ mathbb {R} ^ n $ã€ã³ã©ã€ã³$ 㧠$ã€ã³ã©ã€ã³$ L ^ 1 $ã€ã³ã©ã€ã³$ ã $ inline $ \ pi \ in \ mathbb {R} ^ {\ nu \ times n} $ inline $ ã ãããã®æ§é ã¯ãäžè¬çãªã±ãŒã¹ïŒããã³æ
£æ§ãªããžã§ã¯ããããå ŽåïŒã®ã²ãŒã ã埮åæ¹çšåŒç³»ã®æ¬¡å
ãããå°ããªæ¬¡å
ã®ç©ºéã§ãã¬ã€ãããããšãèæ
®ããããã«å¿
èŠã§ãã
ãµãã»ã¯ã·ã§ã³4.1ã ã»ããããæåã®ãã¬ã€ã€ãŒãåé¿ããåé¡ã®è§£æ±ºå¯èœæ§ã®ååæ¡ä»¶ $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$
ã¿ã¹ã¯B-æåã®ãã¬ãŒã€ãŒã2çªç®ã®ãã¬ãŒã€ãŒã§è¿œè·¡ããã¿ã¹ã¯ãæ€èšãããã®åé¡ã解決ãããã€ã³ãã®ã»ãããæ§ç¯ããŸãã ãã®ããããã®ã¿ã€ãã®åé¡ã«å¯ŸããŠããã³ããªã£ãŒã®ã³ã¯åžæããã»ãã-亀äºåèš-ãäœæããæ¹æ³ãèãåºããŸãã- $ã€ã³ã©ã€ã³$ WïŒtïŒ$ã€ã³ã©ã€ã³$ [3]ã[5]ã ãããã£ãŠã亀äºã®åèšã¯åžã³ã³ãã¯ãã§ããã ãã§ãªãã $ã€ã³ã©ã€ã³$ v $ã€ã³ã©ã€ã³$ -å®å®ïŒã€ãŸããå¿
èŠãª2çªç®ã®ãã¬ã€ã€ãŒã®æŠç¥ãæ§ç¯ããããšãã§ããŸãïŒããŸããå°ããªã²ãŒã ã®ãµãã«ãã€ã³ããååšããããšãä¿èšŒããŸã[6ãpã56]ïŒã€ãŸããã²ãŒã ã¯ååçã«æ±ºå®å¯èœã§ãïŒ-ã€ãŸã äžåºŠã«ã
[6ãpã69-å®ç17.1]ããããããã®æ¡ä»¶äžã§ã¯ä»£æ¿å®çã䜿çšã§ããããšãããããŸãã
éå§äœçœ®ã«ã€ã㊠$ã€ã³ã©ã€ã³$ïŒt_0ãx_0ïŒ$ã€ã³ã©ã€ã³$ ãããŠéžæ $ inline $ \ bar T \ ge t_0 $ inline $ 次ã®2ã€ã®ã¹ããŒãã¡ã³ãã®ãããããçã§ãã
1ïŒãŸãã¯æŠç¥ããããŸã $ã€ã³ã©ã€ã³$ \ããŒ{v} $ã€ã³ã©ã€ã³$ ãã¹ãŠã®åãã«å¯Ÿã㊠$ã€ã³ã©ã€ã³$ xïŒtïŒ= xïŒtãt_0ãx_0ã\ bar {v}ïŒ$ã€ã³ã©ã€ã³$ äŒè°ãæäŸããŸã $ inline $ \ {\ tauãxïŒ\ tauïŒ\} \ in N $ inline $ çµäºæé $ã€ã³ã©ã€ã³$ \ tau <\ bar {T} $ã€ã³ã©ã€ã³$ ã ã€ãŸãã2çªç®ã®ãã¬ãŒã€ãŒã®äœçœ®æŠç¥ã®ã¯ã©ã¹ã§ã¯ã远跡åé¡ïŒåé¡BïŒã¯è§£æ±ºå¯èœã§ãã
2ïŒãŸãã¯ãããã§ãªããã°ãæŠç¥ããããŸã $ inline $ \ bar {u} $ inline $ ãã¹ãŠã®åãã«å¯Ÿã㊠$ã€ã³ã©ã€ã³$ xïŒtïŒ= xïŒtãt_0ãx_0ã\ bar {u}ïŒ$ã€ã³ã©ã€ã³$ å€æ°ã®åé¿ãæäŸããŸã $ã€ã³ã©ã€ã³$ \ã€ãã·ãã³$ã€ã³ã©ã€ã³$ -ãã®æç¹ãŸã§ã®ã»ãã$ N $ã®è¿å $ã€ã³ã©ã€ã³$ \ããŒ{T} $ã€ã³ã©ã€ã³$ ã ã€ãŸããæåã®ãã¬ãŒã€ãŒã®äœçœ®æŠç¥ã®ã¯ã©ã¹ã§ã¯ãåé¿åé¡ïŒåé¡AïŒã¯è§£æ±ºå¯èœã§ãã
ãŸãã $ã€ã³ã©ã€ã³$ v $ã€ã³ã©ã€ã³$ ã»ããã®å®å®æ§ $ã€ã³ã©ã€ã³$ WïŒTïŒ$ã€ã³ã©ã€ã³$ [6ãpã62-å®ç15.1]ã«åºã¥ããŠã次ã®æ¡ä»¶ãåŸãããŸãã
$$ display $$ \ forall t \ in [t_0ã\ bar T]ïŒxïŒt_0ïŒ\ notin WïŒtïŒ$$ display $$
æåã®ãã¬ã€ã€ãŒãåæäœçœ®ããåé¿ããåé¡ã解決ããããã®ååãªæ¡ä»¶ã§ã $ã€ã³ã©ã€ã³$ïŒt_0ãx_0ïŒ$ã€ã³ã©ã€ã³$ ãã $ã€ã³ã©ã€ã³$ \ã€ãã·ãã³$ã€ã³ã©ã€ã³$ ã»ããã®è¿å $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ æéãçµã€ã«ã€ã㊠$ã€ã³ã©ã€ã³$ \ããŒT $ã€ã³ã©ã€ã³$ ã
æåã®ãã¬ãŒã€ãŒã®ãªãœãŒã¹ãã»ããã§å®çŸ©ãããŠããå Žå $ã€ã³ã©ã€ã³$ P $ã€ã³ã©ã€ã³$ ã»ããã§å®çŸ©ããã2çªç®ã®ãã¬ãŒã€ãŒã®ãªãœãŒã¹ãè¶
éãã $ã€ã³ã©ã€ã³$ Q $ã€ã³ã©ã€ã³$ ãã㊠$ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ ããããŠãã®ãããªæéããããŸã $ã€ã³ã©ã€ã³$ \ã·ãŒã¿$ã€ã³ã©ã€ã³$ ãã $ã€ã³ã©ã€ã³$ WïŒ\ã·ãŒã¿ïŒ= \ emptyset $ã€ã³ã©ã€ã³$ ã
ç¬éã®ååš $ã€ã³ã©ã€ã³$ t $ã€ã³ã©ã€ã³$ ã©ã®å
å« $ inline $ xïŒtïŒ\ in WïŒtïŒ$ inline $ ãç¯å²ããã®æéã«å¯Ÿããåé¡Bã®å¯è§£æ§ãæäŸããŸã $ã€ã³ã©ã€ã³$ [tãt + \ã·ãŒã¿] $ã€ã³ã©ã€ã³$ ã
ã€ãŸããæŠç¥ãæ§ç¯ã§ããŸã $ã€ã³ã©ã€ã³$ uïŒx_0ãt_0ãxïŒtïŒïŒ$ã€ã³ã©ã€ã³$ æ¡ä»¶ãæºããïŒ
$$ display $$ \ forall \ tau \ in [tãt + \ Theta]ïŒxïŒ\ tauãuïŒx_0ãt_0ãxïŒ\ tauïŒïŒïŒ\ notin WïŒ\ tauïŒ$$ display $ $
ãããã£ãŠãã»ããã®åé¿ã確ä¿ããããã« $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ ãçŸåšã®æç¹ã«ã€ããŠäžèšã®æ¡ä»¶ã確èªããå¿
èŠããããŸã $ã€ã³ã©ã€ã³$ t $ã€ã³ã©ã€ã³$ ãããã³ãã®åŸã®ãã¹ãŠã®ç¬éã®æ·±ããŸã§ $ã€ã³ã©ã€ã³$ t + \ã·ãŒã¿$ã€ã³ã©ã€ã³$ ã
å€ãã® , :
, . - , ( ), , .
, , , : 5, 2, -- 1, 4.
.
$ã€ã³ã©ã€ã³$ M $ã€ã³ã©ã€ã³$ . $ã€ã³ã©ã€ã³$ M $ã€ã³ã©ã€ã³$ :
4.2.
, ã , , , :
( ) :
, ã
, , .
:
$ã€ã³ã©ã€ã³$ M $ã€ã³ã©ã€ã³$ ïŒ
" " ;
- , â :
, .
$ã€ã³ã©ã€ã³$ M $ã€ã³ã©ã€ã³$ ã
, , , , , , .
, , , .
, , , [6, . 69], :
ã©ãã§
15.2 [6, . 65], , , , .
$ã€ã³ã©ã€ã³$ M $ã€ã³ã©ã€ã³$ ã - , , :
-- :
:
, , .. ã©ã㧠ã â . .. ã - .
, $ã€ã³ã©ã€ã³$ M $ã€ã³ã©ã€ã³$ , , , .
â , , . , . åæã«
â , , .
â
, , . â " ", . .
:
ããã« â $ã€ã³ã©ã€ã³$ x $ã€ã³ã©ã€ã³$ , â ,
,
.
.

.

.

, :
.
.

.

.

, , , .
çµè«
( , , ), â "" "" , (. .. c, .. .. ), .
: GitHub
, 19 , , C++ , , .. . .
, .. , , , .. " " .
.
UPD: technic93 , (. ).
[1] .. . . , , », , 1983
[2] .. : , , , 1968
[3] .. , , , 1990
[4] .. , .. , .. . , , 2007
[5] .., .., .. , , 2007
[6] .., .. , , , 1974
[7] .., . , , , 1972
[8] .., .., .., .. , , , 1969
( jul305a@gmail.com )