ããŒã1.ãã«ã³ãé£éã䜿çšããŠåã€ããã®æå°ç§»åæ°ã®èšç®
æè¿ã®æŽæ°ã®åŸã
2048ã²ãŒã ã®ãYou winïŒãç»é¢ã«åã€ããã«å¿
èŠãªåãã®æ°ã衚瀺ãããããã«ãªããŸããã
èšäºã®æåã®éšåã§ã¯ãã²ãŒã 2048ããã«ã³ããã§ãŒã³ã®åœ¢ã§ã·ãã¥ã¬ãŒãããåæããŠããã¬ã€ã€ãŒã®ã¹ãã«ã«é¢ä¿ãªãã
å¹³åã§å°ãªããšã938.8ã®åããåã€ããã«å¿
èŠã§ããããšã瀺ãããšã§ããã®è³ªåã«çããŸãã ããã¯ç§ãã¡ã«è¯ããã³ãããŒã¯ãæäŸããŸã-ããªãããã®ãããªæ°ã®åãã«ã€ããŠåã€ããšãã§ãããªããããªãã¯ããŸããã¬ãŒããŸãã
ã²ãŒã ã¯ã¿ã€ã«
2
ãš
4
ã©ã³ãã ã«è¿œå ãããããåã€ããã«å¿
èŠãªåãã®æ°ã¯ã©ã³ãã æ§ã«äŸåããŸãã ãŸããåæã«ãããåã€åã®æå°ç§»åæ°ã®ååžã®æšæºåå·®ã¯8.3ç§»åã§ããããã®å
šäœçãªåœ¢ç¶ã¯äºé
ååžã®æ··åã«ãã£ãŠè¿äŒŒãããŠããããšãããããŸãã
ãããã®çµæãåŸãããã«ã2048ã®ç°¡æããŒãžã§ã³ã䜿çšããŸãããã£ãŒã«ãã«ã¿ã€ã«ãé
眮ãã代ããã«ã...ããã°ã«å
¥ããŸãã ã€ãŸããã¿ã€ã«ãçµã¿åãããããšãã§ãããã£ãŒã«ãã®åœ¢ç¶ã«ãã£ãŠèª²ããã幟äœåŠçå¶éãç¡èŠããŸãã ãã®åçŽåã«ããããã¬ãŒã€ãŒã決å®ãè¡ãå¿
èŠããªããªã
1 ããã£ãŒã«ãäžã®ã¿ã€ã«ã®äœçœ®ã远跡ããå¿
èŠããªããããäœæ¥ãéåžžã«å®¹æã«ãªããŸãã
ãããã®å¹ŸäœåŠçå¶çŽãåãé€ãããšã®ä»£äŸ¡ã¯ãåå©ããåã«äºæ³ãããåãã®äžéã®ã¿ãèšç®ã§ããããšã§ãã 幟äœåŠçå¶çŽã«ãããã®å¢çã«å°éã§ããªãå ŽåããããŸãã ãã ãã2048幎ã«å€ãã®ã²ãŒã ããã¬ã€ããããïŒç§åŠã®ããïŒïŒãå®éã«ã¯ãã®å¢çã«è¿ã¥ãããšãã§ããããšã瀺ããŸãã
2048ããã«ã³ããã§ãŒã³ã«æ
£ããŠããªãå Žåã¯ãå¿é
ããªãã§ãã ãããå¿
èŠãªæŠå¿µã«ã€ããŠã¯èšäºå
šäœã§èª¬æããŸãã ã³ãŒããç ç©¶ããŠ
ãã§ãŒã³ãš
ã°ã©ããçæããå Žåã«åããŠãèšäºã®å·çã«åºã¥ããïŒç ç©¶å質ã®ïŒã³ãŒãã«ã¯
ãªãŒãã³ãœãŒã¹ããã
ãŸã ã
2048ãã«ã³ãé£éãšããŠ
åçŽåããã²ãŒã ã2048 in a bagãããã«ã³ãé£éãšããŠæç€ºããã«
ã¯ãé£éã®
ç¶æ
ãš
é·ç§»ç¢ºçãæå®ããå¿
èŠããããŸãã åç¶æ
ã¯ãç¹å®ã®æç¹ã§ã®ã²ãŒã ã®ããã£ã¹ããã®ãããªãã®ã§ãããé·ç§»ç¢ºçã¯åç¶æ
ã®é·ç§»ç¢ºçãèšå®ããŸãã
ããã§ã¯ãçŸåšåããã°ã«ããã¿ã€ã«ãåç¶æ
ã§ãšã³ã³ãŒãããŸãã ã¿ã€ã«ã®é åºã¯æ°ã«ããªãã®ã§ãã¿ã€ã«ãå€ãã®ã¿ã€ã«ãšããŠèªèã§ããŸãã æåã¯ãããã°ã«ã¯ã¿ã€ã«ããããŸãããã€ãŸããåæç¶æ
ã¯åãªã空ã®ã»ããã§ãã 以äžã«è¿œå ããåè·¯ã®åœ¢åŒã§ã¯ããã®åæç¶æ
ã¯æ¬¡ã®ããã«ãªããŸãã
çŸå°æºå
æ°ããã²ãŒã ã®1ããŒã¹ã®ãã£ãŒã«ãã®äŸã2048å¹Žã«æ°ããã²ãŒã ãéå§ãããšãã²ãŒã ã¯2ã€ã®ã©ã³ãã ãªã¿ã€ã«ããã£ãŒã«ãã«é
眮ããŸãïŒäžèšã®äŸãåç
§ïŒã ããããã«ã³ãé£éã§è¡šãã«ã¯ãåæç¶æ
ããå¯èœãªåç¶æ
ãžã®é·ç§»ç¢ºçãæå®ããå¿
èŠããããŸãã
幞ããªããšã«ã
ã²ãŒã ã®ãœãŒã¹ã³ãŒãã調ã¹ãŠãã²ãŒã ã®ä»çµã¿ãçè§£ã§ããŸãã ã²ãŒã ããã£ãŒã«ãã«ã©ã³ãã ã¿ã€ã«ãé
眮ãããšãåžžã«ãã®ã·ããªãªã«åŸããŸãã
ã»ã«ãã©ã³ãã ã«éžæããå€2
ïŒ0.9ã®ç¢ºçïŒãŸãã¯å€4
ïŒ0.1ã®ç¢ºçïŒã§æ°ããã¿ã€ã«ã远å ããŸã ã
ã2048 in a bagãã®å Žåãç¡æã®ã»ã«ã®æ€çŽ¢ã«ã€ããŠå¿é
ããŸãããããã°ã®å®¹éã«å¶éãèšããŠããªãããã§ãã äžãããã確çã§ã¿ã€ã«
2
ãŸãã¯
4
ã远å ããããšã«ã®ã¿èå³ããããŸãã ããã«ãããåæç¶æ
ããæ¬¡ã®3ã€ã®ç¶æ
ã«ãªããŸãã
- \å·Š\ {2,2 \å³\}\å·Š\ {2,2 \å³\} äž¡æ¹ã®æ°ããã¿ã€ã«ã®å€ã
2
ã 確çã§èµ·ãã
ã - \å·Š\ {4,4 \å³\}\å·Š\ {4,4 \å³\} äž¡æ¹ã®æ°ããã¿ã€ã«ã®å€ã
4
ã 確çã§èµ·ãã 0.1\å0.1=$0.0 ãã€ãŸãã2ã€ã®4ã§ã²ãŒã ãéå§ããå Žåãããªãã¯ããªã幞éã§ãã - \å·Š\ {2,4 \å³\}\å·Š\ {2,4 \å³\} æ°ããã¿ã€ã«ã®å€ã
2
ã§4
å Žåã確çã§çºçããŸã 0.9\å0.1=$0.0 ããŸãã¯æåã®4
ãæ¬¡ã«2
確çã§çºçããŸã 0.1\å0.9=$0.0 ã ç§ãã¡ã¯é åºãæ°ã«ããªãã®ã§ãäž¡æ¹ã®ã±ãŒã¹ãå
±éã®ç¢ºçã§åãç¶æ
ã«ãªããŸã
ã
ãããã®åŸç¶ã®ç¶æ
ãšé·ç§»ç¢ºçãæ¬¡ã®ããã«ãã«ã³ãåè·¯å³ã«è¿œå ã§ããŸãïŒé·ç§»ç¢ºçã¯ãšããžã«æžã蟌ãŸããæ°ããããŒããšãšããžã¯éè²ã§ããŒã¯ãããŸãïŒã
ã²ãŒã ããã¬ã€ãã
ã¿ã€ã«ã®æåã®ãã¢ãé
眮ããããã²ãŒã ãéå§ããæºåãã§ããŸããã å®éã®ã²ãŒã ã§ã¯ãããã¯ãã¬ã€ã€ãŒãåãã¿ã€ã«ã®ãã¢ãæ¥ç¶ããããã«å·Šãå³ãäžãŸãã¯äžã«ã¹ã¯ã€ãããå¿
èŠãããããšãæå³ããŸãã ãã ããããã°ã䜿çšããã²ãŒã ã§ã¯ãåãã¿ã€ã«ã®ãã¹ãŠã®ãã¢ãçµåããããšã劚ãããã®ã¯ãããŸããã
ããã°ãšã²ãŒã å
ã®ã¿ã€ã«ãçµåããããã®ã«ãŒã«ã¯æ¬¡ã®ãšãã
ã§ããåãå€ãæã€ã¿ã€ã«ã®ãã¹ãŠã®ãã¢ãããã°å
ã§èŠã€ããããããåé€ããŸãã æ¬¡ã«ãã¿ã€ã«ã®åãã¢ãå€ã 2 åã®1ã€ã®ã¿ã€ã«ã«çœ®ãæããŸã ã
åäžã®ã¿ã€ã«ã®ãã¢ãçµã¿åãããŠæ¬¡ã®ç¶æ
ã«ç§»è¡ããåŸãã²ãŒã ã¯äžèšã®ããã»ã¹ã䜿çšããŠ1ã€ã®æ°ããã¿ã€ã«ãã€ãŸã確çã0.9ã®ã¿ã€ã«
2
ãŸãã¯ç¢ºçã0.1ã®ã¿ã€ã«
4
ãã©ã³ãã ã«è¿œå ããŸãã
ããšãã°ãå¯èœãªåŸç¶ã®ç¶æ
ç¶æ
ãèŠã€ããã«ã¯
\å·Š\ {2,2 \å³\}\å·Š\ {2,2 \å³\} ãæåã«2ã€ã®ã¿ã€ã«
2
ã1ã€ã®ã¿ã€ã«
4
ã«çµåããŠãããã²ãŒã ãã¿ã€ã«
2
ãŸãã¯ã¿ã€ã«
4
远å ããŸãã ãããã£ãŠãå¯èœãªåŸç¶ã®ç¶æ
ã¯
\å·Š\ {2,4 \å³\}\å·Š\ {2,4 \å³\} ãããŠ
\å·Š\ {4,4 \å³\}\å·Š\ {4,4 \å³\} ãããèµ·ãã£ããšããç§ãã¡ã¯ä»¥åã«äŒã£ãã æ¬¡ã«ããããã®2ã€ã®é·ç§»ãå«ãåè·¯
\å·Š\ {2,2 \å³\}\å·Š\ {2,2 \å³\} ããããã確çã0.9ãš0.1ã®åœ¢åŒã¯æ¬¡ã®ãšããã§ãã
åŸç¶ã®ç¶æ
ç¶æ
ã«å¯ŸããŠãã®ããã»ã¹ãå®è¡ãç¶ããå Žå
\å·Š\ {2,4 \å³\}\å·Š\ {2,4 \å³\} ãæ¬¡ã«ãåãã¿ã€ã«ã®ãã¢ããªãããããŠããªã³ã¯äžå¯èœã§ãããæ¬¡ã®ç¶æ
ã¯
\å·Š\ {2,2,4 \å³\}\å·Š\ {2,2,4 \å³\} ãŸãã¯
\å·Š\ {2,4,4 \å³\}\å·Š\ {2,4,4 \å³\} ãæ°ããã¿ã€ã«ã®å€ã
2
ã
4
ãã«ãã£ãŠç°ãªããŸãã æŽæ°ãããã¹ããŒã ã¯æ¬¡ã®ããã«ãªããŸãã
ã¬ã€ã€ãŒãšã¹ããã
ãã®æ¹æ³ã§åŒãç¶ããã©ã³ãžã·ã§ã³ã远å ã§ããŸãã ãã ããæ°ããç¶æ
ãšé·ç§»ã远å ããããšãã¹ããŒã ã¯ããè€éã«ãªãå¯èœæ§ããããŸã
3 ã æ¬¡ã®èгå¯ã䜿çšããŠãã¹ããŒã ãå°ãåçåããããšãã§ããŸãã
ããã°å
ã®ã¿ã€ã«ã®
åèšã¯ãé·ç§»ããšã«2ãŸãã¯4å¢å ããŸã ã ããã¯ãåãã¿ã€ã«ã®ãã¢ãçµã¿åãããŠããããã°å
ïŒãŸãã¯ãã£ãŒã«ãäž-ãã®ããããã£ã¯å®éã®ã²ãŒã ã«é©çšãããïŒã®ã¿ã€ã«ã®å€ã®åèšã倿Žãããªãããã§ããã€ãŸããã²ãŒã ã¯ã¿ã€ã«
2
ãŸãã¯ã¿ã€ã«
4
远å ããŸãã
ç¶æ
ã®åèšããã¬ã€ã€ãŒãã«ã°ã«ãŒãåãããšãæåã®ããã€ãã®ã¬ã€ã€ãŒã¯æ¬¡ã®ããã«ãªããŸãã
ã¹ããŒã ã®ãã€ãºã¬ãã«ãäžããããã«ãåŸã®ã¬ã€ã€ãŒã§ã¯ãé·ç§»ã®ããŒã¯ã0.9ïŒå®ç·ãäœããã®æ¹æ³ã§ããŒã¯ãããŠããªãå ŽåïŒããã³0.1ïŒç Žç·ïŒã®ç¢ºçã§ç€ºããŸããã
ç¶æ
ãåèšã«ãã£ãŠå±€ã«ã°ã«ãŒãåãããšãå¥ã®èŠåæ§ãæããã«ãªããŸãïŒåé·ç§»ïŒåæç¶æ
ããã®é·ç§»ãé€ãïŒã¯ã次ã®å±€ã§ç¢ºç0.9ã§ããŸãã¯ãã®åŸã®å±€ã§ç¢ºç0.1ã§çºçããŸãã ïŒããã¯ãäžã®å³ã®8ã10ãããã³12ã®ã¬ã€ã€ãŒãèŠããšç¹ã«æããã§ããïŒã€ãŸããã»ãšãã©ã®å Žåãã²ãŒã ã¯
2
ãæäŸããæ¬¡ã®ã¬ã€ã€ãŒã«é²ã¿ãŸããã幞éãªå Žåããããã²ãŒã ã¯
4
ãæäŸããŸããã¯ãã¬ã€ã€ãŒãã¹ãããã§ããããšãæå³ããŸããããã«ãããç®æšã«å°ãè¿ã¥ããã¿ã€ã«2048ã«å°éããŸãã
ã²ãŒã ã®çµãã
ãã®ããã»ã¹ã¯æ°žé ã«ç¶ããããšãã§ããŸããã
2048
ã¿ã€ã«ã«å°éããããšã®ã¿ã«é¢å¿ãããããããã®æç¹ã§åæ¢ãã
2048
ã¿ã€ã«ã®ç¶æ
ããã¹ãŠ
åžåããŸãã åžåç¶æ
ã«ã¯åäžã®é·ç§»ãããã確ç1ã§ããèªäœã«ã€ãªãããŸããã€ãŸããåžåç¶æ
ã«å°éãããšãããããæãåºãããšã¯ã§ããªããªããŸãã
ãã®å Žåããã¹ãŠã®åžåç¶æ
ã¯ãåå©ç¶æ
ãã§ã-ã¿ã€ã«
2048
ãåŸãã®ã§ãã²ãŒã ã«åã¡ãŸããã ããã°ãã䜿ã£ãã²ãŒã ãã§ã¯ãã倱ããæ¹æ³ã¯ãããŸããããªããªããå®éã®ã²ãŒã ãšã¯ç°ãªãããã£ãŒã«ãïŒãŸãã¯ãã°ãïŒããã£ã±ãã«ãªããšç¶æ³ã«é¥ãããšãã§ããªãããã§ãã
2048
ã¿ã€ã«ãå«ãæåã®ç¶æ
ã¯ã2066ã®éã®ã¬ã€ã€ãŒå
ã«ãããŸãããã£ãŒã«ãäžã§åäžã®
2048
ã¿ã€ã«ãååŸããããšã¯äžå¯èœã§ããã¿ã€ã«
1024
ãã¿ã€ã«
512
ãªã©ãçµåããã«ã¯ãããã€ãã®åããå¿
èŠã§ãã ãããã£ãŠã
2048
ã¿ã€ã«ãæã€æåã®ç¶æ
ã®ã¿ã€ã«ã®åèšã¯
2048
ããã倧ãããªããŸãã
ãã®æåã®åå©ç¶æ
ã®è¿ãã®ã°ã©ãã¯æ¬¡ã®ãšããã§ãïŒ
詳现ãåç
§ ïŒã åžåç¶æ
ã¯èµ€ã§åŒ·èª¿è¡šç€ºãããŸãïŒ
éåžåç¶æ
ããªããªããŸã§é·ç§»ã远å ãç¶ãããšãçµæãšããŠ3487ç¶æ
ãåŸããããã®ãã¡26ç¶æ
ãåžåãããŸãã ããã§ãã«ã³ãé£éã®å®çŸ©ã¯çµããã§ãã å
šåè·¯å³ã¯éåžžã«å€§ãããªããŸãããã䜿ãã®ã³ã³ãã¥ãŒã¿ãŒã5ã¡ã¬ãã€ãã®SVGãã¡ã€ã«ãåŠçã§ããå Žå
ãå
šåè·¯å³ãããã«ãããŸãïŒæåãèŠãã«ã¯å°ãã¹ã¯ããŒã«ããå¿
èŠããããããããŸããïŒã ãºãŒã ã¢ãŠããããšã次ã®ããã«ãªããŸãã
ãã§ãŒã³ã®éžæ
ãã«ã³ãé£éã®åœ¢ã§2048ã²ãŒã ïŒããã°ïŒã®ã¢ããªã³ã°ã«å€å€§ãªåŽåãè²»ãããã®ã§ããã¹ãŠã®åžåç¶æ
ã«å°éããããã«å¿
èŠãªåãã®æ°ã調ã¹ãå¿
èŠããããŸãã ãããè¡ãæãç°¡åãªæ¹æ³ã¯ãã·ãã¥ã¬ãŒã·ã§ã³ãå®è¡ããããšã§ãã åã·ãã¥ã¬ãŒã·ã§ã³ã§ã¯ãåæç¶æ
ããå§ãŸããé·ç§»ç¢ºçã«æ¯äŸããŠã©ã³ãã ã«æ¬¡ã®ç¶æ
ãéžæãããã®ç¶æ
ããããã»ã¹ãç¹°ãè¿ããã§ãŒã³ã«æ²¿ã£ãŠ1ã€ã®ãã¹ãçæããŸãã åã€ããã®åãã®æ°ã«ã€ããŠ100äžã®ã·ãã¥ã¬ãŒã·ã§ã³ãå®äºãããšã次ã®ååžãæããã«ãªããŸãã
éè²ã®çžŠç·ã§ããŒã¯ãããå¹³åã¯
938.8ç§»åã«çãããåæç¶æ
ããã®æåã®é·ç§»ãé€ãã
8.3ç§»åã®æšæºåå·®
ããããŸãã ããã§ãã²ãŒã ã«åã€åã®æå°äºæ³ç§»åæ°ã«ã€ããŠã®è³ªåã«å¯Ÿããç§ãã¡ã®çãã§ãïŒ
ãã«ã³ãé£éçè«ã«ãããããªãããŒãªæ°åŠã䜿çšããŠãããã®ç¹æ§ã®ããã€ããçŽæ¥èšç®ããããšãã§ããŸãã
ä»é²Aã§ã¯ ãã·ãã¥ã¬ãŒã·ã§ã³ã䜿çšããã«ç§»åæ°ã®å¹³åãšæšæºåå·®ãèšç®ããæ¹æ³ã瀺ããŸãã æ¬¡ã«ã
ä»é²Bã§ã¯ ãåè·¯ã®ããã€ãã®ããããã£ã䜿çšããŠãååžæ²ç·ã®åœ¢ç¶ã®å°ãªããšãéšåçãªèª¬æãæäŸããŸãã
çè«ãå®è·µã§ãã¹ããã
æåŸã«ããããã®çµæãå®éã®ç掻ã§ãã¹ãããããã«ãç§ã¯2048幎ã«äœåºŠããã¬ã€ããŸããïŒç§åŠã®ããã§ãïŒïŒãããŠãåã£ã28ã²ãŒã ã§ãç§»åæ°ãš2048
4ã¿ã€ã«ã«éãããšãã®ãã£ãŒã«ãäžã®ã¿ã€ã«ã®åèšãèšé²ããŸããïŒ
ãããã®æ°å€ãã¹ãã¬ããã·ãŒãã«æžã蟌ãã§ãããããããšãæ¬¡ã®æ£åžå³ãåŸãããŸããã
äºæ³ãããæå°ç§»åæ°ã«ãã©ã¹ãã€ãã¹1æšæºåå·®ãéã§ããŒã¯ããèµ€ã§2066ã¿ã€ã«ã®åèšãããŒã¯ããŸãããããã¯ã2048ã¿ã€ã«ã§å¯èœãªæå°ã¿ã€ã«ã®åèšã§ãã
ãã£ãŒã«ãäžã®ã¿ã€ã«ã®åèšã¯éèŠã§ããããã¯ãã¿ã€ã«ã倧ããå Žåãéåžžããã¹ãç¯ããŠå¥ã®ã¿ã€ã«ãšçµã¿åãããããšãã§ããªãå Žæãã倧ããªã¿ã€ã«ãé転ããããšãæå³ããããã§ãã æ¬¡ã«ãå¥ã®å€§ããªã¿ã€ã«ãšçµã¿åãããããšãã§ããå Žæã§ãã®ã¿ã€ã«ãåæ§ç¯ïŒãŸãã¯ãã£ãŒã«ãã®æ§æã倿ŽããŠé©åãªå Žæã«ç§»åïŒããããã«ãããã«å€ãã®ç§»åãå¿
èŠã§ããã
2048ã§ããŸããã¬ã€ããå Žåãçµæãã°ã©ãã®å·Šäžé
ã«ã°ã«ãŒãåããããããã®ã»ãšãã©ãéãç¹ç·ã®éã«ãããšäºæž¬ã§ããŸãã å®éãã芧ã®ãšãããçæ³ã«å°éããããšããããŸãããçµæã¯ããŸãå®å®ããŠããŸãããå³äžé
ã«ããªãã®æ°ã®ãã€ã³ãããããäœåãªåããšã¿ã€ã«ããããããããŸãã
ãŸãããã®ã°ã©ãã¯ãåæã«ãã£ãŠæå°ã®
äºæ³ç§»åæ°ããåŸãããªããšããäºå®ã匷調ããŠããŸãã éãè¯ãã£ãã²ãŒã ãããã€ãããã927ã®åããšåèš2076ã¿ã€ã«ã®åå©ãå«ãã938.8æªæºã®åãã§åã¡ãŸããïŒããã¯ãéžæã®äžçªäžã®è¡ã®å·Šãã2çªç®ã®çµæã§ãïŒã誀ã£ãŠ
4
æã®ã¿ã€ã«ãæã«å
¥ããŸããããŸããäœåãªåããå¿
èŠãšããé倧ãªãã¹ãç¯ããªãã£ãããã§ãã
ååãšããŠãããã519ã®åãã§ã²ãŒã ã«åã€å¯èœæ§ãããéãŒãã®ç¢ºçããããŸãã ãããæ±ºå®ããã«ã¯ããã§ãŒã³ãééããåžžã«ãµã€ã
4
ãžã®é·ç§»ãéžæããã¿ã€ã«2048ãéæããããã«å¿
èŠãªé·ç§»ã®æ°ãã«ãŠã³ãããŸãããã ãããã®ãããªçµæã®ç¢ºçã¯
0.1521 ããŸãã¯
10â521 ã ç§ãã¡ã芳枬ããŠããå®å®ã§ã¯ãããã
1080 ååãªã®ã§ããã®ãããªã²ãŒã ãããªãã«èœã¡ãã®ãåŸ
ã€ããã«æ¯ãæ¢ããŠã¯ãããŸããã ãŸããéåžžã«äžéã§ãåžžã«ã¿ã€ã«
2
åãåãå Žåãããã1032ã ãŒãã§åã€ããšãã§ããŸãã ãã®ãããªã²ãŒã ã¯ããå¯èœæ§ãé«ãããã®ç¢ºçã¯
0.91034 ã»ãŒçãã
10â48 ããããã£ãŠãããããããã®ãããªã²ãŒã ã¯æ¯ãåãããŠåŸ
ã€äŸ¡å€ã¯ãããŸããã ã¿ã€ã«
2
ã®åºçŸç¢ºçã¯ã¿ã€ã«
4
ã®åºçŸç¢ºçãããã¯ããã«é«ããããå¹³å938.8ã®ç§»åã¯519ããã1032ã«ã¯ããã«è¿ããªããŸãã
ãããã«
ãã®ããŒãã§ã¯ãåäžã®ã¿ã€ã«ã®çµåãåžžã«å¯èœã§ããå Žåã®2048ã²ãŒã ã®é²åãã·ãã¥ã¬ãŒããããã«ã³ãé£éãäœæããæ¹æ³ãæ€èšããŸããã ããã«ãããã²ãŒã ã®è峿·±ãç¹æ§ãèšç®ããããã«ãã«ã³ãé£éãåžåããçè«ã®ææ³ãé©çšããããšãã§ããŸãããç¹ã«ãåã€ã«ã¯å¹³åã§å°ãªããšã938.8ã®åããå¿
èŠã§ããããšãããããŸããã
ãã®ã¢ãããŒãã䜿çšã§ããããã«ããäž»ãªåçŽåã¯ããã£ãŒã«ãæ§é ãç¡èŠããããšã§ãã ã€ãŸããã¿ã€ã«ãããã°ã«èœãšãããã£ãŒã«ãã«ã¯çœ®ããªãããšããå§ãããŸãã 2çªç®ã®éšåã§ã¯ããã£ãŒã«ãã®æ§é ãèæ
®ããå Žåã®ã±ãŒã¹ãæ€èšããäºå®ã§ãã èæ
®ããå¿
èŠã®ããç¶æ
ã®æ°ãäœæ¡ã倧ãããªãããšãåŠç¿ããŸããïŒãããããããªããèããã»ã©ã§ã¯ãªããããããŸãããïŒããã«ã³ãã®æææ±ºå®ããã»ã¹ã®äžçã«å
¥ã£ãŠããã«ã³ãé£éã®äžçãé¢ããªããã°ãªããªãããšãçè§£ããŸããããã«ããããã¬ã€ã€ãŒã®æ¹çšåŒã«æ»ãããšãã§ããŸãã ååãšããŠãã²ãŒã ãå®å
šã«ã解決ãããããšãã§ããŸããã€ãŸããããããæé©ãªãã¬ã€æ¹æ³ãèŠã€ããããšãã§ããŸãã
ä»é²AïŒãã«ã³ãé£éåæ
ãã«ã³ãé£éãèšå®ããåŸãæ°åŠã®åã䜿çšããŠãã·ãã¥ã¬ãŒã·ã§ã³ãªãã§ãã®ç¹æ§ã®èšç®ãå®è¡ã§ããŸãã ãããã®èšç®ã®å€ãã¯ããã«ã³ãé£éã
åžåãã«ã³ãé£éãšåŒã°ããç¹å¥ãªçš®é¡ã®ãã«ã³ãé£éã«å±ããŠããããã«ã®ã¿å¯èœ
ã§ã ã
åžåãã§ãŒã³ã«é¢é£ããã«ã¯ããã«ã³ããã§ãŒã³ã次ã®åºæºãæºãããŠããå¿
èŠããããŸãã
- å°ãªããšã1ã€ã®åžåç¶æ
ãå¿
èŠã§ãã äžã§èŠãããã«ããã§ã€ã³ã«ã¯26ã®åžåç¶æ
ããããããããã®åã¡ç¶æ
ã«
2048
ã¿ã€ã«ããããŸãã - ä»»æã®ç¶æ
ãæéæ°ã®é·ç§»ã§åžåç¶æ
ã«å°éã§ããŸãã ãããæ±ºå®ãã1ã€ã®æ¹æ³ã¯ãåžåç¶æ
以å€ã®ãã§ãŒã³ã«ãµã€ã¯ã«ããªãããšã確èªããããšã§ããåžåç¶æ
ãé€ããŠããã§ãŒã³ã¯æåé埪ç°ã°ã©ãã§ãã
é·ç§»è¡å
åžåãã«ã³ãé£éããããšå€æããã®ã§ã次ã®ã¹ãããã¯ããã®
é·ç§»è¡åã
æšæºåœ¢åŒã§èšè¿°
ããããšã§ãã é·ç§»è¡åã¯ãäžã§å®çŸ©ããé·ç§»ç¢ºçãé åºä»ããŠãèŠçŽ ã
ïŒiãjïŒ ç¶æ
ããã®é·ç§»ã®ç¢ºçã§ã
i è¿°ã¹ã
j ã
é·ç§»è¡åãž
mathbfP åžååè·¯
r åžåç¶æ
ãš
t åãæ»ããªã ïŒã€ãŸãéåžåæ§ïŒç¶æ
ã¯æ£æºåã§ããå¯èœæ§ãããã4ã€ã®å°ããªè¡åã«åå²ããããšãå¯èœã§ããã¹ãã§ã
mathbfQ ã
mathbfR ã
mathbf0 ãããŠ
mathbfI ãã®ãããªïŒ
mathbfP= leftïŒ beginarraycc mathbfQïŒ mathbfR mathbf0ïŒ mathbfIr endarray\å³ïŒ
ã©ãã§
mathbfQ è¡åã§ã
t timest ããåæ¶äžèœãªç¶æ
ããå¥ã®åæ¶äžèœãªç¶æ
ã«ç§»è¡ãã確çãèšè¿°ãã
mathbfR è¡åã§ã
t\år éåŸ©åž°ç¶æ
ããåžåç¶æ
ãžã®é·ç§»ã®ç¢ºçãèšè¿°ãã
mathbf0 è¡åã瀺ããŸã
r timest ãŒããš
mathbfIr ç¶æ
ãåžåããããã®é·ç§»è¡åã§ããããã¯åäœè¡åã§ã
r\år ã
åè·¯ã®é·ç§»è¡åãæšæºåœ¢åŒã«å€æããã«ã¯ãç¶æ
ã®é åºã決å®ããå¿
èŠããããŸãã ïŒ1ïŒç¶æ
ãåžåãããŠãããïŒåžåç¶æ
ãæåŸã§ãããïŒã«åŸã£ãŠç¶æ
ã䞊ã¹ãïŒ2ïŒã¿ã€ã«ã®åèšïŒæé ïŒã§äžŠã¹ãããæåŸã«ïŒ3ïŒåå¥é ã§äŸåé¢ä¿ãåãé€ããŸãã ãããè¡ããšã次ã®ãããªãã¯ã¹ãåŸãããŸãã
ããªã倧ãããã€ãŸããµã€ãº
3487\å3487 ããããã£ãŠããºãŒã ã¢ãŠããããšãã»ãŒæãã«èŠããŸãããå³äžé
ããºãŒã ã€ã³ãããšãæ§é ãããããšãããããŸããç¹ã«ãç§ãã¡ãç®æããŠããæšæºçãªãã¥ãŒããããŸãã
åºæ¬ãããªãã¯ã¹
é·ç§»è¡åã®æ£æºåœ¢ãååŸããããããã䜿çšããŠ
ããã§ãŒã³ã®
åºæ¬è¡åãšåŒã°ãããã®ãèŠã€ããŸãã ããã«ããããã€ã¯ãªãŒããŒåã«äºæ³ãããé·ç§»ã®æ°ãèšç®ã§ããŸããã€ãŸããïŒæçµçã«ïŒïŒå
ã®è³ªåã«å¯ŸããçããèŠã€ãããŸãã
åºæ¬ãããªãã¯ã¹
mathbfN æ¯èŒçèšå®ãããŠããŸã
mathbfQ ã¢ã€ãã³ãã£ãã£å¹³ç
mathbfN= sum inftyk=0 mathbfQk mathbfN= sum inftyk=0 mathbfQk
ã©ãã§
mathbfQk 瀺ã
k ãããªãã¯ã¹åºŠ
mathbfQ ã
ã¢ã€ãã
ïŒiãjïŒ mathbfN äžå®ã®è§£éããããŸãïŒããã¯ãç¶æ
ã«å
¥ãäºæ³åæ°ã§ã j ç¶æ
ããå§ãŸããã§ãŒã³ããã©ãå Žå i ã
ãããèŠãããã«ãèŠçŽ ãšã㊠ïŒiãjïŒ è¡å Q ç¶æ
ããã®é·ç§»ã®ç¢ºçã§ã i è¿°ã¹ã
j 1ã€ã®é·ç§»ã§ãèŠçŽ ïŒiãjïŒ è¡å Qk ç¶æ
ã«å
¥ã確çã§ã j ãŸãã« k ç¶æ
ã«å
¥ã£ãåŸã®é·ç§» i ã
ç¹å®ã®ç¶æ
ã®ãã¢ã®å Žå i ãããŠ
j ãã¹ãŠã«ã€ããŠè¿°ã¹ã確çãèŠçŽããŸã kâ¥0 ãç¶æ
ã«å
¥ãæ©äŒããããã³ã«éé¡ãå«ãŸããŸã j ç¶æ
ã®åŸ iã察å¿ãã確çã§éã¿ä»ããããŠãããåžæããæåŸ
å€ãåŸãããŸãã幞ããªããšã«ãåºæ¬è¡åã¯ãéè¡åãšããŠãäžå¿«ãªç¡éã®åèšãªãã§çŽæ¥èšç®ã§ããŸããItâQ ã©ãã§
It åäœè¡åã§ã tÃt ã ã€ãŸãã
N=(ItâQ)â1 ã
ïŒããã®èšŒæ ã¯èªè
ã®å®¿é¡ã«ãªããŸãïŒïŒåã€ãšäºæ³ãããåãã®æ°
åºæ¬è¡åãåãåã£ãåŸãã©ã®ç¶æ
ããã®é·ç§»ã®äºæ³æ°ãèŠã€ããããšãã§ããŸã i è¡ã®ãã¹ãŠã®èŠçŽ ãåèšããããšã«ãããåžåç¶æ
ã« i-èšãæããã°ãåžåç¶æ
ã«å
¥ãåã®é·ç§»ã®æ°ã¯ãéäžã§å埩äžèœãªãã¹ãŠã®ç¶æ
ã§è¡ããªããã°ãªããªãã£ãé·ç§»ã®ç·æ°ã«çãããªããŸãããã¯ãã«ã«ãã£ãŠè¡åã®ç©ãèšç®ããããšã«ããããã¹ãŠã®ç¶æ
ã®ãããã®ã·ãªãŒãºã®åèšãäžåºŠã«ååŸã§ããŸãN1 ã©ãã§
1 åãã¯ãã«ã瀺ããŸã t ã 以æ¥
N=(ItâQ)â1 ç·åœ¢æ¹çšåŒãè§£ãããšã§ãããè¡ãããšãã§ããŸã(ItâQ)t=1
ã®ããã«
t ã
ã¢ã€ãã t åæç¶æ
ã«å¯Ÿå¿ïŒç©ºã®ã»ãã {}ïŒãé·ç§»ã®æ°ã§ãããã®å Žåãçµæã®æ°å€ã¯939.8ã§ããå®äºããã«ã¯ãæžç®ããã ãã§ã1ãåæç¶æ
ããã®ç§»è¡ã¯ç§»åãšã¯èŠãªãããªãããã§ããããã«ãããæçµçãªçã-938.8ã®åããåŸãããŸãããŸããæå°ç§»åæ°ã®åæ£ã次ã®ããã«ååŸããããšãã§ããŸãã2(NâIt)tâtât
ã©ãã§
âã¯ãã¢ãããŒã«ã®ïŒæåããšã®ïŒç©ã瀺ããŸããåæç¶æ
ã§ã¯ã69.5ã®åæ£ãåŸããã8.3ã¹ãããã®æšæºåå·®ãåŸãããŸããä»é²BïŒååžæ²ç·ã®åœ¢ç¶
åºæ¬è¡åã䜿çšããŠããã«ã³ãé£éããã®åå©ãžã®åãã®ååžã®å¹³åãšåæ£ã®äž¡æ¹ãèšç®ã§ããããšã¯æ³šç®ã«å€ããŸãããããããã£ã¹ããªãã¥ãŒã·ã§ã³ããã®ãããªåœ¢åŒã§ããããšã倿ããçç±ãç¥ã£ãŠãããšããã§ããããããã§ã®ç§ã®ã¢ãããŒãã¯ããããã®ãã®ã§ããããããããã¯ã·ãã¥ã¬ãŒã·ã§ã³ããã®çµéšçãªçµæãšå¯æ¥ã«äžèŽããããã€ãã®æçšãªæ
å ±ãæäŸããŸããå
ã«è¡ã£ãèŠ³æž¬ã«æ»ãããšããå§ããŸãããã£ãŒã«ãäžã®ã¿ã€ã«ã®åèšã¯ãé·ç§»ããšã«2ãŸãã¯4ãã€å¢å ããŸãïŒåæç¶æ
ããã®æåã®é·ç§»ãé€ãïŒã以äžã§èª¬æããããã«ãtileãååŸããã®ã§ã¯ãªãããã£ãŒã«ãã§ç¹å®ã®éãååŸããããšã«é¢å¿ãããå Žå2048
ãäºé
ååžã䜿çšããŠå¿
èŠãªé·ç§»æ°ãèšç®ããã®ã¯éåžžã«ç°¡åã§ããã§ããããæ¬¡ã®è³ªåã¯ã©ãã ãåãåãããããšããããšã§ããäžèšã®ãã«ã³ãé£éã®åæããã26ã®åžåïŒåå©ïŒç¶æ
ããããšå€æããŸããããŸãããããã¯ç°ãªããéã®å±€ãã«ããããšãããããŸãããã€ãŸããç§ãã¡ãç®æããŠããéã¯1ã€ã§ã¯ãªããããã€ããããŸããåç¶æ
ãåžåããã確çãç¥ãå¿
èŠããããŸããããã¯åžåã®ç¢ºçãšåŒã°ããŸããæ¬¡ã«ãååžåç¶æ
ã®åžå確çãåèšã®åå¥ã®ã¬ã€ã€ãŒã«èŠçŽããŠãç¹å®ã®çµæã®åèšã§åã€ç¢ºçãèŠã€ããããšãã§ããŸããåžå確ç
幞ããªããšã«ãåžå確çã¯åºæ¬è¡åãããèŠã€ããããšãã§ããŸããç¹ã«ãç·åœ¢æ¹çšåŒãè§£ãããšã§ããããååŸã§ããŸã(ItâQ)B=R
ãããªãã¯ã¹çš
B ãµã€ãº tÃr ãã®èŠçŽ ïŒiãjïŒ ç¶æ
ã§ã®åžåã®ç¢ºçã§ã j ç¶æ
ããå§ãŸã i ã
åãšåãããã«ãåæç¶æ
ããéå§ãããšãã®åžåã®ç¢ºçã«èå³ããããŸããåžåã®ç¢ºçã®ã°ã©ããäœæãããšã15ã®åžåç¶æ
ãããããã®ç¢ºçã¯ã°ã©ãã«è¡šç€ºããã®ã«ååãªå€§ããïŒå°ãªããšã10â3 ïŒïŒ
ç¹ã«ãã»ãšãã©ã®ã²ãŒã ã¯çµäºãŸãã¯ç¶æ
{2,2,8,8,2048} åèšã2068幎ããŸãã¯å·å¥ {2,4,16,2048} ãåèšã¯2070ã§ããå±€ã®åèšã§ãã¹ãŠã®åžåç¶æ
ãåèšãããšãå±€ã®åèšã®å®å
šãªç¢ºçãåŸãããŸããäºé
確ç
ç®æšãéæã§ããéããããããããã®ç®æšãéæããé »åºŠãããã£ãã®ã§ã次ã®è³ªåã¯æ¬¡ã®ãšããã§ããç¹å®ã®éãåŸãããã«å¿
èŠãªåãã¯ããã€ã§ãããäžèšã®ããã«ãäºé
ååžã«é¢é£ããŠãã®åé¡ãèªèã§ããŸããããã«ãããç¹å®ã®æ°ã®ã詊è¡ãããç¹å®ã®æ°ã®ãæåãã®ç¢ºçãèšç®ã§ããŸãããã®å Žåãã詊è¡ããšã¯ç§»åãæå³ãããæåããšã¯ã²ãŒã ãã¿ã€ã«ãäžããç§»åãæå³ã4
ãŸããäžèšã®ããã«ãããã¯0.1ã®ç¢ºçã§çºçããŸããããã§ã®ã倱æããšã¯ãã²ãŒã ãã¿ã€ã«ãäžããåãã§ããã2
0.9ã®ç¢ºçã§èµ·ãããŸãããã®æåã®è§£éãèãããšãäžããããéãåŸãããã«S ã®ããã« M å¿
èŠãªåã S2âM ããã®æå M åããŸãã
ããã¯ãåç§»åãå°ãªããšã远å ããããã«çºçããŸã 2 ããã¯äžè¬çã«äžãã 2M ãåæåã¯è¿œå ã®éã«è¿œå ãããŸã 2 äžè¬çã«è²¢ç® 2(S2âM)=Sâ2M ã
ãããã®å€ã远å ãããšãå¿
èŠãªéãåŸãããŸã S ã
次ã«ãéé¡ãååŸããå
±å確ç S ç§»ååæ° M äºé
ã§ãããç¹ã«Pr(M=m,S=s)=B(s2âm;m,0.1)
ã©ãã§
B(k;n,p) ã¯äºé
ååžã®è³ªéååžé¢æ°ã§ãããæ£ç¢ºã«ååŸãã確çãäžããŸã k ã®æå n æåã®ç¢ºçã p ãã€ãŸã
B(k;n,p)=(nk)pk(1âp)nâk
ã©ãã§
(nk)ã¯äºé
ä¿æ°ã瀺ããŸããç®æšé¡ãããã£ãã®ã§Sãç§ãã¡ãåªåããŠããã®ã§ãé¢å¿ã®ããéé¡ãå
񆆂
ããã®ãã®ã§ãããšããäºå®ãèæ
®ããŠãåãã®æ¡ä»¶ä»ãååžãèšç®ã§ããŸããã€ãŸããèŠã€ããããšãã§ããŸãPr(M|S) ã©ããã£ãŠ
Pr(M|S)=Pr(M,S)Pr(S)
ã©ãã§
Pr(S) å ç®ã«ããå
±åååžããååŸ M ããããå¯èœãªéã«å¯Ÿã㊠S ã
ããã¯æ³šç®ã«å€ãã P(S)ã²ãŒã ã¯ã¿ã€ã«ãäžããããšã§éé¡ããã¹ããããããå¯èœæ§ãåžžã«ãããããå¯èœãªéé¡ããšã«1æªæºã§ã4
ãåç®æšéã«ã€ããŠãããã®æ¡ä»¶ä»ãååžããã¹ãŠåãåã£ãã®ã§ãããããå ç®ããŠãç®æšéã®ç·åžå確çã§éã¿ä»ãããç·ç¢ºçãååŸããããšãã§ããŸããããã«ãããã·ãã¥ã¬ãŒã·ã§ã³ã®ååžãšããªãæ£ç¢ºã«äžèŽããŸããããã§ã¯ãã·ãã¥ã¬ãŒããããååžã¯ç°è²ã®åã§ç€ºãããè²ä»ãã®é åã¯åæ¡ä»¶ä»ãååžã瀺ããŠããŸãã忡件ä»ãååžã¯ããã®åèšã®åžåã®åèšç¢ºçã«åŸã£ãŠã¹ã±ãŒãªã³ã°ãããå¹³åããŠããå€ãã®éãããå€ãã®åããå¿
èŠãšãããããããã€ãã®åãã«ãã£ãŠã·ãããããŸãããã®çµæã®1ã€ã®è§£éïŒæé©ãªã²ãŒã ã§ã¯ãåã€ããã®åãã®æ°ã¯ããã¬ã€ã€ãŒã2048ã¿ã€ã«ãå容ããã®ã«ååãªå€§ãããã©ãã ãæ©ãååŸã§ãããã«äŸåãããã4
ã¯äºé
ååžã«ç¶ãã¿ã€ã«ã®æ°ã«äŸåããŸãã
ãã®èšäºã®äžæžããç·šéããŠãããHope ThomasãšNate Stemenã«æè¬ããŸããæ³šé
- , , . .
- : ,
2
, , , 4
, 8
. dot
graphviz . dot
, .- ãYou winïŒãç»é¢ã®å€èгã¯ããã®ããŒã¿ãåéããæ°ãæã«ããã£ãŠæ°åå€åããŸãããèšé²ã®ããã«ïŒããããã¹ãŠã®æã®éãç§ã¯2048幎ã«ãã¬ãŒããã ãã§ã¯ãããŸããã
ããŒã2.çµã¿åããã䜿çšããç¶æ
ã®ã«ãŠã³ã
åã®ããŒãã§ã2048ã²ãŒã ã«åã€ã«ã¯å¹³åã§å°ãªããšã938.8ã®ç§»åãå¿
èŠã§ããããšãããããŸããããããã®èšç®ãå®è¡ã§ããããã«ãªã£ãäž»ãªåçŽåã¯ããã£ãŒã«ãã®æ§é ãç¡èŠããããšã§ã-æ¬è³ªçã«ãã¿ã€ã«ããã£ãŒã«ãã«çœ®ãã®ã§ã¯ãªããããã°ã«æãå
¥ããŸããããã®ããã®ã³ã°ããããåçŽåã®ãããã§ã3486å·ã®ã¿ã®ãã«ã³ãé£éã®åœ¢ã§ã²ãŒã ãã·ãã¥ã¬ãŒãããããšãã§ããŸããããã®ããŒãã§ã¯ããããã°ããåçŽåããã«ç¶æ
ã®æ°ãèšç®ããæåã®è©Šã¿ãè¡ããŸããã€ãŸãããã®éšåã§ã¯ç¶æ
ãã£ãŒã«ãã®å®å
šãªæ§æãå«ãŸãããã£ãŒã«ãã®åã»ã«ã«ååšããã¿ã€ã«ã決å®ãããŸãããããã£ãŠãã¿ã€ã«ïŒããã³ã¿ã€ã«ã®ãªãã»ã«ïŒã®äœçœ®ãå«ãŸããã®ã§ããã®ã¿ã€ãã®ç¶æ
ãã¯ããã«å€ããªãããšãæåŸ
ããå¿
èŠããããŸããåŸã§èŠãããã«ãããã¯ãŸãã«ããã§ãããããè¡ãããã«ãåæåã³ã³ããããªã¯ã¹ã®ïŒåçŽãªïŒãã¯ããã¯ã䜿çšããŠãããšãã°äžèšã§èª¬æããããã«ãã²ãŒã ã§ã¯çºçã§ããªãæžã蟌ã¿å¯èœãªç¶æ
ãé€å€ããŸããçµæã¯ã2048ã«é¡äŒŒãããã¹ãŠã®ã²ãŒã ãããã«ã¯ïŒ4x4ã ãã§ãªãïŒä»ã®ãã£ãŒã«ãã§ãã¬ã€ãããã²ãŒã ãä»ã®ã¿ã€ã«ïŒ2048
ïŒå°ãããã£ãŒã«ããå°ããã¿ã€ã«ã§ã®ãã®ãããªã²ãŒã ã®ç¶æ
ã¯ã2048幎ã®å®å
šãª4x4ã²ãŒã ãããã¯ããã«å°ãªãç¶æ
ã§ãããããã§äœ¿çšãããææ³ã¯ãå°ãããã£ãŒã«ããµã€ãºã§äºæ³ãããæ¡ä»¶ã®æ°ãæžããã®ã«æ¯èŒç广çã§ããããšãããããŸããããŒãã¹ãšããŠã4x4ãã£ãŒã«ããã¿ã€ã«ã«å°éã§ããæå°ã®æ£æ¹åœ¢ãã£ãŒã«ãã§ããããšãããã2048
ãŸããã°ã©ãã®å®è£
ãŸãã¯ã³ãŒããè©äŸ¡ãããå Žåããã®éšåã®ããŒã¹ãšãªãïŒç ç©¶å質ã®ïŒã³ãŒãã¯ãªãŒãã³ãœãŒã¹ã§ããããŒã¹ã©ã€ã³
2048ã²ãŒã ã®ç¶æ
æ°ãæšå®ããæãæçœãªæ¹æ³ã¯æ¬¡ã®ãšããã§ãã16åã®ã»ã«ããããåã»ã«ã¯ç©ºã«ããããå€ã2ã®11ã®çޝä¹ïŒ2ãã2048ïŒã®ããããã§ããã¿ã€ã«ãå«ãããšãã§ããŸããã»ã«ãã€ãŸãåèš 1216 ããŸãã¯184å
ïŒããã 1017ïŒãã®æ¹æ³ã§èšè¿°ã§ããå€ãæ¯èŒã®ããïŒããã€ãã®æšå®ã«ãããšããã§ã¹ç€äžã®äœçœ®ã®å¯èœãªæ§æã®æ°ã¯ã»ãŒçãã1045ãæè¿ã®æšå®ã«ãããšãã²ãŒã ã§ã¯10170 ç¶æ
ãªã®ã§ãå°ãªããšã 1017-ããã¯ãããããããŸãããããã¯ã²ãŒã ã®èšé²ã§ã¯ãããŸãããããäžè¬çãªåœ¢åŒã§ã¯ããã®ãããª2048ã²ãŒã ã¯æ¬¡ã®ããã«è¡šãããšãã§ããŸããB ãã£ãŒã«ãã®ãµã€ãºã§ããã K -å€ãæã€åå©ã¿ã€ã«ã®çšåºŠ 2K ã
䟿å®äžã C ãã£ãŒã«ãå
ã®ã»ã«ã®æ°ãã€ãŸã C=B2 ã
4x4ãã£ãŒã«ããæã€éåžžã®2048ã²ãŒã ã®å ŽåïŒ B=4 ã
C=16 ããããŠ
K=11 ãªããªã 211=2048 ãããã³å¯èœãªç¶æ
æ°ã¯(K+1)C
次ã«ãèããããæå³ãæç¢ºã«ããæ¹æ³ãèŠãŠã¿ãŸãããããŸããã¿ã€ã«ãååŸãããšã²ãŒã ãçµäºãããã2Kããã®ã¿ã€ã«ãã©ãã«ããããã以å€ã®ãã£ãŒã«ãã«äœããããã¯æ°ã«ããŸããããããã£ãŠããã¹ãŠã®ç¶æ
ãã¿ã€ã«ãšçµã¿åãããããšãã§ããŸã2Kãåå©ããšããç¹å¥ãªç¶æ
ã«ãããŸããä»ã®ç¶æ
ã§ã¯ãåã»ã«ã¯ç©ºã§ããããã¿ã€ã«ã®1ã€ãå«ãããšãã§ããŸãKâ1 ã
ããã«ãããé¢å¿ã®ããæ¡ä»¶ã®æ°ãæžããŸãKC+1
ã©ãã§
1-ããã¯ãåå©ãã®ç¶æ
ã§ãã第äºã«ããããã®æ¡ä»¶ã®ããã€ãã«æ°ã¥ãããšãã§ããŸãKCã²ãŒã ã§çºçããããšã¯ãããŸãããç¹ã«ãã²ãŒã ã®ã«ãŒã«ã¯2ã€ã®æçšãªããããã£ãæå³ããŸããããããã£1ïŒãã£ãŒã«ãã«ã¯åžžã«å°ãªããšã2ã€ã®ã¿ã€ã«ããããŸããããããã£2ïŒãã£ãŒã«ãã«ã¯åžžã«å°ãªããšã1ã€ã®ã¿ã€ã«2
ãŸãã¯ã¿ã€ã«ããããŸã4
ãæåã®ããããã£ã¯å°éãããŸãããªããªãã2ã€ã®ã¿ã€ã«ã§ã²ãŒã ãéå§ããããããçµåããŠãããŸã 1ã€ããããã®åŸãã²ãŒã ã¯ã©ã³ãã ãªã¿ã€ã«ã1ã€è¿œå ãã2ã€ååšããããã§ããã²ãŒã ã¯åžžã«ç§»ååŸã«ã¿ã€ã«2
ãŸãã¯ã¿ã€ã«ã远å ããããã2çªç®ã®ããããã£ãå°éãã4
ãŸãããããã£ãŠãæ£ããç¶æ
ã§ã¯ããã£ãŒã«ãäžã«å°ãªããšã2ã€ã®ã¿ã€ã«ãå¿
èŠã§ããããã®ãã¡ã®1ã€ã¯ã¿ã€ã«2
ãŸãã¯ã¿ã€ã«ã§ãªããã°ãªããŸããã4
ããããèæ
®ããããã«ãã¿ã€ã«2
ãªããŸãã¯ã¿ã€ã«ãªãã®ãã¹ãŠã®ç¶æ
ãæžç®ã§ããŸã4
ã(Kâ2)Cã1ã€ã®ã¿ã€ã«2
ãšæ®ãã®ç©ºã®ã»ã«ã®ã¿ãå«ãç¶æ
ãCã1ã€ã®ã¿ã€ã«4
ãšæ®ãã®ç©ºã®ã»ã«ã®ã¿ãå«ãç¶æ
ãC ã
èããããæå³ãäžããŠãããŸããKCâ(Kâ2)Câ2C+1
ç¶æ
ã
ãã¡ãããã〠K ãŸãã¯
C çŽ æŽãããã§ãã KCãã€ãŸããäž»ãªçšèªã§ãããå°ããªå€ã®å Žåããã®èª¿æŽã¯ããéèŠã§ãããã®åŒã䜿çšããŠãããŸããŸãªãµã€ãºã®ãã£ãŒã«ããšæå€§ã¿ã€ã«ã®å¯èœãªç¶æ
æ°ãæžãããŸããããæå€§ã¿ã€ã« | ãã£ãŒã«ããµã€ãº |
---|
| 2x2 | 3x3 | 4x4 |
---|
8 | 73 | 19 665 | 43,046.689 |
16 | 233 | 261 615 | 4,294,901,729 |
32 | 537 | 1 933 425 | 152544 843 873 |
64 | 1,033 | 9 815 535 | 2 816 814 940 129 |
128 | 1,769 | 38 400 465 | 33 080 342 678 945 |
256 | 2 793 | 124 140 015 | 278 653 866 803 169 |
512 | 4 153 | 347 066 865 | 1 819 787 258 282 209 |
1024 | 5 897 | 865 782 255 | 9718525 023 289 313 |
2048 | 8 073 | 1 970 527 185 | 44 096 709 674 720 289 |
2x2ãš3x3ã®ãã£ãŒã«ããæã€ã²ãŒã ã§ã¯ã4x4ã®ã²ãŒã ãããç¶æ
ãã¯ããã«å°ãªãããšãããã«ããããŸããããã«ã4x4ã²ãŒã ã§äœ¿çšå¯èœãªã¿ã€ã«ã®æ°ã2048âãªã³ãªãŒâ 44å
åããŸãã¯ã1016 ã
ã¬ã€ã€ãŒã§æ°ãã
ïŒç¶æ
ã®ãããã®æ°ãããå°ãçè§£ããããã«ãæã
ã¯ãåã®ã»ã¯ã·ã§ã³ã«æçšã§ãããããäžã€ã®éèŠãªç¹æ§ã䜿çšããããšãã§ããŸãããããã£3ïŒåã¿ãŒã³2ãŸãã¯4ã«ãã£ãŒã«ãå¢å ã®ã¿ã€ã«ã®åèšãã®ã«ãŒã«ã芳å¯ããã2æã®ã¿ã€ã«ã®åŽåçµåã®ã§ããã£ãŒã«ãäžã®ã¿ã€ã«ã®éã¯å€æŽãããŸããããã®åŸãã²ãŒã ã¯2
ãŸãã¯ã远å ããŸã4
ãããããã£3ã¯ãã²ãŒã äžã«ç¶æ
ãç¹°ãè¿ãããªãããšãæå³ããŸããããã¯ãã¿ã€ã«ã®åèšã«ãã£ãŠç¶æ
ãã¬ã€ã€ãŒã«ãœãŒãã§ããããšãæå³ããŸããã²ãŒã ãåèš10ã®å±€ã®ç¶æ
ã«ããå Žåãæ¬¡ã®ç¶æ
ã¯åèš12ãŸãã¯14ã®å±€ã«ããããšãããããŸããåå±€ã®ç¶æ
ã®æ°ãèšç®ã§ããããšãããããŸããããã
Sãã£ãŒã«ãäžã®ã¿ã€ã«ã®éã瀺ããŸãããã®æ¹æ³ã®æ°ãæ°ãããC ããããã2ãã2ã®çޝä¹ã§ã 2Kâ1 ååŸããããã«æãç³ãããšãã§ããŸã S ã
幞ããªããšã«ãããã¯çµåãè«ã®ããç ç©¶åé¡ã®äžçš®ã§ããïŒã«ãŠã³ãæ²æŽæ°ãäžè¬ã«ãæŽæ°ã®æ§æS åèšããæŽæ°ã®é åºä»ããããã³ã¬ã¯ã·ã§ã³ã§ã S ;
éåäœã®åæŽæ°ã¯partãšåŒã°ããŸããããšãã°ãæŽæ°3 ããªãã¡ã4ã€ã®æ§æããããŸã 1+1+1 ã
1+2 ã
2+1 ãããŠ
3 ã
ããšãã°ã2ã®ã¹ãä¹ãäžå®æ°ã®ããŒãã®ååšãªã©ãããŒãã«å¶éãããå Žåããã®ãããªæ§æã¯limitedãšåŒã°ããŸããããã«å¹žããªããšã«ãChinn and NiederhausenïŒ2004ïŒ1ã¯ãã§ã«ãã®ã¿ã€ãã®éãããæ§æã®ã¿ãç ç©¶ããŠãããååž°ãéçºããŠãåéšåã2ã®çޝä¹ã§ããç¹å®ã®æ°ã®éšåãããæ§æã®æ°ãèšç®ã§ããããã«ããŸãããããã
N(s,c) å
šäœã®æ§æïŒæ£ïŒã®æ°ã瀺ããŸã s ãŸãã« c ããŒããåããŒãã¯2ã®çޝä¹ã§ãã ãããã
N(s,c)={ââlog2sâi=0N(sâ2i,câ1),2â€câ€s 1,c=1, s - 2 0,
ãªããªããããããã®æ§æã®ããã«æ°å sâ2i ã§
câ1 æ§æãååŸã§ããéšå s ãã
c ããŒããå€ãæã€1ã€ã®ããŒãã远å 2i ã
ããã§ãåèšã®å¢çã«å°ããªå€æŽãå ããå¿
èŠããããŸãã2ããå§ãŸã2ã®ã¹ãä¹ã䜿çšããå¿
èŠããããŸãã 2Kâ1 ã¿ã€ã«ãããå Žå 2Kãã®åŸãã²ãŒã ã«åã¡ãŸãããããè¡ãã«ã¯ãNm(s,c) çªå·æ§æã®æ°ã瀺ããŸã s ãŸãã« c ããŒããåããŒãã¯2ã®çޝä¹ã§ãã 2m åã«
2Kâ1 ã
äžèšã®ããžãã¯ã«ãããããã¯æ¬¡ã®æ¹çšåŒã§å®çŸ©ã§ããŸããNm(s,c)={âKâ1i=mN(sâ2i,câ1),2â€câ€s 1,c=1, s=2i iâ{m,âŠ,Kâ1} 0,
ããã§ã c ããŒãã§ãããããŒããã¢ããããããã«æ°åŒãå¿
èŠã§ã c ã
åã®ã»ã¯ã·ã§ã³ãšåãæšè«ã䜿çšã§ããŸããã¿ã€ã«2ãŸãã¯4ã®ãªãç¶æ
ãæžç®ããŸãã N3(s,c) ã
ããããã£1ã«ãããšãå°ãªããšã2ã€ã®éšåãå¿
èŠãªã®ã§ã次ã®ããã«èŠçŽãå§ããŸãã c=2 ã
ããã«ãããåèšãæã€ç¶æ
æ°ã®å¯èœãªå€ãšããŠäžããããŸã sCâc=2(Cc)(N1(s,c)âN3(s,c))
ããã«
(Cc)éžæè¢ã®æ°ãäžããäºé
ä¿æ°ã§ãc å¯èœæ§ã® Cã¿ã€ã«ãé
眮ãããã»ã«ããããããã£ãŒãã«ããŒã¯ããŸããããé åºã«é¢ããŠã¯ã2x2ã²ãŒã ã§ã¯ã¬ã€ã€ãŒããã60ã¹ããŒããè¶
ããããšã¯ãªãã3x3ã²ãŒã ã§ã¯ã¬ã€ã€ãŒãããæå€§çŽ300äžã¹ããŒãã4x4ã²ãŒã ã§ã¯æå€§çŽ32å
ïŒ 1013ïŒã¬ã€ã€ãŒããšã®ç¶æ
ãå·ã®æ°ã¯ã²ãŒã ã®åææ®µéã§æ¥éã«å¢å ããŸããããã®åŸããã£ãŒã«ãããã£ã±ãã«ãªããšé床ãäœäžããåŸã
ã«æžå°ããŸããæ²ç·ã®æžå°éšåã§ã¯ãç¹ã«å€§éã«ã®ã£ãããèŠãããŸããããã¯ããã£ãŒã«ãã«é©åããã¿ã€ã«ãååšããããã®å€ã§åèšãããå Žåã«çºçããå¯èœæ§ããããŸããæ°Žå¹³è»žã®äžéã¯ãC ããããã®å€ã¯ 2Kâ1 ãã€ãŸããéæå¯èœãªæå€§é㯠C2Kâ1ããŸãã¯2048ãŸã§ã®4x4ã²ãŒã ã®å Žåã¯16,384ã§ããæåŸã«ã4ãã4ãŸã§ã®ã¬ã€ã€ãŒã®ãã¹ãŠã®å¯èœãªåèšã«ããã£ãŠåã¬ã€ã€ãŒã®ç¶æ
ã®æ°ãåèšããå Žåãæ³šç®ã«å€ããŸãC2Kâ1ãããŠãç¹å¥ãªåå©ç¶æ
ã«1ã€ã远å ãããšãåã®ã»ã¯ã·ã§ã³ã§äºæ³ãããã®ãšåãæ°ã®ç¶æ
ãååŸããŸããããã¯ãæšè«ã®æ£ããã調ã¹ãã®ã«åœ¹ç«ã€ãã¹ãã§ããã¬ã€ã€ãŒã®å°éå¯èœæ§
ããããã£3ã®ãã1ã€ã®æçšãªçµæã¯ã2ã€ã®é£ç¶ããã¬ã€ã€ãŒã«ç¶æ
ããªãå ŽåãåŸã®ã¬ã€ã€ãŒã«å°éã§ããªãããšã§ããããã¯ãã¿ãŒã³ããšã«æå€§4ãã€éãå¢å ããå¯èœæ§ãããããã§ããç¶æ
ã®ãªã2ã€ã®é£æ¥ããã¬ã€ã€ãŒãããå Žåãåèšã¯æ¬¡ã®ã¬ã€ã€ãŒã«ããžã£ã³ããããããã«1åã®ç§»åã§6å¢å ããŸãããããã¯äžå¯èœã§ãããããã£ãŠãäžèšã®èšç®ã䜿çšããŠç¶æ
ãå«ãŸãªãå±€ã®åèšãèŠã€ãããšãæåŸã®å°éå¯èœãªå±€ã®åŸã«å°éäžèœãªå±€ã®ç¶æ
ãé€å€ããããšã«ãããå¯èœãªå€ãçµã蟌ãããšãã§ããŸããå°éå¯èœãªã¬ã€ã€ãŒã®æé«ã®åèšïŒå°éäžèœãªã¿ã€ã«ãªã2048
ïŒïŒãã£ãŒã«ããµã€ãº | æå€§éæå¯èœå±€é |
---|
2x2 | 60 |
3x3 | 2,044 |
4x4 | 9,212 |
ãã®è¡šã¯ãåèš60以äžã®ã¬ã€ã€ãŒã«32
ã¿ã€ã«64
ã衚瀺ã§ããªãããã2x2ãã£ãŒã«ãã§éæã§ããæå€§ã¿ã€ã«ãtileã§ããããšã瀺ããŠããŸããåæ§ã«ã3x3ãã£ãŒã«ãã®æå€§å°éå¯èœã¿ã€ã«ã¯tile 1024
ã§ããããã¯ã4x4ãã£ãŒã«ããã¿ã€ã«2048
2ã«å°éã§ããæå°ã®æ£æ¹åœ¢ãã£ãŒã«ãã§ããããšãæå³ããŸãã4x4ãã£ãŒã«ãã®å Žåãã¿ã€ã«ã«å°éããåã«2048
ïŒã€ãŸããåå©ãªãã«ïŒå°éã§ããã¬ã€ã€ãŒã®æå€§éã¯9,212ã§ãããã¿ã€ã«ã解決ããã2048
ãšãããå€ãã®éãéæã§ããŸããã¬ã€ã€ãŒã®å°éå¯èœæ§ãèãããšãç¶æ
æ°ã®æ°ããå¯èœãªå€ã¯æ¬¡ã®ããã«ãªããŸããæå€§ã¿ã€ã« | æ¹æ³ | ãã£ãŒã«ããµã€ãº |
---|
| | 2x2 | 3x3 | 4x4 |
---|
8 | ããŒã¹ã©ã€ã³ | 73 | 19 665 | 43,046,689 |
---|
ã¬ã€ã€ãŒã®å°éå¯èœæ§ | 73 | 19 665 | 43,046,689 |
16 | ããŒã¹ã©ã€ã³ | 233 | 261 615 | 4,294,901,729 |
---|
ã¬ã€ã€ãŒã®å°éå¯èœæ§ | 233 | 261 615 | 4,294,901,729 |
32 | ããŒã¹ã©ã€ã³ | 537 | 1 933 425 | 152 544 843 873 |
---|
| 529 | 1 933 407 | 152 544 843 841 |
64 | | 1 033 | 9 815 535 | 2 816 814 940 129 |
---|
| 905 | 9 814 437 | 2 816 814 934 817 |
128 | | 1 769 | 38 400 465 | 33 080 342 678 945 |
---|
| 905 | 38 369 571 | 33 080 342 314 753 |
256 | | 2 793 | 124 140 015 | 278 653 866 803 169 |
---|
| 905 | 123 560 373 | 278 653 849 430 401 |
512 | | 4 153 | 347 066 865 | 1 819 787 258 282 209 |
---|
| 905 | 339 166 485 | 1 819 786 604 950 209 |
1024 | | 5 897 | 865 782 255 | 9 718 525 023 289 313 |
---|
| 905 | 786 513 819 | 9 718 504 608 259 073 |
2048 | | 8 073 | 1 970 527 185 | 44 096 709 674 720 289 |
---|
| 905 | 1 400 665 575 | 44 096 167 159 459 777 |
ããã¯2x2ãã£ãŒã«ãã«å€§ããªåœ±é¿ãäžããã²ãŒã ã®ç¶æ
æ°ã8,073ãã905ã«2048ã«æžãããŸãã2x2ãã£ãŒã«ãã§32
ããå€ãã®ã¿ã€ã«ãéæããããšã¯äžå¯èœã§ãããããå°éå¯èœãªç¶æ
æ°ã®å€ã¯ãã®åŸã®æå€§ã¿ã€ã«ã®905ããå¢å ããªãããšã«æ³šæããŠãã ãã32
ããŸãã3x3ãã£ãŒã«ãã«ãããã«åœ±é¿ããŸããã4x4ã«ã¯æ¯èŒçå°ããªåœ±é¿ããããŸããã²ãŒã ã®å Žåãåèšã§çŽ5,000åã®ç¶æ
ã2048ãŸã§åãé€ããŸããã°ã©ãã£ãã¯åœ¢åŒã§ã¯ããã®ããŒã¿ã¯æ¬¡ã®ããã«ãªããŸãããããã«
2048ã²ãŒã ãšãããå°ããªããŒããšããå°ããªæå€§ã¿ã€ã«äžã®åæ§ã®ã²ãŒã ã®ç¶æ
æ°ã®å€§ãŸããªèŠç©ãããååŸããŸããããããŸã§ã®ãšããã4x4ã²ãŒã ã®2048ãŸã§ã®ç¶æ
æ°ã®æè¯ã®æšå®å€ã¯çŽ44å
ïŒã1016 ïŒ
å€ãã®çç±ã§ã²ãŒã ã§éæã§ããªãæ¡ä»¶ãèæ
®ã«å
¥ããããšãã§ããããããã®èŠç©ããããã®ä»ã®èŠç©ããã¯å€§å¹
ã«èªåŒµãããŠããå¯èœæ§ããããŸããããšãã°ãèšäºã®ãã®éšåã®ã€ã©ã¹ãããã¿ã€ãã«ãŸã§ã®ç¶æ
ïŒç§ãã¡ã調ã¹ããã¹ãŠã®å¶éãæºãããŸãããã²ãŒã ã§ãããéæããããšã¯ãŸã äžå¯èœã§ãïŒããã«å
¥ãã«ã¯ãã¿ã€ã«ãããæ¹åã«ç§»åããå¿
èŠãããã2ã€ã®ã¿ã€ã«2
ããã£ãŒã«ãã®ç«¯ã«ç§»åããŸãããããããããã念é ã«çœ®ããŠäžèšã®èšç®åŒæ°ã埮調æŽããæ¹æ³ãããã§ãããïŒãããŠããããããä»ã®å¶éã«åãããŠïŒãããããä»ã®ãšããããããè¡ãæ¹æ³ãããããŸãããæ¬¡ã®æçš¿ã§ã¯ãçã«éæå¯èœãªç¶æ
ã®æ°ãã¯ããã«å°ãªããå®éã«ãããããªã¹ãããŠããããšãããããŸãã3x3ãš4x4ã®ãã£ãŒã«ãã«ã¯ãŸã å€ãã®æ©èœãããã®ã§ãæ°åŠã ãã§ãªãæ
å ±åŠççè«ã®ç¥èãå¿
èŠã§ãã
ãã®æç¹ãŸã§èªãã ããšããããªããTwitterã§ç§ããã©ããŒãã䟡å€ããããããããŸããããOverleafã§æ¡çšãªã¯ãšã¹ããéã£ãŠããããããããŸãããæ³šé
- Chinn, P. and Niederhausen, H., 2004. Compositions into powers of 2. Congressus Numerantium , 168, p.215. ()
- , , ,
2048
. , , . , , , 4x4 131072
( 217 ), . â , , . , - , 8192
, « » 131072