ãæ©æ¢°åŠç¿ã®åã¯ç§ãã¡ã®äžã«ããããã®æ¹æ³ã¯ç§ãã¡ãåãå²ã¿ãç§ãã¡ãçžããŸãã ç§ã®åšãã®åãã©ãã§ããç§ãšããªããšã®éã決å®çãªæšããªããªãã家çŽãåç
§ãã¯ãã«
ã ãããããããããšãŒãã¯ããŒã¿ãµã€ãšã³ã¹ã®æ¹æ³ãæããŠããããæããŠãããã ããã
æ®å¿µãªãããç§ã®ç¥ãåãã®éã§ã¯ç·èã®ããã®ããäººæ Œã¯èŠ³å¯ãããŸãããããããã£ãŠã
絶察ã«åå¿è
ã®ã¬ãã«ããæçµçã«å€æãããã®ã®
æ¬åœã®ãžã§ãã€ãŸã§ãããŒã¿ãµã€ãšã³ã¹
ãæãã
å
±åã®æ¹æ³ãããªããšäžç·ã«ç¶ããŸãã
æåŸã®2ã€ã®èšäºã§ã¯ãå
æºãã¹ãã¯ãã«ã«åŸã£ãŠåé¡ããåé¡ã解決ããŸããïŒãããã
Pythonãš
CïŒã§ ïŒã ä»åã¯ãç
§æ匷床æ²ç·ïŒç
§æåšå
·ãåºã«æ ãã¹ãããã«å¿ããŠïŒã«åŸã£ãŠåšå
·ãåé¡ããåé¡ã解決ããããšããŸãã
æ¢ã«ãã¯ãŒã®çµè·¯ãç解ããŠããå Žåã¯ã
Githubã«ããŒã¿ã»ãããããã«ããŠã³ããŒãããŠããã®ã¿ã¹ã¯ãèªåã§
è©Šãããšãã§ããŸãã ããããç§ã®ããã«ã誰ããã¿ãã¯ã«ãæ±ããŸãã
幞ããªããšã«ãä»åã®ã¿ã¹ã¯ã¯éåžžã«åçŽã§ãããããã»ã©æéã¯ããããŸããã
ç§ã¯æ¬åœã«èšäºã®ç®æ¬¡ã第4ãšããœãŒãããå§ãããã£ãã®ã§ããããã®ååã¯æå³ã«åããŸããã§ããããšããœãŒã IïŒé ãããè
åšããŸãã¯ä»¥åã®äžé£ã®èšäºå
šäœãèªãã§ããªãå Žåã«ããªããè
ãããã®ã
ãŸããååãšããŠãäœãè
ãããã®ã§ã¯ãããŸããããããŒã¿ãµã€ãšã³ã¹ïŒããŒã¿ãµã€ãšã³ã¹ïŒãå®å
šã«åããŠäœ¿çšããå Žåã¯ãæåã®èšäºãæ£ãã幎代é ã«èŠãããšããå§ãããŸããããã¯ãäœããã®æ¹æ³ã§åå¿è
ã®ç®ãéããŠããŒã¿ãµã€ãšã³ã¹ãèŠã貎éãªçµéšãªã®ã§ãä»ãèªåã®éã説æããªããã°ãªããªããšããããç§ã¯ãããã®ææ
ãæãåºãããšãã§ãããåé¡ã®ããã€ãã¯ç§ã«ãšã£ãŠã°ãããŠããããã«èŠããã§ãããã ãããã£ãŠãããªããå§ããã°ããã®å Žåãåºæ¬ãåŠãã§ã©ã®ããã«èŠãããããïŒãããŠä»ãèŠããã§ããïŒããèŠãŠãã ããã
ãããã£ãŠãããã«èšäºã®ãªã¹ããç»å Žé ã«ïŒæåããæåŸãŸã§ïŒãããŸã
ãŸãããã®èšäºããäœæ¥è
ãç¹ã«ãŠãŒã¶ãŒ
GadPetrovichã®èŠæ±ã«å¿ããŠãè³æã®ç®æ¬¡ãäœæããŸãã
å
容ïŒ
ãšããœãŒãIïŒå¹»åœ±ã®è
åšããŸãã¯ä»¥åã®äžé£ã®èšäºå
šäœãèªãã§ããªãå Žåã«ããªããè
ãããã®ããšããœãŒãIIïŒã¯ããŒã³ã®æ»æãŸãã¯ãã®ã¿ã¹ã¯ã¯éå»ãšããŸãå€ãããªãããã§ããšããœãŒãIIIïŒã·ã¹ã®åŸ©venããŸãã¯ããŒã¿ãã€ãã³ã°ã®é£ããã«ã€ããŠå°ããšããœãŒãIVïŒãã¹ãŠãç°¡åãã€ç°¡åã«åé¡ããããšããæ°ããåžæãšããœãŒãVïŒåžåœãåæãããããæŠéãã§ç°¡åã«ããŒã¿ãæºåããããšãé£ãããšããœãŒãVIïŒãžã§ãã€ã®åž°éããŸãã¯ããªãã®ã¢ãã«ã®ããã«èª°ãã«ãã£ãŠäºåã«æžãããåãæããïŒãšããœãŒãVIIïŒãã©ãŒã¹ãç®èŠãã-çµè«ã®ä»£ããã«ãšããœãŒã IIïŒã¯ããŒã³ã®æ»æããŸãã¯ãã®ã¿ã¹ã¯ã¯éå»ãšããŸãå€ãããªãããã§ãã
ããŒãã2çªç®ã®èŠåºãã§ããããã®ã¹ã¿ã€ã«ãç¶æãç¶ããããšã¯é£ãããšãã§ã«èããŠããŸããåå ãæ©æ¢°åŠç¿ã¿ã¹ã¯çšã®ç¬èªã®ããŒã¿ã»ããã®äœæãããžã¹ãã£ãã¯ååž°ãšã©ã³ãã ãã©ã¬ã¹ãã®äŸã䜿çšãããããã®ããŒã¿ã®åé¡åã®ãã¬ãŒãã³ã°ã¢ãã«ãPCAãT-SNEããã³DBSCAN
ä»åã¯ãå
åã¯å°ãªããªããŸãããã¿ã¹ã¯ã«æ ¹æ¬çãªéãã¯ãããŸããã
å°ãå
ã«é²ããšãã¿ã¹ã¯ãéå»ã®ã¯ããŒã³ã®ããã«èŠããªãããã«ããããã«ãä»åã®äŸã§ã¯SVCåé¡åã«å¯Ÿå¿ãããœãŒã¹ããŒã¿ã®ã¹ã±ãŒãªã³ã°ãéåžžã«åœ¹ç«ã€ããšã確èªããŸãã
ãšããœãŒã IIIïŒã·ã¹ã®åŸ©venããŸãã¯ãã€ãã³ã°ããŒã¿ã®é£ããã«ã€ããŠå°ãã
ãŸããå
床æ²ç·ïŒCSCïŒãšã¯äœã§ããïŒ
ããŠãããã¯æ¬¡ã®ãããªãã®ã§ãïŒ
å°ãã¯ã£ãããããããã«ãé ã®äžã«ã©ã³ããããããã®äžã«ç«ã£ãŠããå ŽåïŒè¡ç¯ããã®å
ã®ã¹ãããã®ããã«ïŒãã®ãããªå
ã®åéã足ã®äžã«èœã¡ããšæ³åããŠãã ããã
ãã®åçã¯ãç°ãªã極è§ïŒãããçœç±ç¯ã®çžŠæé¢ã§ãããšæ³åããŠãã ããïŒã2ã€ã®æ¹äœè§0-180ãš90-270ïŒçœç±ç¯ã®æšªæé¢ã§ãããšæ³åããŠãã ããïŒã®ã®ã£ããã§ã®å
匷床ïŒåäžã®å€ïŒã瀺ããŠããŸãã å€åãç§ã¯éåžžã«æ£ç¢ºã«èª¬æããŸããã§ããã詳现ã«ã€ããŠã¯ãç
§æå·¥åŠã¬ã€ã
ããŒãž833以éã® Julian Borisovich Aisenbergã«
ããããå
ã®ããŒã¿ã«æ»ã£ãŠãåºåãšã¯èããªãã§ãã ãããããããä»æ¥åé¡ããååã¯ãã¹ãŠãããã¡ãŒã«ãŒãã€ãŸãç
§ææè¡äŒç€Ÿã®ãã®ã§ãã ç§ã¯åœŒããšã¯äœã®é¢ä¿ããããŸãããã圌ãã®èšåããã硬貚ãã§ç§ã®ãã±ããã¯æºããããŸãã
ããã§ãªã圌ãã¯ïŒ ãã¹ãŠãéåžžã«ã·ã³ãã«ã§ãã¿ããªã¯ãããç§ãã¡ã«ãšã£ãŠäŸ¿å©ã§ããããšã確èªããŸããã
ããŒã¿ãåŒãåºãããã«å¿
èŠãªKSSããã³.iesãã¡ã€ã«ããã®åçã¯ã察å¿ããã¢ãŒã«ã€ãã«æ¢ã«åéãããŠã
ãŸããããŠã³ããŒãããã ã
㧠ããããã¯ãŒã¯å
šäœãå°ããã€åéãããããã¯ããã«äŸ¿å©ã§ãã
ãããã泚ææ·±ãèªè
ã¯ãããããã¹ãŠã©ãããæ¥ãã®ãããªããã®ã»ã¯ã·ã§ã³ã¯ã·ã¹ã®åŸ©venãšåŒã°ããã®ããå°ããã®ããã§ã«ã€ã©ã€ã©ããŠåŸ
ã£ãŠããŸããïŒ
æ®é
·ãªåŸ©venã¯ã©ãã§ããïŒïŒãŸããã©ãããè©©ã®åŸ©geã¯ãé·å¹Žãæ°åŠãããã°ã©ãã³ã°ãç
§æãæ©æ¢°åŠç¿ä»¥å€ã®ããšããã£ãŠããŠãä»ã¯ç¥çµçŽ°èã§ãéãæã£ãŠãããšããããšã§ããã
é ãããå°ãå§ããŸããã...
ããã¯ãåçŽãª.iesãã¡ã€ã«ãã©ã®ããã«èŠãããã§ã
IESNA:LM-63-1995
[TEST] SL20695
[MANUFAC] PHILIPS
[LUMCAT]
[LUMINAIRE] NA
[LAMP] 3 Step Switch A60 220-240V9.5W-60W 806lm 150D 3000K-6500K Non Dim
[BALLAST] NA
[OTHER] B-Angle = 0.00 B-Tilt = 0.00 2015-12-07
TILT=NONE
1 806.00 1 181 1 1 2 -0.060 -0.060 0.120
1.0 1.0 9.50
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00
10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00
20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00
30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00
40.00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00
50.00 51.00 52.00 53.00 54.00 55.00 56.00 57.00 58.00 59.00
60.00 61.00 62.00 63.00 64.00 65.00 66.00 67.00 68.00 69.00
70.00 71.00 72.00 73.00 74.00 75.00 76.00 77.00 78.00 79.00
80.00 81.00 82.00 83.00 84.00 85.00 86.00 87.00 88.00 89.00
90.00 91.00 92.00 93.00 94.00 95.00 96.00 97.00 98.00 99.00
100.00 101.00 102.00 103.00 104.00 105.00 106.00 107.00 108.00 109.00
110.00 111.00 112.00 113.00 114.00 115.00 116.00 117.00 118.00 119.00
120.00 121.00 122.00 123.00 124.00 125.00 126.00 127.00 128.00 129.00
130.00 131.00 132.00 133.00 134.00 135.00 136.00 137.00 138.00 139.00
140.00 141.00 142.00 143.00 144.00 145.00 146.00 147.00 148.00 149.00
150.00 151.00 152.00 153.00 154.00 155.00 156.00 157.00 158.00 159.00
160.00 161.00 162.00 163.00 164.00 165.00 166.00 167.00 168.00 169.00
170.00 171.00 172.00 173.00 174.00 175.00 176.00 177.00 178.00 179.00
180.00
0.00
137.49 137.43 137.41 137.32 137.23 137.10 136.97
136.77 136.54 136.27 136.01 135.70 135.37 135.01
134.64 134.27 133.85 133.37 132.93 132.42 131.93
131.41 130.87 130.27 129.68 129.08 128.44 127.78
127.11 126.40 125.69 124.92 124.18 123.43 122.63
121.78 120.89 120.03 119.20 118.26 117.34 116.40
115.46 114.49 113.53 112.56 111.52 110.46 109.42
108.40 107.29 106.23 105.13 104.03 102.91 101.78
100.64 99.49 98.35 97.15 95.98 94.80 93.65
92.43 91.23 89.99 88.79 87.61 86.42 85.17
83.96 82.76 81.49 80.31 79.13 77.91 76.66
75.46 74.29 73.07 71.87 70.67 69.49 68.33
67.22 66.00 64.89 63.76 62.61 61.46 60.36
59.33 58.19 57.11 56.04 54.98 53.92 52.90
51.84 50.83 49.82 48.81 47.89 46.88 45.92
44.99 44.03 43.11 42.18 41.28 40.39 39.51
38.62 37.74 36.93 36.09 35.25 34.39 33.58
32.79 32.03 31.25 30.46 29.70 28.95 28.23
27.48 26.79 26.11 25.36 24.71 24.06 23.40
22.73 22.08 21.43 20.84 20.26 19.65 19.04
18.45 17.90 17.34 16.83 16.32 15.78 15.28
14.73 14.25 13.71 13.12 12.56 11.94 11.72
11.19 10.51 9.77 8.66 6.96 4.13 0.91
0.20 0.17 0.16 0.19 0.19 0.20 0.16
0.20 0.18 0.20 0.20 0.21 0.20 0.16
0.20 0.17 0.19 0.20 0.19 0.18
å
éšã§ã¯ãã¡ãŒã¿ãŒã®è£œé æ¥è
ãšå®éšå®€ã«é¢ããããŒã¿ã瞫補ãããŠããã»ããããŒã¿ãå¿
èŠãªæ¥µè§ãšæ¹äœè§ã«äŸåããå
ã®åŒ·åºŠãªã©ãã©ã³ãã«é¢ããããŒã¿ãçŽæ¥çž«è£œãããŠããŸãã
åèšã§193åã®ãã¡ã€ã«ãéžæããŸããããããããæåã§åŠçããããšããããšããã»ãšãã©ãããŸããã§ããã
äžæ¹ã§ã¯ããã¹ãŠãGiesã§ããããã¯.iesãã¡ã€ã«ã®æ§é ã詳现ã«èšè¿°ããŠããŸãããä»æ¹ã§ã¯ãå¿
èŠãªããŒã¿ãèªåçã«èªèããŠåé€ããããšã¯ç§ãæã£ãŠãããããå°é£ã§ããã
ããããããªãã«ãšã£ãŠãæ ç»ã®æé«ã®äŒçµ±ã®ããã«ããã¹ãŠã®è€éã§éå±ãªãã®ã¯ãèå°è£ãã®ãŸãŸã§ãã ãããã£ãŠãããŒã¿ã®çŽæ¥çãªèª¬æã«ç§»ããŸãã
ãšããœãŒã IVïŒæ°ããåžæ...ãã¹ãŠãç°¡åãã€ç°¡åã«åé¡ãããããšã
ãããã£ãŠãäžèšã§åç
§ããæç®ã®å©ããåããŠäž»èŠãªåé¡ãæãäžããŠããã¬ãŒãã³ã°ãšãã¢ã®äŸã§ãã£ã¯ã¹ãã£ãåé¡ããããã«ããã®å Žåã®ããããã®æ¹äœè§ã«ååãªããŒã¿ã¹ã©ã€ã¹ããããšããçµè«ã«éããŸããŒãã«çããã0ãã180ãŸã§ã®æ¥µè§ã®ç¯å²ã§ã10ãã€å¢å ããŸãïŒå質ã®ããã«å°ããªã¹ããããèžãããšã«æå³ã¯ãããŸããããããã¯å€§ããªåœ±é¿ã¯ãããŸããïŒ
ã€ãŸãããã®å ŽåãããŒã¿ã¯å·ŠåŽã®ã°ã©ãã§ã¯ãªãå³åŽã®ã°ã©ãã«è¡šç€ºãããŸãã
ãšããã§ã誰ããç¥ããªãã£ãå ŽåãMS Excelã§è±ã³ããã£ãŒãã䜿çšãããšãKCCã°ã©ããç°¡åã«ããããã§ããŸããLighting Technologiesã®ã¢ãŒã«ã€ãã§ã¯ãç°ãªãKSSã®ã©ã³ããäžåçã«ååžããŠããããã4ã€ã®ã¿ã€ããåæããŸããããã¯ãå
ã®ããŒã¿ã»ããã«æãå€ãå«ãŸããŠããŸãã
ãããã£ãŠã次ã®KCCããããŸãã
æ¿çž®ïŒKïŒã深局ïŒGïŒãäœåŒŠïŒDïŒãããã³åå¹
ïŒLïŒã
æ倧å
匷床ã®æ¹åã®é åã¯ããããã次ã®è§åºŠã«ãããŸãã
K = 0°-15°; G = 0°-30°; D = 0°-35°; L = 35°-55°;
ããŒã¿ã»ããã§ã©ãã«ãã©ãã«ã«å²ãåœãŠãããŸãã
K 1; G = 2; D = 3; L = 4; ïŒæåããå§ããªããã°ãªããŸããã§ããããä»ã¯ããçŽãã®ãé¢åã§ãïŒ
å®éãç
§æå·¥åŠã®åéã®å°é家ã§ã¯ãªããããåšå
·ãåé¡ããããšã¯å°é£ã§ããããšãã°ãäžã®å³ã®åšå
·ã¯KSSãæ·±ãåšå
·ã«èµ·å ãããšèããããŸããã100ïŒ
確信ã¯ãããŸããã
ååãšããŠãç©è°ãéžãåé¡ãé¿ããGOSTãšäŸãèŠãŠã¿ãŸããããã©ããã§ééããç¯ããå¯èœæ§ããããŸããã¯ã©ã¹ã©ãã«ã®å²ãåœãŠãæžã蟌ã¿ã«èª€ããããå Žåã¯ãå¯èœã§ããã°ä¿®æ£ããŸãããšããœãŒã VïŒåžåœãåæãããããæŠéãã§ããŒã¿ãç°¡åã«æºåããã®ãé£ãã
ããŠãããŒã¿ãæºåããããšãå°é£ã ã£ãå Žåã2人ã§ãã®ã²ãŒã ããã¬ã€ã§ããããã§ããåæããã®ã¯æ£å察ã§ãã ãã£ããå§ããŸãããã
以äžã«ç€ºã.ipynbïŒJupyterïŒåœ¢åŒã®ãã¹ãŠã®ãœãŒã¹ã³ãŒããå«ããã¡ã€ã«ã¯ã
GitHubããããŠã³ããŒãã§ããããšãå床ãç¥ããã
ãŸããã®ãããéå§ããã«ã¯ãã©ã€ãã©ãªãã€ã³ããŒãããŸãã
以åã®èšäºãèªãã ããPythonã§ã®æ©æ¢°åŠç¿ã«ç²ŸéããŠããå Žåãããã§çŽ¹ä»ãããã¹ãŠã®ã³ãŒãã¯é£ãããããŸããã
ãã ãã念ã®ãããæåã«ãã¬ãŒãã³ã°ãµã³ãã«ãšãã¹ããµã³ãã«ã®ããŒã¿ãè¡šã«èªã¿åãã次ã«èšå·ïŒæ¥µè§ã®èŒåºŠïŒãšã¯ã©ã¹ã©ãã«ãå«ãé
åãåãåããŸãããã¡ãããããããããããããã«ãè¡šã®æåã®4è¡ãå°å·ããŸããã ãããã§äœãèµ·ãã£ãã®ã§ããïŒ
ããªãã¯ãããä¿¡ããããšãã§ããŸããããŒã¿ã¯ã¯ã©ã¹No.4ïŒæ²ç·LïŒãé€å€ããããã«ãã©ã³ã¹ãæªããäžè¬çã«æåã®3ã€ã®ã¯ã©ã¹ã§ã¯ãã¬ãŒãã³ã°ãµã³ãã«ã§40ãµã³ãã«ãã³ã³ãããŒã«ã§12ãµã³ãã«ãæè²ããã³ã³ã³ãããŒã«å
šäœã§9ã§ããããããã¬ãŒãã³ã°ãµã³ãã«ãšã³ã³ãããŒã«ãµã³ãã«ã®æ¯çã¯1/4ã«è¿ãå€ãç¶æãããŸãã
誰ãã®èšèãä¿¡ããªãããšã«æ
£ããŠãããªããã³ãŒããå®è¡ããŠãã ããïŒ
ãããŠãããªãã¯ä»¥äžãèŠãã§ãããïŒ
èšå·ã«æ»ããŸããããäžæ¹ã§ããããã¯ãã¹ãŠåãå€ãåæ ããŠããŸããã€ãŸãã倧ãŸãã«èšã£ãŠãèªè»¢è»ã®æ°ãšæ°å§ã¯çžé¢ããŠããŸãããå€ã®ã¬ãã«ãä»åã¯å€ã®æ¯å¹
ãæ°äžåäœã«éããå¯èœæ§ããããŸãã
ãããã£ãŠãæšèãæ¡å€§çž®å°ããããšã¯åççã§ãã ãã ããscikit-learnã®ãã¹ãŠã®ã¹ã±ãŒãªã³ã°ã¢ãã«ã¯åããšã«ã¹ã±ãŒãªã³ã°ããããã«èŠããŸãïŒãŸãã¯ãç§ã¯ãããææ¡ããŸããã§ããïŒããã®å Žåãåããšã«ã¹ã±ãŒãªã³ã°ããããšã¯æå³ããããŸãããããã¯ããåé¡ã ïŒ
代ããã«ãã³ãŒããŒã®å
ã®åã®ååžã®æ§è³ªãç¶æããããã«ãµã³ãã«ã®ããŒã¿ãïŒè¡ããšã«ïŒã¹ã±ãŒãªã³ã°ããŸãããåæã«å
šäœã®åºããã0ãã1ã®ç¯å²ã«ãã©ã€ãããŸãã
è¯ãæ¹æ³ã§ãç§ãèªãã æ¬ã§ã¯ã圌ãã¯ãã¬ãŒãã³ã°ã»ãããšã³ã³ãããŒã«1ã¢ãã«ïŒãã¬ãŒãã³ã°ã»ããã§ãã¬ãŒãã³ã°ãããïŒãã¹ã±ãŒãªã³ã°ããããã¢ããã€ã¹ããŠããŸãããç§ãã¡ã®å Žåãããã¯æ©èœã®æ°ã®äžäžèŽã®ããã«æ©èœããŸããïŒãã¹ãã»ããã®è¡ãå°ãªããªãã転眮ããããããªãã¯ã¹ã¯åæ°ãå°ãªãïŒãåãµã³ãã«ãç¬èªã®æ¹æ³ã§èª¿æŽããŸãã
ãã®åé¡ã«é¢é£ããŠãå
ãèŠæ®ããŠãåé¡ããã»ã¹äžã«ãç§ã¯ããã«é¢ããŠäœãæªãããšãçºèŠããŸããã§ããã
ããªããå®å
šãªåå¿è
ã§ãã£ãŠããèšäºã®éçšã§scikit-learnã»ããã®ãã¹ãŠã®ã¢ãã«ãåæ§ã®ã€ã³ã¿ãŒãã§ãŒã¹ãæã£ãŠããããšã«æ°ä»ãã§ããããããŒã¿ãfitã¡ãœããã«æž¡ãããšã§ã¢ãã«ãèšç·ŽããããŒã¿ãå€æããå¿
èŠãããå Žåãtransformã¡ãœãããåŒã³åºããŸãïŒãã®å Žåãã¡ãœããã䜿çšããŸã2 in 1ïŒãããã³åŸã§ããŒã¿ãäºæž¬ããå¿
èŠãããå Žåã¯ãpredictã¡ãœãããåŒã³åºããŠãæ°ããïŒã³ã³ãããŒã«ïŒãµã³ãã«ããã£ãŒãããŸãã
ããŠããã1ã€å°ããªç¹ãšããŠãã³ã³ãããŒã«ãµã³ãã«çšã®ã¿ã°ããªãããšãæ³åããŠã¿ãŸããããããšãã°ãkagleåé¡ã解決ããŸããã¢ãã«ã®äºæž¬ã®å質ãã©ã®ããã«è©äŸ¡ã§ããŸããã
ç§ãã¡ã®å Žåãããžãã¹äžã®åé¡ã®è§£æ±ºãå¿
èŠã§ã¯ãªãå Žåãæãç°¡åãªæ¹æ³ã®1ã€ã¯ããã¬ãŒãã³ã°ãµã³ãã«ãå¥ã®ãã¬ãŒãã³ã°ãµã³ãã«ã«åå²ãïŒãã ãå°ããïŒããã¹ãïŒãã¬ãŒãã³ã°ããïŒããããšã§ããããã¯å°ãåŸã§åœ¹ç«ã¡ãŸãã ãããŸã§ã®éãã¹ã±ãŒãªã³ã°ã«æ»ãããããã©ã®ããã«åœ¹ç«ã€ããèŠãŠã¿ãŸããããã¹ã±ãŒãªã³ã°æ©èœãªãã®äžçªäžã®ç»åãã¹ã±ãŒãªã³ã°ä»ãã®äžçªäžã®ç»åã§ãã
ãããç°ãªãã»ã«ã«ããã³ããŒãã§æã¡èŸŒãïŒãŸãããŸãã¯ãµããããããäœæããïŒ
ã°ã©ãã«ã¯åã¯ã©ã¹ãã1ã€ã®ãµã³ãã«ã衚瀺ãããŸãããã¹ã±ãŒã«ã°ã©ãã®äžéšã¯ãã¹ã±ãŒã«ã®éãã«ããåçŽã«ãŒãã«ããŒãžããããããç§ãã¡ãšã³ã³ãã¥ãŒã¿ãŒã¯ã¹ã±ãŒã«ã°ã©ãããäœããç解ãããããªããŸãã
æçµçã«æ£ããããšã確èªããããã«ããã£ãŒãã£ã®æ¬¡å
ã2次å
ã«æžããã2次å
ã°ã©ãã«ããŒã¿ã衚瀺ããŠãããŒã¿ãåé¢å¯èœãã©ããã確èªããŠã¿ãŸãããïŒããã«ã¯t-SNEã䜿çšããŸãïŒ
ã¹ã±ãŒãªã³ã°ãªãã§å·Šã¹ã±ãŒãªã³ã°ããã§å³
ãããç°ãªãã»ã«ã«ããã³ããŒãã§æã¡èŸŒãïŒãŸãããŸãã¯ãµããããããäœæããïŒ
ãŒãããããŒã¯ãã«ãŠã³ããå§ããã®ã§ã1ãåŒããŸããå³ã¯ãã¹ã±ãŒãªã³ã°ãããããŒã¿ã§ã¯ãã¯ã©ã¹1ã3ã4ãå€ããå°ãªããæ確ã«åºå¥å¯èœã§ãããã¯ã©ã¹2ã¯ã¯ã©ã¹1ãš3ã®éã§å¡ãã€ã¶ãããŠããããšã瀺ããŠããŸãïŒããŠã³ããŒãããŠKCCãã£ã¯ã¹ãã£ãèŠããšãããã§ããã¹ãããšãç解ã§ããŸãïŒ
ãšããœãŒã VIïŒãžã§ãã€ã®åŸ©æŽ»ããŸãã¯ä»¥åã«èª°ããããªãã®ããã«æžããã¢ãã«ã®åãæããŸãïŒ
ããŠãä»ããçŽæ¥åé¡ãéå§ããæéã§ã
ãŸãããåãæšãŠãããããŒã¿ãã§SVCããã¬ãŒãã³ã°ããŸã
次ã®çµè«ãåŸãããŸã
ã¹ã±ãŒãªã³ã°ãããªã
not scaled:
results (pred, real):
[(2, 3), (2, 3), (2, 2), (3, 3), (2, 1), (2, 3), (2, 3), (2, 2), (2, 1), (2, 2), (1, 1), (3, 3), (2, 2), (2, 1), (2, 4), (3, 3), (2, 2), (2, 4), (2, 1), (2, 2), (4, 4), (2, 2), (4, 4), (2, 4), (2, 3), (2, 1), (2, 1), (2, 1), (2, 2)]
not scaled: accuracy = 0.4827586206896552, f1-score= 0.46380859284085096
ã¹ã±ãŒãªã³ã°æžã¿
scaled:
results (pred, real):
[(3, 3), (3, 3), (2, 2), (3, 3), (1, 1), (3, 3), (3, 3), (2, 2), (1, 1), (2, 2), (1, 1), (3, 3), (2, 2), (1, 1), (4, 4), (3, 3), (2, 2), (4, 4), (1, 1), (2, 2), (4, 4), (2, 2), (4, 4), (4, 4), (3, 3), (1, 1), (1, 1), (1, 1), (2, 2)]
scaled: accuracy = 1.0, f1-score= 1.0
ã芧ã®ãšãããæåã®ã±ãŒã¹ã§äœãšãéæã§ããå Žåããã®å·®ã¯éåžžã«å€§ãããªããŸãã
çµæã¯ã©ã³ãã ãªäºæž¬ããããããã«åªããŠããã ãã§ã2çªç®ã®ã±ãŒã¹ã§ã¯100ïŒ
ãããããŸããã
å®å
šãªããŒã¿ã»ããã§ã¢ãã«ããã¬ãŒãã³ã°ãã100ïŒ
ã®çµæãåŸãããããšã確èªããŸã
çµè«ãèŠãŠã¿ãŸããã
results (pred, real):
[(1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4)]
scaled: accuracy = 1.0, f1-score= 1.0
ããŒãã§ã¯ãïŒ ç²ŸåºŠã®ã¡ããªãã¯ãšãšãã«ãf1-scoreã䜿çšããããšã«ããŸãããããã¯ãã¯ã©ã¹ã®äžåè¡¡ã倧å¹
ã«å€§ããå Žåã«åœ¹ç«ã¡ãŸããããã®å Žåãã¡ããªãã¯éã«ã»ãšãã©éãã¯ãããŸããïŒãã ããæ確ã«ããŸããïŒã
ããŠãæåŸã«ç¢ºèªããã®ã¯ããã§ã«ããã£ãŠããRandomForeståé¡åšã§ã
æ¬ãä»ã®è³æã§ã¯ãRandomForestã®èšå·ã®ã¹ã±ãŒãªã³ã°ã¯éèŠã§ã¯ãªãããšãèªã¿ãŸããããããã§ãããã©ãããèŠãŠã¿ãŸãããã
rfc=RandomForestClassifier(random_state=42,n_jobs=-1, n_estimators=100) rfc=rfc.fit(X_train, y_train) rpred=rfc.predict(X_test) print("\n not scaled: \n results (pred, real): \n",list(zip(rpred,y_test))) print('not scaled: accuracy = {}, f1-score= {}'.format( accuracy_score(y_test,rpred), f1_score(y_test,rpred, average='macro'))) rfc=rfc.fit(X_train_scl, y_train) rpred=rfc.predict(X_test_scl) print("\n scaled: \n results (pred, real): \n",list(zip(rpred,y_test))) print('scaled: accuracy = {}, f1-score= {}'.format( accuracy_score(y_test,rpred), f1_score(y_test,rpred, average='macro')))
次ã®çµè«ãåŸãããŸãã
not scaled:
results (pred, real):
[(1, 1), (1, 1), (2, 1), (1, 1), (1, 1), (2, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (2, 2), (2, 2), (2, 2), (1, 2), (2, 2), (2, 2), (2, 2), (2, 2), (3, 2), (2, 2), (3, 2), (2, 2), (4, 2), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (4, 3), (3, 3), (3, 3), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4)]
not scaled: accuracy = 0.8541666666666666, f1-score= 0.8547222222222222
scaled:
results (pred, real):
[(1, 1), (1, 1), (2, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4)]
scaled: accuracy = 0.9791666666666666, f1-score= 0.9807407407407408
ãããã£ãŠã2ã€ã®çµè«ãå°ãåºãããšãã§ããŸãã
1.決å®çãªããªãŒã®å Žåã§ããå±æ§ãã¹ã±ãŒãªã³ã°ãããšäŸ¿å©ãªå ŽåããããŸãã
2. SVCã®ç²ŸåºŠãåäžããŸããã
ä»åã¯ãã©ã¡ãŒã¿ãŒãæåã§éžæãã2åç®ã®è©Šè¡ã§scvã®2çªç®ã®ãªãã·ã§ã³ãç²åŸããå Žåã10åç®ããã§ãã©ã³ãã ãã©ã¬ã¹ãã§ãããéžæããââãã¹ãããããŠããã©ã«ãã§æ®ããŸããïŒããªãŒã®æ°ãé€ãïŒã ããããã100ïŒ
ã®ç²ŸåºŠããããããã©ã¡ãŒã¿ãŒãããããããæŸãäžããŠã³ã¡ã³ãã§äŒããããã«ããŠãã ããã
ããŠãããã§ãã¹ãŠã§ãããã¹ã¿ãŒãŠã©ãŒãºã®ãã¡ã³ã¯ããµã¬ã®7çªç®ã®æ ç»ã«èšåããªãããšãç§ã«èš±ããªããšæããŸã...
ãšããœãŒã VIIïŒåã®èŠé-çµè«ã®ä»£ããã«ã
æ©æ¢°åŠç¿ã¯ãšãŠã€ããªãé
åçãªãã®ã§ããããšãå€æããŸããããç§ã¯ä»ã§ãçããã®è¿ãã§åé¡ãèŠã€ããŠè§£æ±ºããããšããããšãã¿ããªã«å§ããŠããŸãã
ããã«ããŸããããªãå Žåã¯ãäžã®åçã®ããã«éŒ»ãåãããªãã§ãã ããã
ã¯ããã¯ãïŒ ããªããããããããªãã®éŒ»ããã³ã°ã¢ããããªãã§ãã ããããšä»ã®é ãããèãããªããšã¯æããªãããã«;ïŒãããŠãåãããªããšå
±ã«æ¥ãŸãããã«ïŒ