ãã®èšäºã®ç®çã¯ãç 究ã®çµæãå
±æããŠãAngle-Grangerãã¹ãã䜿çšããŠãã¢ã¹ã¯ã¯ãšãã¥ãŒãšãŒã¯ã®ååŒæã«ãªã¹ããããŠããå
±åçµ±åãããæ ªåŒãã¢ãç¹å®ããããšã§ãã
å®åžžå¢åãæ〠2ã€ã®ã¹ããã¯ãååŸãããããã®ç·åœ¢çµåïŒã¹ãã¬ããïŒãå®åžžã§ãããšããã
å Žå ããã®æç³»åã¯å
±ç©åãšåŒã°ããŸãã å
±åçµ±åã®ååšã¯ãæ ªåŒããããžããåžå Žã«äžç«ãªæŠç¥ãæ§ç¯ããæ©äŒãäžããŠãããŸãã ãªããããå¯èœã§ããïŒ
å©çåµåºã®åºç€ãšãªãåå
æç³»åã§èŠãæ ªã®äŸ¡æ Œã¯éåžžã«å€§ããå€åããå¯èœæ§ãããããšã¯èª°ããç¥ã£ãŠããŸãã ããããã®è«æã§ããžã·ã§ã³ãäœæãããšããã®ãã©ãã£ãªãã£ã«é¢é£ãããã¹ãŠã®ãªã¹ã¯ãè² ããããã»ãšãã©ã®å Žåãéåžžã«ãªã¹ã¯ã®é«ãã²ãŒã ã«ãªããŸãã ãã ãããã®ãããªäžé£ã®ã¢ã¯ã·ã§ã³ã¯ããã¢ã«ãªã£ãŠãããããäºãã«é¢ããããªãããšãäºæ³ãããŸãã ãã®æŠå¿µã¯ãé·æåç平衡ãšåŒã°ããŸãã
å®åžžæ§ã®æèã§ã¯ãé·æã®åç平衡ã¯ããæ£ç¢ºãªåœ¢ãåããŸãã 2ã€ã®çµ±åãããè«æã®éã«æ§ç¯ãããã¹ãã¬ããã®éæ¢åããšããšãå¹³åã«æ»ãç¹æ§ãæã¡ãŸããã€ãŸããäœããã®å¹³è¡¡ããéžè±ãããšãæ»ã£ãŠããåŸåããããŸãã ãã®ååã«åºã¥ããŠãåžå Žã«äžç«ãªæŠç¥ãæ§ç¯ãããŸãã
æ ªåŒåžå Žã§é·æã®åçåè¡¡ã«é¢é£ãããã¢ãèŠã€ããæ¹æ³ã¯ïŒ
çžé¢é¢ä¿
æåã«æãæµ®ãã¶ã®ã¯ã2ã€ã®è«æãšãã¬ãŒããã¢éã®çžé¢ã匷ãçžé¢ã§èšç®ããããšã§ãã ãã®ã¢ãããŒãã¯2ã€ã®çç±ã§å€±æããŸãã
ãŸãã2ã€ã®éæã®äŸ¡æ Œç³»åã«çæ³çãªçžé¢é¢ä¿ããã£ãå Žåãã€ãŸããåãæ¹åã«åãå²åã§å€åããå Žåãç³»åéã®å·®ã¯ãŒãã«ãªããå©çãåŸãããšãã§ããŸããããªããªããã©ã®æ ªãé«ããããå®ããããããããšã¯ãªãããã§ãã
第äºã«ãçžé¢é¢ä¿ã¯ãé·æçã«ã¯2ã€ã®æ ªã®é¢ä¿ã«é¢ããååãªæ
å ±ãæäŸããŸããã ããšãã°ã倧èŠæš¡ã§å€æ§ãªæ ªåŒããŒããã©ãªãªãåãäžããŸãã ãããã®æ ªåŒãæ ªäŸ¡ææ°ã«å«ããããŒããã©ãªãªå
ã®æ ªåŒã®ãŠã§ã€ãã¯ã€ã³ããã¯ã¹å
ã®ãŠã§ã€ãã«ãã£ãŠæ±ºå®ãããããã«ããŸãã ããŒããã©ãªãªã¯é·æçã«ã¯ã€ã³ããã¯ã¹ã«åŸã£ãŠåãã¯ãã§ãããã€ã³ããã¯ã¹ã«ã¯ãããããŒããã©ãªãªã«ã¯ãªãæ ªåŒãç°åžžãªäŸ¡æ Œå€åãèµ·ããæéããããŸãã ãã®çµæãããŒããã©ãªãªãšã€ã³ããã¯ã¹ã®çµéšççžé¢ã¯ãã°ããã®ééåžžã«äœããªãå¯èœæ§ããããŸãã ãã®ãããåæã§ã¯ãåçŽã«ãã®ãããªããŒããã©ãªãªãç Žæ£ãããéã皌ãæ©äŒãéããŸãã ãããã£ãŠãçžé¢ã¯ãã¢ãèå¥ããããã®è¯ãæ¹æ³ã§ã¯ãããŸããã
ãã¢ãèå¥ããã«ã¯å
±ååã䜿çšããããšããå§ãããŸãã
å
±åå
å€ãã®å Žåãçµæžã·ãªãŒãºã®å®å®æ§ã確ä¿ããããã«ãéããå©çšããŸãã ããã«ããã次ã®çµ±åã®å®çŸ©ãåŸãããŸãã
æç³»åã¯çµ±å泚æãšåŒã°ããŸã
k ãããŠæå®ãããŠãã
xt simIïŒkïŒ åœŒãšåœŒã®éãã泚æ次第ãªã
kâ1 å
æ¬çéå®åžžãããã³ãã®é åºã®éã
k éæ¢ããŠããŸãã
å®éã®çµæãåŸãã«ã¯ãå€ã®ã¿ãå¿
èŠã§ã
k=0 ãããŠ
k=1 ã ãã
k=0 ããã®åŸãã·ãªãŒãºã¯éæ¢ããç°¡æœã«ããããã«ãã®ãããªã·ãªãŒãºã瀺ããŸã
IïŒ0ïŒ ã ã®ããã«
k=1 ã·ãªãŒãºã¯
ãåºå®å¢å ïŒ1次ã®å·®ïŒã§
éå®åžžã§ãããç°¡æœã«ããããã«ããã®ãããªã·ãªãŒãºã以äžã«ç€ºããŸãã
IïŒ1ïŒ ã
2ã€ãããŸãã
IïŒ1ïŒ è¡
xt ãããŠ
yt ã ããã«ããããã®ç·åœ¢çµå
ytâ betaxt ã¯
IïŒ0ïŒã ãã®å Žåãè¡
xt ãããŠ
yt å
±çµ±åãšåŒã°ããïŒ
varepsilont=ytâ betaxt simIïŒ0ïŒã
æ¬è³ªçã«ãå
±ååã¯éå®åžžç³»åã®ååž°ã§ãã ãããæå³ããã®ã¯
varepsilont ã®å¹³åããŒãã§ããå Žåããã®ã·ãªãŒãºã¯ãŒããã倧ããéžè±ããããšã¯ã»ãšãã©ãªããå€ãã®å ŽåãŒãã¬ãã«ãè¶
ããŸãã èšãæãããšãæã
ãæ£ç¢ºãªãã©ã³ã¹ãŸãã¯ããã«è¿ãç¶æ
ãéæãããŸãã
äŸ¡æ Œã®å¯Ÿæ°ã®å
±ç©å
äŸ¡æ Œéã ãã§ãªãã察æ°éã®å
±ååãèæ
®ããããšãã§ããŸãã æ®å¿µãªããã2ã€ã®æ ªåŒã®äŸ¡æ Œã®å¯Ÿæ°éã®å
±ååã¯ã2ã€ã®æ ªåŒã®äŸ¡æ Œéã®å
±ååãããæçœã§ãªããçŽèŠ³çã§ã¯ãããŸããã ãããã察æ°ã®å Žåã«å
±ååãå¯èœãªã®ã¯ãªãã§ããïŒ
ããã¯ããå¹æçãªåžå Žä»®èª¬ãããªãã·ã§ã³äŸ¡æ Œèšå®ã¢ãã«ãããã³äŒè€è£é¡ã«ãã£ãŠèª¬æãããŸãã å®éãå¹æçãªåžå Žã®ä»®èª¬ã«ã¯å³å¯ãªåœ¢åŒåã¯ãããŸããã ãã®ä»®èª¬ã¯ãè³ç£ã®äŸ¡æ Œããã©ã³ã¹ã®åããèªçºçãªéèŠãšäŸçµŠã®çµæã§ããæµåçãªåžå Žã§ã¯ãçŸåšã®äŸ¡æ Œãåžå Žã®ãã¬ãŒã€ãŒãå©çšã§ãããã¹ãŠã®æ
å ±ãæ£ç¢ºã«åæ ããããšã瀺åããŠããŸãã å°æ¥ã®äŸ¡æ Œã®å€åã¯ãããã¥ãŒã¹ãã®çµæã«éããªãå¯èœæ§ããããŸããããã¯å®çŸ©äžãäºæž¬äžèœã§ãããããå°æ¥ã®æ¥ä»ã«å¯Ÿããæè¯ã®äŸ¡æ Œäºæž¬ã¯ãåã«ä»æ¥ã®äŸ¡æ Œã§ãã ã€ãŸããä»æ¥ã®äŸ¡æ Œã¯æšæ¥ã®äŸ¡æ Œã«ã©ã³ãã èŠçŽ ãå ãããã®ã§ãã
å¹ççãªåžå Žä»®èª¬ã¯ãåºç€ãšãªããªãã·ã§ã³äŸ¡æ Œèšå®ã¢ãã«ã«é¢é£ããŠããŸãã ãã®ã¢ãã«ã®åºæ¬çãªåæã¯ãåè³ç£ã®äŸ¡æ Œã
S 幟äœåŠçãã©ãŠã³éåïŒGBMïŒããã»ã¹ãæºãããŸãã
fracdSS= mudt+ sigmadWã
ã©ãã§
mu ãããŠ
\ã·ã°ã -è³ç£ã®äŸ¡æ Œãšåçæ§ã®ãã©ãã£ãªãã£ã®ãªãã»ããã§ããå®æ°
W Wienerããã»ã¹ãã€ãŸãå¢å
dW ç¬ç«ããŠãããå¹³åãšåæ£ããŒãã®æ£èŠååž
dt ã
GBMæ¹çšåŒãå¹ççãªåžå Žä»®èª¬ã«ã©ã®ããã«é¢ä¿ããŠããããèŠãã«ã¯ãäŒè€ã®è£é¡ãããã«é©çšããå¿
èŠããããŸãã äœã§æ§æãããŠããŸããïŒ å€æ°ã®å€ãä»®å®ãã
x 確ç埮åæ¹çšåŒïŒSDEïŒã«åŸã
dx= mudt+ sigmadWã
ã©ãã§
W ãŠã£ããŒããã»ã¹ã§ããã
mu ãããŠ
\ã·ã°ã -å€æ°ã«äŸåããé¢æ°
x ãããŠ
t ã ãŸããé¢æ°
f å€æ°ã«äŸå
x ãããŠ
t ãããŠæŽŸçç©ãæã£ãŠããŸã
frac partialf partialt ã
frac partialf partialx ã
frac partial2f partialx2 ã äŒè€ã®è£é¡ã¯ããã®é¢æ°ã¯æ¹çšåŒã«åŸããšè¿°ã¹ãŠãã
df=ïŒ frac partialf partialt+ mu frac partialf partialx+ frac sigma22 frac partial2f partialx2ïŒdt+ sigma frac partialf partialxdW
å®éãäŒè€ã®è£é¡ã¯SDEã®å€æ°ãå€æŽããããã®åŒã§ãããç¹å®ã®æ¡ä»¶äžã§ã¯ç¹å®ã®SDEã®é¢æ°ãSDEã§ãã
GBMæ¹çšåŒã«æ»ãã次ã®åœ¢åŒã«å€æããŸã
dS= muSdt+ sigmaSdWã
æ³å®
f=fïŒSãtïŒ ãäŒè€ã®è£é¡ã«ããã
df=ïŒ frac partialf partialt+ muS frac partialf partialS+ frac sigma2S22 frac partial2f partialS2ïŒdt+ sigmaS frac partialf partialSdW
æ©èœã玹ä»ããŸã
fïŒSïŒ= lnS ã 以æ¥
frac partial lnS partialS= frac1Sã frac partial2 lnS partialS2=â frac1S2ã frac partial lnS partialt=0ã
ç§éã¯åŸãïŒ
$$ display $$ d \ lnâ¡S=ïŒ\ frac {\ partial \ lnâ¡S} {\ partial t} + \ mu S \ frac {\ partial \ lnâ¡S} {\ partial S} + \ frac { \ sigma ^ 2 S ^ 2} {2} \ frac {\ partial ^ 2 \ lnâ¡S} {\ partial S ^ 2}ïŒdt + \ sigma S \ frac {\ partial \ lnâ¡S} {\ partial S } dW = \\ =ïŒ0 + \ mu S \ frac {1} {S}-\ frac {\ sigma ^ 2 S ^ 2} {2} \ frac {1} {S ^ 2}ïŒdt + \ sigma S \ frac {1} {S} dW =ïŒ\ mu-\ frac {\ sigma ^ 2} {2}ïŒdt + \ sigma dWã$$ display $$
æ¹çšåŒ
d lnS=ïŒ muâ frac sigma22ïŒdt+ sigmadW
åå¥ã®åœ¢åŒã§æžãæãå¯èœ
Delta lnSt=c+ varepsilontã
ã©ãã§
c= muâ sigma2/2 ããããŠ
varepsilont simNIDïŒ0ã sigma2ïŒ ãã€ãŸããããã«ããã»ã¹ããããŸã
varepsilont éæ¢ããŠããã ãã§ãªãããã¯ã€ããã€ãºã§ãã å®åžžããã»ã¹ã®æŠå¿µã¯ãã¯ã€ããã€ãºãããåºããå®åžžããã»ã¹ã®æåŸ
å€ã¯äžå®ã§ããããã¯ã€ããã€ãºã®å Žåã®ããã«ãŒãã§ããå¿
èŠã¯ãããŸããã
äžèšã®åŒã®é¢æ£ããŒãžã§ã³ã¯ã次ã®ããã«èšè¿°ã§ããŸãã
lnSt=c+ lnStâ1+ varepsilontã
ãã®æ¹çšåŒã¯ã©ã³ãã ãŠã©ãŒã¯ã¢ãã«ïŒRWïŒã§ããããã¯éåžžãå¹ççãªéèåžå Žã®äŸ¡æ Œã®å¯Ÿæ°ãã¢ãã«åããããã«äœ¿çšãããäŸã§ãã
IïŒ1ïŒ ããã»ã¹ã ãããã£ãŠãå
±ååã¯æ ªäŸ¡ã®å¯Ÿæ°ã«ãé©çšã§ããŸãã
äžéšã®æçè«è
ïŒç¹ã«ç§ïŒã¯ãGBMæ¹çšåŒã«ããæ ªäŸ¡ã®èª¬æã®åŠ¥åœæ§ããããã£ãŠäŸ¡æ Œã®å¯Ÿæ°éã®å
±åã®å¯èœæ§ãçããããããªããšããäºå®ã«ãããããããçµéšçããŒã¿ã¯ãã®æçè«ãéŠå°ŸããææããŸãã ç§ããã§ãã¯ããã®ã¯ãäŸ¡æ Œãçµ±åãããŠããå Žåã察æ°ãçµ±åãããŠããããšã§ãã
å
±ååãã¹ã
æåã®å
±ååæ³ã¯ãRobert EngleãšClive Grangerã«ãã£ãŠçºæãããŸããã 2003幎ã圌ãã¯æç³»ååæã®ããã®å
±ååæ³ãéçºããããšã§ããŒãã«çµæžåŠè³ãåè³ããŸããã 圌ãã¯è³ã®15幎åã®1987幎ã®èšäºãå
±ç©åãšèª€ãèšæ£ïŒè¡šçŸãæšå®ããã¹ããã§ããã説æããŸããã
æŠå¿µçã«ã¯ãå©çšå¯èœãªèŠ³å¯ã«åŸã£ãŠãæç³»åã
xt ãããŠ
yt å
±çµ±åãåž°ç¡ä»®èª¬ããã¹ãããå¿
èŠããããŸã
H0ïŒ varepsilont simIïŒ1ïŒ è¡éã®çžäºçµ±åã®æ¬ åŠ
xt ãããŠ
yt 察ç«ä»®èª¬ã«å¯Ÿãã
H1ïŒ varepsilont simIïŒ0ïŒ ã åž°ç¡ä»®èª¬ãæ£åŽããããšãå
±ååãèªèãããŸãã
å
ã®å
±ååãã¹ãã¯ãåµæ¥è
ã称ããŠãã¢ã³ã°ã«ã°ã¬ã³ãžã£ãŒãã¹ããšåŒã°ããŠããŸããã ããã¯ãæ€èšŒãå
è¡ãã2段éã®ããã»ã¹ã§ãã
xt ãããŠ
yt äžæ¬¡ã®å¯ç©åæ§ã
xt simIïŒ1ïŒ ãããŠ
yt simIïŒ1ïŒ ã ããã«ã€ããŠã¯ã
å®åžžå¢åã«é¢ããèšäºã§è©³ãã説æããŸããã å®éã«ã¯ãAngle-Grangerãã¹ãã«çŽæ¥é²ãåã«è¡ãå¿
èŠããããã¹ãŠã®æºåäœæ¥ã«ã€ããŠèª¬æããŠããŸãã ç§ãã¡ããã£ããšããŸãããã
ã©ã³ã¯
xt ãããŠ
yt ãããã®åºãããå
±ååã§ãã
ytâ betaxt simIïŒ0ïŒ ãã€ãŸãéæ¢ããŠããã Angle-Grangerãã¹ãã®æåã®ã¹ãããã¯ãäžè²«ããã°ã¬ãŒããååŸããããšã§ã
hat beta ã ããã¯ãç·åœ¢ååž°ã®æå°äºä¹æå°äºä¹æ³ãæ¹çšåŒã«é©çšããããšã«ããè¡ãããŸã
yt= betaxt+ varepsilont ã 2çªç®ã®ã¹ãããã¯ãæ®çå®åžžæ§ããã§ãã¯ããããšã§ãã
varepsilont å
±åæ¹çšåŒã®OLSæšå®ã«ãã£ãŠåŸãããŸãã
éåžžããã£ãããŒãã©ãŒãã¹ãã«ãã£ãŠå®åžžæ§ããã§ãã¯ããŸãã ãããã1990幎ã«ããã£ãªããã¹ãšãŠãªã¢ãªã¹ã¯ãèšäºãå
±ååæ³ã®æ®å·®ããŒã¹ã®ãã¹ãã®æŒžè¿ç¹æ§ãã§ã
varepsilont Dickey-Fullerãã¹ãã䜿çšããªãã§ãã ããã
å®éã®ãšãããMNCã¯æ®åºããéžæãããŠãå¯èœãªéãæå°ã®å€åãæãããããã«ããŠãããããå€æ°ãçµ±åãããŠããªããŠããMNCã¯æ®åºããå®åžžãã®ããã«èŠããŸãã ãã®ãããDickey-Fulleræ€å®ã䜿çšãããšãéå®åžžæ§ä»®èª¬ãé »ç¹ã«æåŠããããããå
±ç©åã®ä»®èª¬ã誀ã£ãŠåãå
¥ããããŸãã
èè
ã®èšäºã調ã¹ããšãä»é²ã§ã¯éèŠãªå€ãæã€ããŒãã«ãæäŸãããŠããããšãããããŸãããããªãäžæ£ç¢ºã§ããããšãããããŸããã ãã®åŸã1991幎ã«ããšã³ã°ã«ãšã°ã¬ã³ãžã£ãŒã¯ãé·æçµæžé¢ä¿ããšããæ¬ãåºçããŸããã ãã®äžã§ã第13ç« ãå
±ååæ€å®ã®èšçå€ãã§ã¯ãããããã³ã¯æŽç·Žããã挞è¿èšçå€ãåŒçšããŸããã
t -ã·ãã¥ã¬ãŒã·ã§ã³ã«ãã£ãŠååŸããããã®ã±ãŒã¹ã«é©ããçµ±èšã
1993幎ãMcKinnonã¯Davidsonãšå
±åã§ããèšéçµæžåŠã®æšå®ãšæšè«ããšããæ¬ãåºçããŸããã ã ãã
varepsilont simIïŒ0ïŒ ïŒæ®å·®ã¯å®åžžçïŒããã®åŸ
ytâ betaxt simIïŒ0ïŒ ïŒã¹ãã¬ãããéæ¢ããŠããŸãïŒãã€ãŸãã
xt ãããŠ
yt ã
äžè¬ã«ãè§åºŠã°ã¬ã³ãžã£ãŒæ³ã¯æ¬¡ã®ããã«ãªããŸãïŒ
- è©äŸ¡ \ããŒã¿ OLSã䜿çšããŸãã
- ã¹ãã¬ããèšç® varepsilont=ytâ betaxt ããã³ãã¹ã varepsilont æŽç·Žãããèšçå€ã䜿çšããå®åžžæ§ã
matlabãªã©ã®æšæºããã±ãŒãžã§ã¯ããã®ãã¹ãã¯ãã§ã«äœæãããŠããŸãã®ã§ã䜿çšããŠã¿ãŸãããã
MATLABã§ã®çµ±åãã¹ã
ãã®ããã2è¡ã®æ ªäŸ¡ããããŸãã
xt ãããŠ
yt ã 欲ãã
xt ãããŠ
yt å
±çµ±åããããããªãã¡åºãã
varepsilont=ytâ betaxt éæ¢ããŠããã å¹³åããŒãã®å®åžžçŽæ°ãååŸãããå Žåã¯ãæ¹çšåŒã«å®æ°ãå«ããããšãã§ãããããã¹ãã¬ããã¯æ¬¡ã®ããã«ãªããŸãã
varepsilont=ytâ betaxtâ alpha ã
ã¢ã¹ã¯ã¯èšŒåžååŒæã§åŸãããçµæããå§ããŸããããããã«ã€ããŠã¯ã
å®åžžå¢åã«é¢ããèšäºã§èª¬æããŸããã ããã«5ã€èŠã€ããŸãã
IïŒ1ïŒ è¡ã ãããããå¯èœãªãã¹ãŠã®çµã¿åãããæ§æããAngle-Grangerãã¹ãã䜿çšããŠå
±ååããã§ãã¯ããŸãã
ãŸããã¢ã¹ã¯ã¯èšŒåžååŒæãã解æãããæ ªäŸ¡ã®å€ãä¿åããMicrosoft SQL ServerããŒã¿ããŒã¹ããå¿
èŠãªæžé¡ãéžæããããããé
åãšããŠã€ã³ããŒãããŸãã
conn = database.ODBCConnection('uXXXXXX.mssql.masterhost.ru', 'uXXXXXX', 'XXXXXXXXXX'); curs = exec(conn, 'SELECT ALL PriceId, StockId, Date, Price FROM StockPrices WHERE StockId IN (52, 55, 67, 75, 162) AND Date >= ''2016-01-01 00:00:00.000'' AND Date < ''2017-01-01 00:00:00.000'''); curs = fetch(curs); data = curs.Data sqlquery = 'SELECT ALL StockId, ShortName, Code FROM Stocks WHERE StockId IN (52, 55, 67, 75, 162)'; curs = exec(conn, sqlquery); curs = fetch(curs); names = curs.Data close(conn);
5éæäž4éæã®ãã®é
åã«ã¯ã252ååŒæ¥ã®1æã®ããŒã¿ããããŸãã ãã ããããããã®æ ªåŒã«ã€ããŠã¯ããã©ã³ã¶ã¯ã·ã§ã³ã¯2æã«ã®ã¿å®äºãå§ãããããããŒã¿ã¯215ååŒæ¥ã®ã¿ã§ãã ãã¹ãŠã®æ ªåŒãåãé·ãã®äŸ¡æ Œã®é
åãæã£ãŠããããšã¯ç§ãã¡ã«ãšã£ãŠéåžžã«éèŠã§ããããããã®ãããªç¶æ³ã§ã¯2ã€ã®éžæè¢ããããŸãã
æåã®ãªãã·ã§ã³ã¯ãäŸ¡æ Œã®çãé
åãæã€åšåº«ãå®éšããé€å€ããããæ£ç¢ºãªçµæãåŸãããã«äŸ¡æ Œæž¬å®ã®æ倧æ°ã䜿çšããããšã§ãã 2çªç®ã®ãªãã·ã§ã³ã¯ãããŒã¿ã®äžéšãå¯ä»ããå®çšæ§ãé«ããããã«ãã¹ãŠã®å
±æãå«ããããšã§ãã äž¡æ¹ã®å®éšãå®æœããŸãããããã®å Žåãçµæã«éãã¯ãããŸããã§ããã®ã§ã1æã®ããŒã¿ãããªã ããŸããã
dates = unique(datetime(data(:,3)));
Angle-Grangerãã¹ãã¯ãå
¥åãšããŠæç³»åã®é
åïŒãã®å Žåã¯ãµã€ãºïŒã䜿çšããegcitesté¢æ°ã䜿çšããŠå®è¡ãããŸã
n\å2 ã©ãã§
n -ååŒæ¥æ°ã åºåã§ããã®é¢æ°ã¯ãåž°ç¡ä»®èª¬ãæ£åŽãããå Žåã«1ã«çããè«çå€ãè¿ããããã§ãªãå Žåã¯0ãè¿ããŸãã
ç§ãã¡ã解決ããå¿
èŠããã次ã®ã¿ã¹ã¯ã¯ãäœãã¹ããã¯ãããã§ã
xt ãããŠã©ã-ã®ããã«
yt ã è¯ãæ¹æ³ã§ã¯ãäž¡æ¹ãè©ŠããŠããããã¹ãçµ±èšãæ¯èŒããå¿
èŠããããŸãã ã»ãšãã©ã®å ŽåãçŽæ¥ååž°ãšéååž°ã®äž¡æ¹ããããŸãã å Žåããå§ããŸããã
xt<yt ã
èå¥ããã5ã€ã®å¯èœãªãã¹ãŠã®ãã¢ãæ§æããŸã
IïŒ1ïŒ èªç±é
ã䜿çšããååž°ïŒããã©ã«ãïŒãšããã䜿çšããªãïŒåŒæ° 'creg'ã§å€ 'nc'ã§æå®ïŒã®äž¡æ¹ã«ã€ããŠãAngle-Grangerãã¹ããå®è¡ããŸãã
isCoint = zeros(length(nchoosek(names(:,1),2)), 3); k=1; for i=1:length(names) for j=i+1:length(names) if mean(prices(:,i)) < mean(prices(:,j)) isCoint(k,1) = cell2mat(names(j,1)); isCoint(k,2) = cell2mat(names(i,1)); testPrices(:,1) = prices(:,j); testPrices(:,2) = prices(:,i); else isCoint(k,1) = cell2mat(names(i,1)); isCoint(k,2) = cell2mat(names(j,1)); testPrices(:,1) = prices(:,i); testPrices(:,2) = prices(:,j); end isCoint(k,3) = egcitest(testPrices); isCoint(k,4) = egcitest(testPrices, 'creg', 'nc'); k = k + 1; end end
ç¡æã®ã¡ã³ããŒã䜿çšããååž°ã®å Žåãããã°ã©ã ã¯ä»£æ¿ã¢ãã«ãåªå
ããŠåž°ç¡ä»®èª¬ã2åæåŠãããã£ãã«ãŒïŒNKHPãVTRSïŒãïŒNKHPãZHIVïŒã䜿çšããŠå
±çµ±åãããæ ªåŒãã¢ãèå¥ããŸãã èªç±ãªã¡ã³ããŒã®ãªãååž°ã®å Žåãããã°ã©ã ã¯ä»£æ¿æ¡ãæ¯æããŠåž°ç¡ä»®èª¬ãäžåºŠæåŠãããã£ãã«ãŒïŒVSYDPãNKHPïŒãå«ãæ ªåŒã®çµ±åãã¢ãèå¥ããŸãã
éååž°ã®å ŽåïŒ
yt<xt ïŒç¡æã®ã¡ã³ããŒã§ã¯ãããã°ã©ã ã¯ä»£æ¿ã¢ãã«ãæ¯æããŠåž°ç¡ä»®èª¬ã2åæåŠãããã£ãã«ãŒïŒVTRSãNKHPïŒãïŒZHIVãNKHPïŒãšã®å
±çµ±åæ ªãã¢ãç¹å®ããŸãã èªç±ãªã¡ã³ããŒã®ãªãååž°ã®å Žåãããã°ã©ã ã¯ä»£æ¿æ¡ãæ¯æããŠåž°ç¡ä»®èª¬ã4åæåŠãããã£ãã«ãŒïŒGRNTãVTRSïŒãïŒGRNTãVSYDPïŒãïŒGRNTãZHIVïŒãïŒGRNTãNKHPïŒã§å
±çµ±åãããæ ªåŒãã¢ãèå¥ããŸãã
å€ãè©äŸ¡ããŸããã
\ããŒã¿ ãããŠ
alpha ãegcitesté¢æ°ã®æ»ãå€ãšããŠååŸã§ããã¹ãã¬ãããæç»ããŸãã
NKHPããã³VTRSãã£ãã«ãŒã®ããæ ªåŒã®å Žåããªããºã®ããã¹ãã¬ãããåŸãããŸã
\ããŒã¿=$37.552 ãããŠ
alpha=197,4397 ïŒ
éååž°ã®å Žåãä¿æ°ã§ããã©ãŒãã¹ãã¬ãããååŸããŸã
\ããŒã¿=$0.018 ãããŠ
alpha=â3,0064 ïŒ
ãã£ãã«ãŒNKHPããã³ZHIVã®ããæ ªåŒã«ã€ããŠã¯ããªããºã®ããã¹ãã¬ãããåŸãããŸãã
\ããŒã¿=$3.352 ãããŠ
alpha=$239.347 ïŒ
éååž°ã®å Žåãä¿æ°ä»ãã®ã¹ãã¬ãããååŸããŸã
\ããŒã¿=0.2194 ãããŠ
alpha=â49.6077 ïŒ
VSYDPããã³NKHPãã£ãã«ãŒã®ããæ ªåŒã®å Žåãä¿æ°ä»ãã¹ãã¬ãããååŸããŸã
\ããŒã¿=$35.652 ïŒ
åæ§ã®å®éšããã¥ãŒãšãŒã¯èšŒåžååŒæïŒNYSEïŒã§å®æœãããŸããã ãã®çµæãçŽæ¥ååž°ã®å Žåãç¡æã¡ã³ããŒã䜿çšããååž°ã®å Žåã¯158ã®å
±çµ±åãã¢ãåŸãããç¡æã¡ã³ããŒã䜿çšããªãååž°ã®å Žåã¯130ã®å
±çµ±åãã¢ãåŸãããŸããã éååž°ã®å ŽåãããªãŒã¡ã³ããŒã䜿çšããååž°ã®å Žåã¯170ã®çµ±åããããã¢ãåŸãããããªãŒã¡ã³ããŒã®ãªãååž°ã®å Žåã¯144ã®çµ±åããããã¢ãåŸãããŸããã
ååž°çµ±èš
ãã¢ïŒNKHPãVTRSïŒã®åæååž°ã®ååž°çµ±èšãèŠãŠã¿ãŸãããã
çŽæ¥ååž°ãšéååž°ã®äž¡æ¹ã®ãã¹ãçµ±èšã¯ãå€æ°ã
\ããŒã¿ ãã®å Žåãåãã«è¶³ããªãïŒ
tcalc<tcrit ïŒ ããã¯ãå€æ°ãçµ±åãããŠããå Žåã§ããäŸ¡æ Œããããã«å€ççã§ããããšãæå³ããŸãã
ã¹ãã¥ãŒãã³ãåºæºãšãã£ãã·ã£ãŒåºæºãé©çšããã«ã¯ãçµ±èšãæ£èŠååžãæã£ãŠããå¿
èŠããããŸãã ç§ãã¡ã®å Žåãçµ±èšã¯DickeyãšFullerãèŠã€ããååžãšäŒŒãååžãæã£ãŠããŸãïŒ
å®åžžå¢åã«ã€ããŠã®èšäºã§ãæžããŸããïŒããããã£ãŠããããã®çµ±èšã®èšç®å€ã¯éåžžã«å€§ãããªããæå³ã®ããããšã¯ããããŸããã
ããŒãã³-ã¯ããœã³çµ±èšã¯èš±å®¹ã§ããŸãïŒæ£ã®èªå·±çžé¢ãããå Žåãçµ±èšã¯ãŒãã«ãªãåŸåããããŸãïŒã éååž°ã®å ŽåãçŽæ¥ååž°ã®å Žåããããããã«åªããŠããŸãã
決å®ä¿æ°ã¯åãå
¥ãå¯èœã§ãïŒåãå
¥ãå¯èœãªã¢ãã«ã®å Žåã決å®ä¿æ°ã¯å°ãªããšã50ïŒ
ã§ããããšãåæã§ãïŒã ãã®åºæºããå€æãããšãçŽæ¥ååž°ãšéååž°ã®éã«éãã¯ãããŸããã
æ
å ±åºæºããå€æãããšãéååž°ã¯çŽæ¥ååž°ã«åã¡ãŸãïŒåºæºå€ãæå°ã®ã¢ãã«ãæé©ã§ãããšèããããŠããŸãïŒã
ãã¢ïŒNKHPãZHIVïŒã®åæååž°ã®ååž°çµ±èšãèŠãŠã¿ãŸãããã
çŽæ¥ååž°ãšéååž°ã®äž¡æ¹ã®ãã¹ãçµ±èšã¯ãå€æ°ã
\ããŒã¿ ãã®å Žåã¯éèŠã§ã¯ãããŸããã Darbin-Watsonçµ±èšã¯èš±å®¹ã§ããŸããéååž°ã®å Žåã¯ãçŽæ¥ååž°ã®å Žåããããããã«åªããŠããŸãã 決å®ä¿æ°ã¯èš±å®¹ç¯å²ã§ã;çŽæ¥ååž°ãšéååž°ã®éã«éãã¯ãããŸããã æ
å ±ã®åºæºã«ãããšãéååž°ã¯çŽæ¥ååž°ã®å°ãåã«åã¡ãŸãã
ã«ããã«ïŒVSYDPãNKHPïŒã®åæååž°ã®ååž°çµ±èšã
å¯å€
\ããŒã¿ åã³éèŠã§ãªããã¹ãçµ±èšã«ãã£ãŠå€æããŸãã ãã£ãã·ã£ãŒã®åºæºã¯å®å®ã«é£ã³èŸŒãã ã ããŒãã³ã»ã¯ããœã³çµ±èšã¯åãå
¥ããããŸãã 決å®ä¿æ°ã¯å°ãããããã¢ãã«ã¯äžè¯ã§ãããšèŠãªãããŸãã
çµè«
æ ªåŒåžå Žã«ã¯ååãªæ°ã®å
±çµ±åãããæ ªåŒããããŸããã€ãŸããã¹ãã¬ããã¯å®åžžçãªããã»ã¹ã§ãã ãã®ãããªãã¢ã®ååšã¯ããããªãç 究ãšå®å®ããå©çåµåºã®åºç€ãšãªããŸããã次åã¯å
·äœçãªæŠç¥ã«ã€ããŠã話ããŸãã
ãããã¯ã«ã€ããŠäœãèªãã¹ãã§ããïŒ
ãããŒãF.ã€ã³ã°ã«ãC.W.Jãã°ã¬ã³ãžã£ãŒã çµ±åãšãšã©ãŒä¿®æ£ïŒãã¬ãŒã³ããŒã·ã§ã³ãè©äŸ¡ããã¹ã//å¿çšèšéçµæžåŠã -2015 .-- 39ïŒ3ïŒã -S. 107-135ã
ããã¯1987幎ã®èè
ã®ãªãªãžãã«èšäºã®ç¿»èš³ã§ãããå
±ååæ³ã®å®çŸ©ã¯ããã§ãã詳现ã«èª¬æãããŠããŸãã ãŸããMagnusãèªã¿ç¶ããããšãã§ããŸããMagnusã¯ã
åºå®å¢åã«é¢ããèšäº
ã§æšå¥šããŠã
ãŸãã ãå
±ååã«é¢ããã»ã¯ã·ã§ã³ããã
ãŸã ã
UPDã
2017幎ã¢ã¹ã¯ã¯ååŒæã®ãã¢åæ