ããŒã¿ãµã€ãšã³ã¹ããŒãããæããããšã«é¢ããååã®
èšäºã®åã«ãCourseraã®
æ©æ¢°åŠç¿ãšããŒã¿åæã®å°éåéã«ãµã€ã³ã¢ããããããŒã¿ãµã€ãšã³ã¹ã®åéã®ã»ãŒçµ¶å¯Ÿçãªåå¿è
ããã®ç¥èãå©çšã§ãããšããå°è±¡ãå
±æããããšãçŽæããŸããã ããã«èšã£ãŠãã£ãïŒ ãã¡ããããããšåæ§ã®å°éåéã«ã€ããŠã¯ãã§ã«Habréã§èšåãããŠããŸãããç§ã®ã5ã»ã³ããã¯çããªããšæããŸãã
èšäºã®ã¿ã€ãã«ãšåçã®æåãªæ ç»ããã®åŒçšã¯å¶ç¶ã«æ®ããããã®ã§ã¯ãããŸãããããã€ãã®å Žæã§ã¯ããã®å°éåã¯ç§ã«ã»ãšãã©èº«äœçãªçã¿ãäžããããã§ããã¹ãŠããããããšãã巚倧ãªæ¬²æ±ããããŸããããæçµçã«ã¯é¢å¿ãåã¡ãŸããã ãããã£ãŠããã®äžé£ã®ã³ãŒã¹ã
å¯èœãªéãäœã³ã¹ãã§ã©ã®ããã«éãããã«èå³ãããå Žåã¯ãç«ã®äžã§æè¿ããããããé¡ãããŸãã
ããŒã1.ããã¹ãŠãèšæ¶ãã...ã-ã¹ãã«ã«ã€ããŠå°ã
èªè
ãèªåèªèº«ã§ç§ã®çµéšãè©Šãããšãã§ããããã«ãæåã¯ãã¹ãŠãã©ã®ããã«å§ãŸã£ãããæãåºãããšãé©åã ãšæããŸãã
ãããã£ãŠããã®èšäºã¯ãããŒã¿ãµã€ãšã³ã¹ã®åºæ¬ããŒããããã¹ã¿ãŒããæ¹æ³ã«é¢ããèªçºçã«çºçããäžé£ã®èšäºã®æçµçã§ãïŒä»¥äžã®èšäºã¯è¡šç€ºé ã«ãªã¹ããããŠããŸãïŒã
äžèšã®è³æã®ç¿åŸã¯åèšã§çŽ1é±éã«åãŸãããïŒèšäºã®å·çæéãèæ
®ããã«ïŒãããããã®ã¹ãã«ã®ç°¡åãªèª¬æãããããã®åèšäºãå§ããŸããããç§ã¯å€§ããªé²æ©ãéãããšã¯èšããªãã®ã§ãã³ãŒã¹ã©ã®ãã¬ãŒãã³ã°ãå§ããé ã«ã¯ãç§ã®èæ¯æ¬¡ã®ããã«ïŒ
- ããŒã¿ãµã€ãšã³ã¹ã«é¢ããæãåºæ¬çãªã¢ã€ãã¢ïŒå¿
èŠãªçç±ãå«ãŸããå
容ãäœæ¥æ¹æ³ã«ã€ããŠã®å°ãïŒ
- ãããã®ç¥èã¯ã»ãšãã©ãããŸããã åæãšçµ±èšïŒèª€å·®ã®ããè¡åãæåã§ä¹ç®ããçµ±èšç仮説ã蚌æããåçã¯ã»ãšãã©éºäŒçæå·ã§èªèãããŸããã§ããïŒ
- Pythonã®ç¥èãã»ãšãã©ãªããä»ã®èšèªïŒããšãã°ãCïŒïŒã®æå°éã®ããã°ã©ãã³ã°ã¹ãã«ã¯ãPythonããžãã¯ã®åŠç¿ã®ã¿ã劚ããããã«æãããŸãã
- ã5çªç®ã®ãã€ã³ããã§åæéãããŠãéäžçãªã³ãŒã¹ã®ããã«1ãæé殺ãã
ãã¬ãŒãã³ã°ã®å§ãŸãã«è¿ã¥ããã®ã¯ããã®ããŒã¹ã§ããã ã¹ãã·ã£ã©ã€ãŒãŒã·ã§ã³ã®èª¬æã«ã¯ããäžéã¹ãã·ã£ã©ã€ãŒãŒã·ã§ã³ã ããããåçœããããšã¯ç§ãå¿é
ãããŸããããã¹ãã·ã£ã©ã€ãŒãŒã·ã§ã³ã®éçºè
ã¯MIPTãšYandexã§ãããããç§ã¯ãã£ã³ã¹ããšãããšã«æ±ºããŸããã
ã¡ãªã¿ã«ããã®ã³ãŒã¹ã«ãããç¹ã«å°é£ãªç¬éã«ããã¹ãŠãæãåºãããããã«ãªã£ãããšã«æ°ä»ãã¯ãã§ããäºæ³å€ã«èšæ¶ã«æµ®ãã³å§ããã®ã¯ããã£ãšåã«ãéå»ã®è³ãã®ç¥èã§ããã 確ãã«ãçµ±èšãšãããã®é¢ã§ã®ãã®å°éåã¯ç§ã«ã¯æããŸãã ãšã«ãããåæã¯å€§åŠã®å°éãšä¿®å£«èª²çšã®ç§ç®ãçµã¿åããããã®ãããå€ãç§ã®é ã«çœ®ããã
ããŠãããããªããèŠãããããšã¯ãããŸãããããžãã¹ã«åãæãããŸãããã
ããŒã2-ãã¯ããã«ã-ã³ãŒã¹ã®çŽ¹ä»
ãæãç²ã匷ãå¯çè«ã¯äœã§ããïŒ çŽ°èïŒ ãŠã€ã«ã¹ïŒ è
žå
ã¯ãŒã ïŒ ã¢ã€ãã¢ã 圌女ã¯ç²ã匷ããéåžžã«äŒæããããã è³ãæã«å
¥ããããšãã¢ã€ãã¢ã«ãªããšããããåãé€ãããšã¯ã»ãšãã©äžå¯èœã§ãã ç§ã®é ã®äžã«ã¯ãå®å
šã«æèãããæ°ããã¢ã€ãã¢ãé ã«ãããŸããã -ã€ã³ã»ãã·ã§ã³
ãã®èšäºãæžããŠã³ãŒã¹ãæãåºããªãããç§ã¯ããŒã¿ãµã€ãšã³ã¹ã«èå³ãæã£ãå¯äžã®å¥å
šãªçç±ã¯ã倢ã®äžããŸãã¯å€¢ã®äžã®å€¢ã®äžã倢ã®äžã®å€¢ã§ããããã®ã¢ã€ãã¢ã«çŽ¹ä»ãããããã ãšæããŸãã...
ãããŠãããã¯åãªãã¢ã€ãã¢ã§ã¯ãããŸããã§ãã-Courseraã®ããŒã¿ãµã€ãšã³ã¹ã®ã³ãŒã¹ãåè¬ããããšã¯ãäœåãªãéããªãã6ãæéã¹ãã¬ããããæéããªãã£ããã
ãã§ããã ãæ©ãã³ãŒã¹ãåè¬ãããšããã¢ã€ãã¢ã§ããã
誰ããæ°ããCourseraããªã·ãŒã«æ
£ããŠããªãå Žåããµãã¹ã¯ãªãã·ã§ã³ã·ã¹ãã ã¯ãã®ã³ãŒã¹ã§åäœããŸããã€ãŸããè©Šçšãµãã¹ã¯ãªãã·ã§ã³ã®7æ¥éç¡æã§ãæ¯ææ¯æãããŸãã
ã¹ãã·ã£ã©ã€ãŒãŒã·ã§ã³ã¯çŽ6ãæéèšèšãããŠããŸãã 1ãæã§
4 576ã«ãŒãã«ããããŸããïŒä»ã§ã¯ããå°ãè²»çšãããããŸãïŒã
ãããã£ãŠãã·ã¹ãã ã¯
1ãæ+ 1é±éãäžããç§ã¯ãã®ã»ã°ã¡ã³ãã®ããã«
å°éåãè¡ãã¹ãã ãšå€æããŸããã ä»åŸã¯ããã®
ã¿ã¹ã¯ã¯éåžžã«å®çŸå¯èœã§ãããšèšã
ãŸã ã
å°éããã°ã©ã ã®èª¬æã«ç§»ããŸãã 6ã€ã®ã³ãŒã¹ã§æ§æããããã®ãã¡ã®5ã€ã¯çè«çã§ããã6ã€ç®ã¯ã³ãŒã¹ãããžã§ã¯ãïŒCapstoneãããžã§ã¯ãïŒã§ãããæåã®5ã€ãééããŠåããŠã¢ââã¯ã»ã¹ã§ããããã«ãªããŸãã ã³ãŒã¹ãçŽæ¥åè¬ããããšããå§ãããŸãããã¡ããã誰ãããªãã«åŒ·å¶ããããšã¯ãããŸãããã圌ãã¯ããã匷ããå§ãããŸãã çæéã§å°éåããããšã決ããå Žåãã³ãŒã¹ãå°ãé çªãééããæ¹ãçã«ããªã£ãŠããããšããããŸããïŒè©³çŽ°ã¯åŸã§èª¬æããŸãïŒããæ»ã£ãŠãããå¯èœæ§ãé«ãã以åã«å®äºããã³ãŒã¹ã«æ»ãå¿
èŠããããŸãã
5ã€ã®å°éã³ãŒã¹ãã¹ã ãŒãºã«ç¥èã®ç¬ç«ããå¿çšã®å¯èœæ§ãå°ããŸãããããã¯çžäºæ¥ç¶ã«ãããŠç¹ã«äŸ¡å€ããããŸãããååãšããŠãã³ãŒã¹ã¯åã
ã«æçšã§ãã ãã®ãããäžéšã®ã³ãŒã¹ïŒãŸãã¯ãã®äžéšïŒã¯ãã¡ã€ã³ã³ã³ããã¹ãããããçšåºŠåãé¢ãããŠè¡ãããããã«èŠããŸããããããã«ããŠããäžè¬çãªã©ã€ã³ããã¬ãŒã¹ãããã¹ãã«ã¬ãã«ã®èŠä»¶ã¯ã³ãŒã¹ããã³ãŒã¹ãžãšåŸã
ã«å¢å ããŸãã
Pythonã®åºæ¬ããããã®åºæ¬ããå§ããŸãã åæãšç¢ºççè«ããã®åŸãæåž«ãããæåž«ãªãã§åŠç¿ããããšãæ€èšããŸãïŒscikitåŠç¿ãããã¥ãŒã©ã«ãããã¯ãŒã¯ãŸã§ã®åºæ¬ã¢ãã«ããïŒãçµ±èšããããŠå®çšçãªã¢ããªã±ãŒã·ã§ã³ã åºæ¬çã«ãããã¯ããŒã¿ãµã€ãšã³ã¹ãæããããã®äžè¬çãªã¢ãããŒãã®ããã§ãã
äžéšã®äººã«ãšã£ãŠã¯ã
Python 2ã®äžã§ã³ãŒã¹ãã·ã£ãŒãã«ããããšãéèŠã«ãªããããããŸããããŸãããæªæ¥ãããããã€ãã®ãã®ãã€ã³ããŒãããããšããå§ãããŸãããã¿ã¹ã¯ã«ãã£ãŠã¯ã°ã¬ãŒããŒãéåžžã«ææã§ãããšãã°ã
Python 3ã䜿çšããå Žåãå«ãã©ã€ãã©ãªã®éãïŒå°ãªããšããã©ãŒã©ã ã®ã¬ãã¥ãŒã§å€æïŒã
ç§ã®æèŠã§ã¯ãAnacondaãèšå®ããæã䟿å©ãªæ¹æ³ã§ãã ãã§ã«Python 3ã®ç°å¢ã§anacondaãã€ã³ã¹ããŒã«ãããŠããå Žåã¯ãPython 2ã§2çªç®ã®ç°å¢ãèšå®ããããšãç°¡åã«å¿é
ããå¿
èŠã¯ãããŸããïŒ
ãã®æé ã䜿çšããŠã³ã³ãœãŒã«ããcondaãã€ã³ã¹ããŒã«ããŸããïŒã WindowsãšLinuxã®äž¡æ¹ã«ã€ã³ã¹ããŒã«ãããŸããMacOSXã®å Žåã¯è©ŠããŠããŸããããåé¡ãªãã€ã³ã¹ããŒã«ãããŠãããšæããŸãã
ã¡ãªã¿ã«ãå°éã®ãã©ãŒã©ã ããå€æãããšãå€ãã¯OS Windowsã䜿çšããŠãã®ã³ãŒã¹ãåè¬ããŸãã
ã2ã€ç®ã®Linuxã·ã¹ãã ãããŒã«ã¢ããããå Žåã«åããŠãå§ãããŸããã確ãã«ããã¯
å¿
èŠã§ã¯ãã
ãŸãã ã
ç§ã¯ããã®å°éåã®ããã ãã«Linux Mintã®2çªç®ã®ã·ã¹ãã ãããŒã«ããã¯ããåŸæããŸããã§ããã 䞻芳çã«ã¯ããã®äžã§ã®èšç®ãé«éã«ãªãå Žæã
ããã°ãã³ãŒã¹äžã«å¿
èŠãª
äžéšã®ã©ã€ãã©ãªã
ã€ã³ã¹ããŒã«ããéã®åé¡ã
å°ãªãããã«æããŸãã
åå¿è
åãã®æåã®ã³ãŒã¹ã¯éåžžã«ãã¬ã³ããªãŒã«èŠããŸããMIPTãšYandexã®ã«ãªã¹ãçãªäººãã¡ã¯ãç¬èªã®æ¹æ³ã§ããªããããå¿
èŠãªã®ããæããŠãããæåã¯ççãªã¿ã¹ã¯ã§ããªããæããããŸããã ãããããã®åŸããã©ã¹ãã¬ãŒã·ã§ã³ã®ã¬ãã«ã¯ãã¬ãŒãã³ã°ã«äŸåããŸãã ç§ãšãã©ãŒã©ã ã®äžéšã®äººã
ã¯ãäœæ¥ãåé¡ã®è§£æ±ºçãèŠã€ããããšãã§ããªãã£ããããã¹ãããããšãã§ããªãã£ãå ŽåããããŸãããäžæ¹ã§ãèœåãšè¯ããããŒã¹ããããã°ããã¹ãŠãã·ã³ãã«ã§æ確ã«ãªããšæããŸãã
åã³ãŒã¹ã«ã¯ç¬èªã®ã»ãã·ã§ã³ïŒçŽ1ãæïŒããããããã¯åŠç¿ãæå³ããŸããã³ãŒã¹ã¯é±ã§æ§æãããé±ã¯2ã4ã¬ãã¹ã³ïŒéåžžïŒã§æ§æãããåã¬ãã¹ã³ïŒã¬ãã¹ã³ïŒã§ãååãšããŠããªãã·ã§ã³ã®è³æïŒè¬çŸ©ãè©Šéšãã¹ãïŒããããŸãïŒææã®ç®¡çãã°ã¬ãŒãã«ãããã¹ããããã°ã©ãã³ã°ã¿ã¹ã¯ãçžäºæ€èšŒã¿ã¹ã¯ãªã©ã ãããã®è©äŸ¡è³æã®é
åžã¯ãã³ãŒã¹ãå®äºããããã«å¿
èŠã§ãã
æééãã«åæ Œããªãã£ãå Žåã眰éã¯ç§ããããŸããããçžäºæ€èšŒã®ã¿ã¹ã¯ãªã©ä»ã®äººãšçµã³ã€ããŠããå Žåã¯ãå°é£ãçããå¯èœæ§ããããŸãïŒèª°ããåã«é²ã¿ãäœæ¥ã確èªããæéããªãã§ãããïŒã ããã»ãã·ã§ã³ã«åãŸããªãã£ãå Žåããã€ã§ãå¥ã®ã»ãã·ã§ã³ã«åãæ¿ããããšãã§ããçµæã¯ä¿åãããŸãã
ã³ãŒã¹ã®è¬åž«ãšèª²é¡ã«ã€ããŠãå¥ã®èšèãèšãå¿
èŠããããŸãã 倧èŠæš¡ãªããŒã ãã³ãŒã¹ã«åãçµãã§ãããããã«å¿ããŠãã©ã¹ãšãã€ãã¹ããããã³ãŒã¹ã®ã»ãšãã©ã¯4人ã®äž»èŠãªå°é家ã«ãã£ãŠèªãŸãããããããç¬èªã®å°éæ§ãæã£ãŠããããã§ãã è¬åž«ããã¯ãçµéšè±å¯ã§ç¥çãªäººã
ã§ããããšãããããŸãããæåã¯æ
£ããããšãé£ããã§ãã 人ãæãããªãããã«ãç§ã¯äººæ Œãæããã«ããŸããã åå¿è
ã§ãææããã¿èŸŒãããšããããããã ãèŸåããããã ãã®è¬åž«ãããããšã«æ³šæããŠãã ãããäžéšã®è¬åž«ã¯å°ãç·åŒµããæåã¯æ»æçãªæ§è³ªã®æŽåè¡çºãããããšãã匷ã欲æ±ãåŒãèµ·ãããŸãã ããã¯ç¢ºãã«ãåºæ¬çãªç¥èãšå人ã®èªèãäžååã§ããããšã«èµ·å ããç§ã®äž»èŠ³çãªåå¿ã§ãããããã«ããŠããå°éåã®çµãããŸã§ã«åè¬åž«ã®ã¹ã¿ã€ã«ã«æ
£ããŠãããäžåšã§åœŒããšå¥ããŠããããšãæ®å¿µã«æã£ãŠããŸãã
ã¬ãã¹ã³ç®¡çè³æãè¬åž«ã«çŽæ¥é¢ä¿ããŠããŸãã誰ãã®ã¬ãã¹ã³ã§ã¯ãã¿ã¹ã¯ãïŒäžè¬çã«ïŒæ¿æããŠããããšãããããŸããããšãã°ãã3 kopecksãã®ãããªç°¡åãªãã¹ãããçµ±èšã確ççè«ã®ã¿ã¹ã¯ã§ã¯ã ã
ãŸããå¥ã
ã®ããã°ã©ãã³ã°ã¿ã¹ã¯ïŒããã³/ãŸãã¯çžäºæ€èšŒïŒãç°ãªã人ã
ã«ãã£ãŠéçºããããããå Žåã«ãã£ãŠã¯ã補å€ã¯æºåãã§ããŠããªã人ã«å®å
šãªèª€è§£ãšçµ¶æçãªãããã¯ã®ææ
ãåŒãèµ·ããå¯èœæ§ããããŸãã
æåŸ
ãããè¬åž«ã«ã€ããŠã¯ãèªã¿æžããã§ãã人ã§ãããäœãæ°ã«å
¥ããªããã°éå±ããæéã¯ãããŸãããããããã£ãç¬éã¯ããŸããããŸããäžè¬çãªéçºã
åã³ãŒã¹ã®ãã¬ãŒãã³ã°ã®è©³çŽ°ã«ã¯è§ŠããããããŸãããåŠç¿ããã»ã¹ã®ãã¹ãŠãç解ã§ãããšæããŸããæçšãªãã³ãã玹ä»ããŸãã ç¹°ãè¿ãã«ãªããŸããããã®å°éåéã«é¢ããHabréã®èšäºããããŸããããšãã°ã
ã¢ã¹ã¯ã¯ç©çæè¡ç 究æããã§ãã
ããŒã3ãéæ²³ãžã®ããããã€ã¯ã¬ã€ãã-çã¿ã䌎ãçã¿ãé¿ããããã«äœããã¹ããã
ãéæ²³ã¯å³ãããã®ã§ãã ãã®äžã§çãæ®ãããã«ã¯ãããªãã®ã¿ãªã«ãã©ãã«ããããç¥ãå¿
èŠããããŸãã -éæ²³ã®ããããã€ã«ãŒ
以äžã§ã¯ãããŒããŒãã«èœã¡ãŠãã髪ãšç ããªãå€ãç ç²ã«ãã2ã3ã®ç¹ãæããŠã¿ãŸãããããå°ãªããšãå°ãã¯ããªããæã£ãŠãããããšãæã¿ãŸãããããããªãã®ãã¿ãªã«ãã«ããŸãããã
1.ç§ã®å€§ããªééãã¯ãåŠç¿ããã»ã¹ãä¿®æ£ããããã®æ§é åãããã¢ãããŒãã®æ¬ åŠã§ãã ããã€ãã®åé¡ã§ã¯ãç§ã¯éåžžã«ãé«éœ¢è
ãã§ãããäžè¬çãªã°ãããã©ã¯ãã£ã¹ã䜿çšããŠããŸããã å°éåã®4çªç®ã®ã³ãŒã¹ã«è¿ã¥ããšãæåãã
ãã€ã³ããããïŒãŸãã¯é¡äŒŒç©ïŒã®ãããªãã®ãå¿
èŠã§ããããšã«æ°ä»ããŸããã äž»ãªåé¡ã¯ãã³ãŒã¹ããã³ãã«ã§ããªããå°ãã®ããããç¬éã«å§ãŸãã以åã«ã«ããŒãããè³æã«æ»ã£ãŠãåè¿°ã®æ©èœãŸãã¯çè«ã®å®è£
ãæãäžããå¿
èŠããããŸãã ã¡ã¢ãªã«é Œããªãã§ãã ãããã»ãšãã©ã®å Žåãå Žæã倱æãããŸãã ãã€ã³ããããã®æ¬ åŠãè£ãæ¹æ³ãããããšãç¥ã«æè¬ããŸãããç§ã¯ããªããäœãšãããŠããªããæãããã®ãæ§ç¯ããããšããŸã ãå§ãããŸãã
2.ãŸãããã®èšäºã®ã¡ã€ã³ã¡ãã»ãŒãžã«ãããããããç§ã®ãããª
ã®ã£ãããã«ç¹åããããšã¯ãå§ãããŸããã ã¯ãããã¶ã6ãæã¯å®¢èŠ³çã§ãå€ãã®å Žåã
3ãæã¯ç¥èã®åžåã枬å®ããã®ã«ããªãå¿«é©ã ãšæããŸãã ç ãã¬å€ãšéåžžã®é±æ«ããªãããšã«å ããŠã1ãæ+ 1é±éã®ã³ãŒã¹ãå匷ãããšãããªãã®è³ãåã«åŠãã ããšãæ¶åããªãå¯èœæ§ã«ã€ãªãããŸãã ããã§ãäŸãã°ã4幎ç®ã«ãªã£ãŠãçªç¶ãç¡æèã®ãã¡ã«ããŸã£ããéãããšãããŠãæåã®ã³ãŒã¹ããããã€ãã®ãã€ã³ããç解ãå§ããé ã«ã¯ãé¢çœãå¹æãèŠã€ãããŸããã æçµçãªå°éåãããžã§ã¯ãã®æãŸã§ã«ã4幎ç®ããçµ±èšã®åºç€ã«ã€ããŠç解ããŠããŸããããè³ã«ã¯æéãå¿
èŠãªããã§ãã çæéã®åŠç¿ã§ã³ãŒã¹ãå®äºããæéã®äžè¶³ãéšåçã«è£ãããã®ã¢ããã€ã¹ã®äžéšãšããŠããã¬ãŒãã³ã°éå§åŸã®ããã€ãã®ã³ãŒã¹ã®åŸããããã¯ã«é¢ãã
ããã€ãã®ãã¥ãŒããªã¢ã«ã
䞊è¡ããŠèªã¿å§ããããšããå§ãããŸãã ããšãã°ãç§ã¯æ¬ãéžã³ãŸãããAãMullerãSãGuido-ãPythonã䜿çšããæ©æ¢°åŠç¿ã®çŽ¹ä»ã ããŒã¿ãããã§ãã·ã§ãã«åãã¬ã€ã ''-2017ãããã«ã¯ã»ãšãã©çè«ã¯ãããŸããããæ¬ã®å
容ã¯ã³ãŒã¹ã§åŠãã ãã¯ããã¯ãæ確ã«ç¹°ãè¿ããŠããŸãã
ãŸãã¯ãSebsatyan Raskaã«ãããPython and machine learningãã®å€åœ¢ãšããŠïŒ
Metsurãææ¡ïŒ
3.
ã³ãŒã¹ãã©ãŒã©ã ãšã¹ã©ãã¯ã䜿çšãããš ãããªããšåãåé¡ã«çŽé¢ããŠãã人ã®æ°ã«é©ãã§ãããã ç§ã¯æ¥ãã§ããã®ã§ã解決äžã«çºçããåé¡ã«é¢é£ãããã©ãŒã©ã ã®ãããã¯ãç 究ããããšã§ãã»ãŒãã¹ãŠã®ã¿ã¹ã¯ãããã«éå§ããŸããã ãã©ãŒã©ã
ãã³ãŒãã®äžéš ããŸãã¯ãã°ã¬ãŒããŒããåŸ
æ©ããŠããåçã®åœ¢åŒã
èŠã€ããããšã¯çãããããŸãããç¹ã«é£ããå Žåã¯ãã¿ã¹ã¯ã®äœæè
ãæãã ããšïŒã©ãããã§é£ãããšæããã人ïŒéå°é家ãšã®ã³ãã¥ãã±ãŒã·ã§ã³ïŒã
Slackã¯
ãã¿ã¹ã¯ã®
çžäºæ€èšŒã®ããã«äººã
ãšååããå¿
èŠããã£ãæåŸã®æ®µéã§ç§ãå©ããŠãã
ãŸããã6幎ç®ã®äººã
ã¯å°ãªãããã§ã«ãã®æ®µéãééãã人ãæ¢ããŠè©äŸ¡ãããããŸãã¯ãã®éãæ±ããŠã¢ããã€ã¹ããã®ã«åœ¹ç«ã¡ãŸãã«ãŒã«ïŒããªããæãŸããŠãã人ã
ã«ã圌ãã¯ããªãã«æ©ãè¿œãã€ããä»äºãè©äŸ¡ããããšãã§ããŸãã ãŸããå°ããªãã©ã€ãããã¯ãã¯ã仲éã®åŠçãè©äŸ¡ããã®ã«ååãªã¿ã¹ã¯ãåéãããåŸ
ã¡ãããªãå Žåãé£åž¯æããã§ã¯ãªããåžžã«äººã
ããã§ãã¯ããããã«é Œããã©ãŒã©ã ã®äººã
ãããªã³ã¯ãæ¢ãããšãã§ããŸããæäœéå¿
èŠãª3ã€ã®è©äŸ¡ãããäœåã«ãã ããã®ã§ã¯ãªããããå€ãã®äººããã§ãã¯ããã®ã«åœ¹ç«ã€ããã«ã¢ããã€ã¹ããŸãã ãã©ãŒã©ã ã«å ããŠãæåã®ã³ãŒã¹ã§ã¯ã€ã³ã¿ãŒããããæ€çŽ¢ããã ãã§åœ¹ç«ã¡ãŸããããã§ãåé¡ã解決ããããã®ãã³ããç°¡åã«èŠã€ããããšãã§ããŸãïŒããšãã°ãæåã®ã³ãŒã¹ã®ã¿ã¹ã¯ã®1ã€ã¯ãã³ãŒãã®äžéšãèŠã€ããŠèŠãããšãã§ããç§åŠèšäºã«åºã¥ããŠããŸãïŒããã€ã³ã¿ãŒãããã¯ãã§ã«å°ãªããªã£ãŠããŸã䟿å©ã§ãã
4.次ã®ç¹ãèæ
®ããŸããããã¯ããã€ãŸãããã«ãªãå ŽåããããŸãã 念ã®ãããããŒãããã¯ãä»ããŠæåã§ã§ã¯ãªããPythonã«ãã¡ã€ã«ãæžã蟌ãæ©èœã䜿çšããŠãã°ã¬ãŒããŒã圢åŒã®åçã§ç¢ºèªããã¿ã¹ã¯ã§ã¯ãã·ã¹ãã ã誀ã£ãåçãšããŠèªèãããèŠããªããæåããããªããæãããšããå§ãããŸãã
5.ã»ãã·ã§ã³ã§ã®èšé²ã é²æç¶æ³ãæ
éã«èŠç©ãããŸãã çæéã§çµäºãããå Žåãç¡é§ã«åŸ
ã€æš©å©ã¯ãããŸããã ã»ãã·ã§ã³ãå§ãŸããŸã§ããã€ãã®ã¿ã¹ã¯ãæž¡ãããšã¯ã§ããŸãããããšãã°ã14æ¥ã«2çªç®ã®ã³ãŒã¹ãçµäºããã»ãã·ã§ã³ã¯21æ¥ã«ã®ã¿éå§ããã3çªç®ã®ã³ãŒã¹ã§ã¯ãããŸãããã€ãŸãã7æ¥éã¿ã¹ã¯ã®äžéšãåè¬ããããšã¯ã§ããŸããïŒéåžžã¯çžäºã«é¢é£ããŠããŸãïŒè©äŸ¡ïŒã ãããã£ãŠãæåŸã®ã³ãŒã¹ãä¿®äºããå°ãåã«ã»ãã·ã§ã³ã«ãµã€ã³ã¢ããããããšã¯çã«ããªã£ãŠããŸãã
äŸãæããŸããããã³ãŒã¹ã¯ãã§ã«å§ãŸã£ãŠããŸãããæåã®3é±éã«ã¯ä»ã®ãŠãŒã¶ãŒã確èªããã¿ã¹ã¯ã¯å«ãŸããŠããŸããããã®ã»ãã·ã§ã³ã«ãµã€ã³ã¢ããããŠãããæ°ããã»ãã·ã§ã³ãéå§ãããŠã¯ã©ã¹ã¡ãŒãã3é±ç®ã«éãããŸã§åŸ
ã€ããšããå§ãããŸãã ã¹ã±ãžã¥ãŒã«ãããæ©ãç»é²ããªããã°ãªããªãã£ãã³ãŒã¹ã®2çªç®ã®äŸã§ã¯ã2çªç®ã®ã³ãŒã¹ãçµäºããŠããã«5çªç®ã«ç»é²ããæåã®1é±éã§ãŠãŒã¶ãŒãè©äŸ¡ãã課é¡ã«ããã«åæ Œãã3çªç®ãš4çªç®ã®ã³ãŒã¹ã«é çªã«èœã¡çããŸããã ãã®ããã«ãç§ã¯äººã
ãä»äºãè©äŸ¡ããæºåãã§ããŠã倱ãããæéãè£ã£ãç¬éã倱ããŸããã§ããã ãã€ãã¹ã®ãã¡ã5幎ç®ã®æåã®é±ã¯ããã¹ãŠãç§ã®é ããé£ã³åºããã®ã§ãæãçŽããªããã°ãªããŸããã§ããã
6.誰ããç¥ã£ãŠããããã§ã¯ãªãããããæžãããŠããå Žåã®ããã«ãããã¯æžãçããããŠããªãããã§ã-Courseraã¯å°ãªããšãçŸæç¹ã§
ã¯Capstoneã«ãããžã§ã¯ãã
æäŸããŸã ãã€ãŸãç§ã®ãµãã¹ã¯ãªãã·ã§ã³ïŒæ+ç¡æé±ïŒã¯08.08.17ã«æéåãã§ããã Capstoneãããžã§ã¯ããžã®ã¢ã¯ã»ã¹ã®ãµããŒãã¯ãç§ã®å Žåã¯6çªç®ã®ã³ãŒã¹ã®éå§ãã7ææ«ã«éå§ããããã1ææ«ãŸã§6ãæéç¶ç¶ãããšããã ãããç¥ã£ãŠãããªãã¯ããªãã®ç¥çµãæãããšãã§ããŸãã
7. Capstoneãããžã§ã¯ãã¯4ã€ã®ãã©ã³ãã«åãããŠããŸããå°éåãå®äºããã«ã¯ããã®ãã¡ã®1ã€ãééããã ãã§ååã§ãããè©äŸ¡ã·ã¹ãã ã¯ããŸãå
¬å¹³ã§ã¯ãããŸããã ããšãã°ã第1ãããžã§ã¯ãã®ç¬¬5ã¿ã¹ã¯ïŒã€ã³ã¿ãŒããããŠãŒã¶ãŒã®èå¥ïŒã§ã¯ãkagleã®ãããã³ã³ããã£ã·ã§ã³ã«åå ããå¿
èŠããããããé«åŸç¹ãéæããã®ã¯éåžžã«å°é£ã§ããäžæ¹ãã»ã³ãã¡ã³ãåæãããžã§ã¯ãã®ç¬¬5ã¿ã¹ã¯ã§ã¯ãåå§çãªãµã€ãããŒãµãŒã®å Žåãã¿ã¹ã¯ã¯ã³ãŒã¹ã®åã®ã¿ã¹ã¯ã«é²ãããšãªã30åã§å®è¡ã§ããè¯ãæ瞟ãååŸããã®ãç°¡åã§ãïŒæçµçã«æé«ã®ã¹ã³ã¢ãèæ
®ããŸãïŒã ãã®ããã«ãã¡ã€ã³ãã©ã³ãã«å ããŠãããè¯ãã¹ãã«ãæã£ãŠããããã€ãã®ãã€ã³ãã§ãä»ã®å»ºç©ãå®è¡ããããžãã¹ãšåã³ãçµã¿åãããããšãã§ããŸãã
8.éåžžã®ã³ãŒããæžããŠã¡ã¢åž³ãããŸãäœæããã®ãæ ããªãã§ãã ãããæ¥ãã§ïŒååãªç¥èããªãã£ãïŒãã³ãŒããäžæ°å³ã§ãèªåã§è§£æããããšã¯ã»ãšãã©ã§ããŸãããä»ã®äººã«ãšã£ãŠãé£ããã§ãïŒ
ããã¯ãŠãŒã¶ãŒã®è©äŸ¡ã«åœ±é¿ããå ŽåããããŸã ïŒã çäœã§åœå¢ãè¶ããŠããªãããšã確èªããŠãä»ã®äººãã©ã®ããã«ãã£ãŠããã®ããèŠãŠæ¥ãããããªããšæããŸãã ãŸããããŒãããã¯ã«ã¿ã¹ã¯ã®èª¬æã®ããã¹ããå«ããããšããå§ãããŸããåã»ã«ã§äœããããèŠããŠããªãããããµãã¹ã¯ãªãã·ã§ã³ã®æå¹æéãåãããšå»ºç©ãžã®ã¢ã¯ã»ã¹ãéãããããããèŠãããªããªããŸãã å®éãå€ãã®ã¿ã¹ã¯ã¯GitHubäžã«ãããããããã¯ããã»ã©éèŠã§ã¯ãããŸããã
9.ãŸããããã¯ã²ã©ããçå£ã«ãå
æãç§ã¯æã
äžæ©2æéç ããå人ã芪seeã«äŒãããé£äºãå¿ããåé¡ã解決ããããã«é±æ«å
šäœãè²»ãããªããã°ãªããŸããã§ããã ãããã£ãŠã1ãæ以å
ã«ã³ãŒã¹ããã¹ã¿ãŒããããã®ç¹å¥ãªãã¬ãŒãã³ã°ãªãã§æ¬åœã«å¿
èŠãªå Žåã¯ãæºåãã§ããŠãããã©ãããèããŠãã ããã
ã¡ãªã¿ã«ãããããã€ã¯ã¬ã€ãã®ã£ã©ã¯ã·ãŒãžã®ãã¬ãŒãºã¯ãã³ãŒã¹ã§å®æçã«ã©ã³ãã ã·ãŒãã= 42ã«èšå®ããããšãæšå¥šããŠãããšããäºå®ã«ãã£ãŠæ³èµ·ãããŸããããŸããåšåº«ãåãããšã¯çã«ããªã£ãŠãããšæããŸãã
ããŒã4ãç§ã¯æ»ã£ãŠããŸãã-çµè«ã
質åã«é çªã«çããŸãããã
1.ãããŸã§ã«ãã¬ãŒãã³ã°ã§åŸãã¹ãã«ã¯åœ¹ã«ç«ã¡ãŸãããïŒãµã€ã¯ã«ã®æåã®3ã€ã®èšäºãåç
§ïŒã
-ã¯ããã§ã倧ããããšã§ã¯ãããŸããããäžæ¹ã§ãããªããäœãåŸ
ã£ãŠããã®ããç¥ã£ãŠãããšè¯ãã§ãïŒèªç¥ã¯ã©ã¹ã®ã³ãŒã¹ïŒãããŒãããã®ããŒã¿ãµã€ãšã³ã¹ãã®ãã¥ãŒããªã¢ã«ãããã€ãã®å Žæã§åœ¹ã«ç«ã¡ãŸãããç§ã¯ç¢ºçã®çè«ãèªã¿çŽããŸããïŒå°ãã®è³æããããŸãããã ããCapgleãããžã§ã¯ããè¡ã£ãŠããå Žåãkagleã®çµéšã圹ç«ã¡ãŸãããç·Žç¿ã®èŠ³ç¹ããã¹ãã«ã«é¢ãã3ã€ã®éå»ã®èšäºãã¹ãŠãå°éåéã®ééãšå¯æ¥ã«é¢ä¿ããŠããããã§ã¯ãªãããããã§ã«æ±ºå¿ããŠããå Žåã¯ãããªããæããã®ã¯äœã§ãããåæ¯ãªãã§ãå§ããããšãã§ããŸãã
2.åºæ¬çãªç¥èã®äžè¶³ã«èŠããã§ããŸããïŒ
-ã¯ããç¹ã«2.5æ¥éåçŽãªé¢æ°ãæžãããšãã§ããªãã£ãå ŽåããŸãã¯çµ±èšãšç¢ºççè«ã®ããã€ãã®ç¬éãã¯ã£ãããšç¥èŠã§ããªãã£ãå Žåãéåžžã«å€ãã®å Žæã§ã 幞ãããã©ãŒã©ã ãã¹ã©ãã¯ããããåã人ãã¡ãããããããŸãããã¡ãããã³ãŒã¹ã®ã¡ã³ã¿ãŒããéçºè
èªèº«ãå©ããããšããå©ããèŠã€ããããšãã§ããŸãã ãã¹ãŠãå®å
šã«æªãå Žåã¯ãå人çãªå®¶åºæåž«ãåãããšãã§ããŸããã誰ã§ããããèªåã§åŠçã§ãããšæããŸãã
3.äœãæ°ããããšãåŠã³ãŸãããïŒ
-ã¯ãããŸããç§ã®äººçã§åããŠãé£ç¶ããŠ9.5æéåäœããããã°ã©ã ãäœæãããã®åŸã¡ã¢ãªãšã©ãŒã§èŠãé ããŸããïŒãããããã¡ãããã¹ãŠãä¿®æ£ããŸããïŒãç§ã¯åŒ±ãã³ã³ãã¥ãŒã¿ãŒãæã£ãŠããŸãããéåžžã®ã°ã©ãã£ãã¯ã¹ã®ããã¡ãã§ãã競äºã§ããŸããã§ãããªãœãŒã¹ãé£ãå°œãããšãã芳ç¹ããã®ç§ã®åµé ã ããã¯éåžžã«è¯ãçµéšã§ãããæŸé»ããããããªãã¯ã¹ã®éèŠæ§ãšå©ç¹ãæ°žé ã«æãåºããŸããã ããŠããããŠç¬¬äºã«ãä»ã®æçšãªãã€ã³ãããããŸãïŒãã®ã³ãŒã¹ã¯ãŸã Pythonãå°ãæããŸãïŒyïŒãç§ã¯ãŸã ãããéåžžã«ä¹ããç¥ã£ãŠããããPythonã®æ¹æ³ããç¿åŸããŠããŸããããå
šããªããããã¯ããã«åªããŠããŸããã³ãŒã¹ã¯åºæ¬ååãããŸã説æããŸãé«åºŠãªæ°åŠãšçµ±èšæ
å ±ïŒè©³çŽ°ã¯èª¬æããŸããïŒãå®éãç§ã¯ããããèªåã§åçºèŠããŸããã ã³ãŒã¹ã«ã¯æ¬åœã«å€ãã®èå³æ·±ãæ©èœããããå¿
èŠã«å¿ããŠãããã®äžéšãæ¥åžžç掻ã«ç§»ãããšãã§ããŸãã ã¯ããæ
å ±ã®ååã«ã¯åé¡ããããŸããææã®4åã®3ãèªèããããšæããŸãããæ®ãã§ãããŒã¿åæãå¿
èŠãªå Žåã«ã©ã®æ¹åãæãããæšæž¬ããã«ã¯ååã§ãã
4.誰ãããã®ã³ãŒã¹ãåŠã¶ããšãã§ããŸããïŒ
-é¡æããã£ãã ãã§ããã¶ãäžã¶æã§ã¯ãªããããããªããã圌ãæ¬åœã«æ¬²ãããã®ãèªåã§æ±ºãã人ã¯ééããªããã¹ã¿ãŒããã ãããšæãã
ã³ãŒã¹ã®æ¡ä»¶ã¯ç°ãªããã®ãéžæãã幎霢ã®è¥ãç·ã®åãšå¥³ã®åãšäººã
ãäž¡æ¹ãšãææã«ã€ããŠã®ååãªç¥èãæã¡ãå®éã«ã¯ããã§ã¯ãããŸããã§ãããããŒãã¹ãšããŠãã¹ãã·ã£ã©ã€ãŒãŒã·ã§ã³Webãµã€ãã®èè
ã¯ãå°±è·åŸã®å°±è·ãæ¯æŽããå¯èœæ§ã«ã€ããŠæžããŠããŸãããŸã è©ŠããŠã¯ããŸããããæ©äŒèªäœã¯åã°ããããšã§ããèŠçŽãããšãã¹ãã·ã£ã©ã€ãŒãŒã·ã§ã³ããå§ãããŸããå€ãã®ãã€ã³ãã¯ãŸã ç²ãã§ãããäŸ¡æ Œãšå質ã®æ¯çã¯èš±å®¹ã§ãããªãã·ã§ã³ä»¥äžã®ãã®ã ãšæããŸãã次ã¯ïŒ
ååŸããã¹ãã«ã趣å³ã«é©çšããHabrã®è³æãç Žæ£ãããã.netã§æ©æ¢°åŠç¿ã®ç¶æ³ã確èªãã賌èªã解é€ããããšãã§ããŸããããããããã¯ãã¹ãŠãã£ãšåŸã«ãªããŸããã ããããã®èå³æ·±ãåéã®ç¥èãç¿åŸããããã«çããã®å¹žéãç¥ããŸãïŒããŠãèšäºãããŸãæ·±å»ã«èŠããªãããã«ããããŒãã¹ãããã£ããããŠãã ãããããŒãã¹ãšããŠ
ãã®å°éåã®ãã1ã€ã®ã¯ãŒã«ãªå©ç¹ã¯ãçžé¢ãšããèšèãåŠãã ããšã§ãããä»ã§ã¯å®éã«ã§ã¯ãªããã©ãã«ã§ããããçªãåºãããšã«ãªããŸããã ãããéå»ã®èšäºã«é¢ããããªãã®æçŽãšã³ã¡ã³ãã¯ããµã€ã¯ã«ã®äžéšãšããŠã®ç§ã®éå»ã®èšäºãå€ããå°ãªããç°¡åã«èªãŸããå°ããŠãŒã¢ã¢ãå«ãã§ãããšããç¥èã«ç§ãå°ããŸããïŒãŸãããããçå®ã§ããããšãé¡ã£ãŠããŸãïŒãããã®èšäºã¯èªã¿ã«ããææ
ã§å€æããŸããã¯ããã¢ãã¿ãŒãçå£ã«èŠã蟌ãã§æžããŸããããã®ããã«èãããšããµã€ã¯ã«å
šäœã®åèšäºã®è³æããåŠã¶ããšãããã«ç°¡åã§ããããšãèšäºã®æ¡ä»¶ä»ãããžã§ãŒã¯ãã®æ°ãšã®éã«çžé¢é¢ä¿ãèŠã€ããããšãã§ããŸããçžé¢é¢ä¿ããããã©ããèŠãŠã¿ãŸãããïŒèšäºã®åèªæ°ãšèšäºã®ããžã§ãŒã¯ãæ°ã®æ¯çãããã³ç¿åŸã®é£ããïŒåŠç¿ã«è²»ãããæ¥æ°ïŒãèšç®ããŠã¿ãŸããããèšäºã¯ãèšäºã®åé ã§ç€ºããé åºã§çªå·ãä»ããããŸãããžã§ãŒã¯ãšåèªã®æ°ãèšç®ãããšããããã¯ãããã4çªç®ã«ãªããããŒãã¹ã»ã¯ã·ã§ã³ã¯éžæã«å«ãŸããŸããã§ããããžã§ãŒã¯ãšã¯ãå°ãªããšãããã€ãã®ãŠãŒã¢ã¢ã®ãã³ãïŒèšäºã®åé ã®åçãèæ
®ã«å
¥ããïŒãæå³ããèŠåºãã®åŒçšã¯ãžã§ãŒã¯ãšã¯èŠãªãããŸããã§ãããã ããïŒ
1.èšäºçªå·1ïŒåèª= 2575ããžã§ãŒã¯= 5ããã¬ãŒãã³ã°ã®æ¥-22.èšäºçªå·2ïŒåèª= 2098ããžã§ãŒã¯= 3ããã¬ãŒãã³ã°ã®æ¥-33.èšäºçªå·3ïŒåèª= 2667ããžã§ãŒã¯= 4ãã¬ãŒãã³ã°ã®æ¥æ°-24.èšäºçªå·4ïŒåèª= 3051ããžã§ãŒã¯= 2ããã¬ãŒãã³ã°ã®æ¥æ°-37ããã«ãã³ãŒãã¯Python 3ã§ãã zipïŒïŒimport pandas as pd humor_rate=[(5/2575),(3/2098), (4/2667),(2/3051)] days=[2,3,2,37] df=pd.DataFrame(list(zip(humor_rate, days)), index=None, columns=['Humor rate', 'Days of study']) print (' : \n', df) print (' humor rate days of study = ', df.corrwith(df['days of study'])[0])
çµè«ïŒ
:
.....Humor rate.....Days of study
0....0.001942............2
1....0.001430............3
2....0.001500............2
3....0.000656............37
humor rate days of study = -0.912343823382
ããŠãæåŸã«ïŒ æåŸã«ãåŠå®çãªçžé¢é¢ä¿ïŒä¿æ°ãPearsonCORRELATIONSïŒããããŸããããã¯ãååãšããŠãèšäºã®åŠç¿ã«è²»ããæ¥æ°ãå°ãªãã»ã©ãèšäºã®ãŠãŒã¢ã¢ãå€ããªãããšã瀺ããŠããŸãã
ãã¡ãããããã¯çžé¢ã®ã³ããã¯äŸã§ãã ãã¡ãããããŒã¿ã¯ã»ãšãã©ãªããèšäºã®ãžã§ãŒã¯ã®æ確ãªæ°ãå€æããããšãå°é£ã§ããããããã¯ãCORRELATIONã®èšç®ãªã©ãå°éååŸã«ååŸããã¹ãã«ãå®è·µããæ¹æ³ã®å°ããªäŸãšèããŸãã
PSèšäºã®ããŒãã¹ãã©ã°ã¡ã³ãã§ãã®èšèãäœåèšåããŸãããïŒ ããã§ã-8ã€ã®printïŒïŒåºåãæ€èšããŠããŸãã