
人工ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯çŸåšã人æ°ã®ããŒã¯ã«ãããŸãã æå人ãããŒã±ãã£ã³ã°ãšãã®ã¢ãã«ã®é©çšã«åœ¹å²ãæããããã©ããçåã«æããããããŸããã ç§ã¯åœŒãã®è£œåã§ã人工ãã¥ãŒã©ã«ãããã¯ãŒã¯ããšããã£ãŒãã©ãŒãã³ã°ãã®äœ¿çšãåãã§èšåããŠããããžãã¹ãããŒãžã£ãŒãç¥ã£ãŠããŸãã 圌ãã®è£œåããæ¥ç¶ãããåã®ã¢ãã«ããŸãã¯ãæ©æ¢°ãã䜿çšããå Žåã圌ãã¯åãã§ããã§ããããïŒããªãã¯çœ°ããããã§ããããã ããããçãããªãã人工ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯äŸ¡å€ã®ãããã®ã§ãããç»åèªèãèªç¶èšèªåŠçãèªåååŒãèªåé転è»ãªã©ã®å€ãã®ã¢ããªã±ãŒã·ã§ã³åéã§æåããŠããããšããæããã§ãã ç§ã¯ããŒã¿åŠçãšåæã®ã¹ãã·ã£ãªã¹ãã§ããã以åã¯ããããç解ããŠããªãã£ããããããŒã«ããã¹ã¿ãŒããŠããªããã¹ã¿ãŒã®ããã«æããŸããã ãããæåŸã«ãã宿é¡ããå®æããããã®èšäºãå·çããŠãä»ã®äººãïŒãŸã é²è¡äžã®ïŒãã¬ãŒãã³ã°äžã«ééããã®ãšåãé害ãå
æã§ããããã«ããŸããã
ãã®èšäºã§çŽ¹ä»ããäŸã®Rã³ãŒãã¯ãæ©æ¢°åŠç¿åé¡ãã€ãã«ã«ãããŸãã ããã«ããã®èšäºãèªãã åŸãããŒã2ã ãã¥ãŒã©ã«ãããã¯ãŒã¯-å®çšäŸãæ€èšãã䟡å€ããããŸãããã®äŸã§ã¯ããã¥ãŒã©ã«ãããã¯ãŒã¯ã®äœæãšããã°ã©ãã³ã°ããŒããã詳ãã説æããŠããŸããããæ°ã®ããã¿ã¹ã¯ããå§ããŸãããã ã°ã¬ãŒã¹ã±ãŒã«ã®ç»åã»ããããããŸããåç»åã¯2Ã2ãã¯ã»ã«ã°ãªããã§ãåãã¯ã»ã«ã®èŒåºŠå€ã¯0ïŒçœïŒãã255ïŒé»ïŒã§ãã ç§ãã¡ã®ç®æšã¯ããé段ããã¿ãŒã³ã®ç»åãèŠã€ããã¢ãã«ãäœæããããšã§ãã
ãã®æ®µéã§ã¯ãè«ççã«ããŒã¿ãéžæ
ã§ããã¢ãã«ãèŠã€ããããšã«ã®ã¿é¢å¿ããããŸãã ãã®éžææ¹æ³ã¯ãåŸã§èå³æ·±ããã®ã«ãªããŸãã
ååŠç
åç»åã§ãã¯ã»ã«ãããŒã¯ããŸã
$ã€ã³ã©ã€ã³$ x_ {1} $ã€ã³ã©ã€ã³$ ã
$ã€ã³ã©ã€ã³$ x_ {2} $ã€ã³ã©ã€ã³$ ã
$ã€ã³ã©ã€ã³$ x_ {3} $ã€ã³ã©ã€ã³$ ã
$ã€ã³ã©ã€ã³$ x_ {4} $ã€ã³ã©ã€ã³$ å
¥åãã¯ãã«ãçæããŸã
$ inline $ x = \ begin {bmatrix} x_ {1}ïŒx_ {2}ïŒx_ {3}ïŒx_ {4} \ end {bmatrix} $ inline $ ãã¢ãã«ãžã®å
¥åã«ãªããŸãã ã¢ãã«ã§ã¯ãTrueïŒç»åã«é段ãã¿ãŒã³ãå«ãŸããïŒãŸãã¯FalseïŒç»åã«é段ãã¿ãŒã³ãå«ãŸããªãïŒãäºæž¬ããããšäºæ³ãããŸãã
Imageid | x1 | x2 | x3 | x4 | Isstairs |
---|
1 | 252 | 4 | 155 | 175 | TRUE |
2 | 175 | 10 | 186 | 200 | TRUE |
3 | 82 | 131 | 230 | 100 | åœ |
... | ... | ... | ... | ... | ... |
498 | 36 | 187 | 43 | 249 | åœ |
499 | 1 | 160 | 169 | 242 | TRUE |
500 | 198 | 134 | 22 | 188 | åœ |
åå±€ããŒã»ãããã³ïŒã¢ãã«0ã®å埩ïŒ
åå±€
ããŒã»ãããã³ã§æ§æãããåçŽãªã¢ãã«ãæ§ç¯ã§ããŸãã ããŒã»ãããã³ã¯ãå
¥åããŒã¿ã®éã¿ä»ãç·åœ¢çµåã䜿çšããŠãäºæž¬æšå®å€ãè¿ããŸãã äºæž¬æšå®å€ãéžæãããããå€ãè¶
ããå ŽåãããŒã»ãããã³ã¯Trueãšäºæž¬ããŸãã ãã以å€ã®å ŽåãFalseãšäºæž¬ãããŸãã ããæ£åŒãªå Žåã
$$ display $$ fïŒxïŒ= {\ begin {cases} 1ïŒ{\ text {if}} \ w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4> threshold \\ 0ïŒ{\ text {otherwise}} \ end {cases }} $$衚瀺$$
å¥ã®èšãæ¹ãããŸããã
$$衚瀺$$ \ widehat y = \ mathbf w \ cdot \ mathbf x + b $$衚瀺$$
$$ display $$ fïŒxïŒ= {\ begin {cases} 1ïŒ{\ text {if}} \ \ widehat {y}> 0 \\ 0ïŒ{\ text {otherwise}} \ end {cases}} $$ãã£ã¹ãã¬ã€$$
ããã«
$ã€ã³ã©ã€ã³$ \ hat {y} $ã€ã³ã©ã€ã³$ -
äºæž¬ã®äºæž¬ ã
ã°ã©ãã£ã«ã«ã«ãããŒã»ãããã³ãåºåããŒãã«ããŒã¿ãéä¿¡ããå
¥åããŒããšããŠè¡šãããšãã§ããŸãã
ãã®äŸã§ã¯ã次ã®ããŒã»ãããã³ãäœæããŸãã
$$衚瀺$$ \ hat {y} =-0.0019x_ {1} + 0.0016x_ {2} + 0.0020x_ {3} + 0.0023x_ {4} + 0.0003 $$衚瀺$$
ããŒã»ãããã³ãããã€ãã®ãã¬ãŒãã³ã°ç»åã§ã©ã®ããã«æ©èœãããã以äžã«ç€ºããŸãã
ããã¯ãã©ã³ãã ãªæšæž¬ãããééããªãåªããŠãããé©åã§ãã ãã¹ãŠã®é段ãã¿ãŒã³ã®äžçªäžã®è¡ã«æããã¯ã»ã«ãããã倧ããªæ£ã®ä¿æ°ãäœæãããŸãã
$ã€ã³ã©ã€ã³$ x_ {3} $ã€ã³ã©ã€ã³$ ãããŠ
$ã€ã³ã©ã€ã³$ x_ {4} $ã€ã³ã©ã€ã³$ ã ãã ãããã®ã¢ãã«ã«ã¯æãããªåé¡ããããŸãã
- ã¢ãã«ã¯ãå€ãé¡äŒŒæ§ã®æŠå¿µãšçžé¢ããå®æ°å€ãåºåããŸãïŒå€ã倧ããã»ã©ãç»åã«ã©ããŒãååšããå¯èœæ§ãé«ããªããŸãïŒããã ãããããã®å€ã¯åºé[0 ã1]ã
- ã¢ãã«ã¯ãå€æ°ãšã¿ãŒã²ããå€ã®éã®éç·åœ¢é¢ä¿ããã£ããã£ã§ããŸããã ããã確èªããã«ã¯ã次ã®ä»®æ³ã·ããªãªãæ€èšããŠãã ããã
ã±ãŒã¹A
ç»åx = [100ã0ã0ã125]ããå§ããŸãããã å¢ãã
$ã€ã³ã©ã€ã³$ x_ {3} $ã€ã³ã©ã€ã³$ 0ãã60ãŸã§ã
ã±ãŒã¹B
åã®ç»åãx = [100ã0ã60ã125]ããå§ããŸãããã å¢ãã
$ã€ã³ã©ã€ã³$ x_ {3} $ã€ã³ã©ã€ã³$ 60ãã120ãŸã§ã
çŽæçã«ã¯ã
ã±ãŒã¹Aã¯ããã«å¢å
ããã¯ãã§ã
$ã€ã³ã©ã€ã³$ \ hat {y} $ã€ã³ã©ã€ã³$
ã±ãŒã¹Bãã ãã ããããŒã»ãããã³ã¢ãã«ã¯ç·åœ¢æ¹çšåŒãªã®ã§ãã²ã€ã³ã¯+60
$ã€ã³ã©ã€ã³$ x_ {3} $ã€ã³ã©ã€ã³$ ã©ã¡ãã®å Žåã+0.12ã®å¢å ã«ã€ãªãããŸã
$ã€ã³ã©ã€ã³$ \ hat {y} $ã€ã³ã©ã€ã³$ ã
ç§ãã¡ã®ç·åœ¢ããŒã»ãããã³ã«ã¯ä»ã®åé¡ããããŸããããŸãããã2ã€ã解決ããŸãããã
ã·ã°ã¢ã€ã掻æ§åæ©èœãåããåå±€ããŒã»ãããã³ïŒã¢ãã«1ã®å埩ïŒ
åé¡1ãš2ã¯ãããŒã»ãããã³ãSååã«å
ãããšã§è§£æ±ºã§ããŸãïŒä»ã®éã¿ãéžæããŸãïŒã
ãã·ã°ã¢ã€ããé¢æ°ã¯ã0ãã1ã®éã®åçŽè»žã«æ²¿ã£ãŠåºåãããSåæ²ç·ã§ããããããã€ããªã€ãã³ãã®ç¢ºçãã¢ãã«åããããã«ãã䜿çšãããããšãæãåºããŠãã ããã
$$衚瀺$$ã·ã°ã¢ã€ãïŒzïŒ= \ frac {1} {1 + e ^ {-z}} $$衚瀺$$
ãã®èãã«åŸã£ãŠãã¢ãã«ã次ã®ç»åãšæ¹çšåŒã§è£å®ã§ããŸãã
$$衚瀺$$ z = w \ cdot x = w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4 $$衚瀺$$
$$ãã£ã¹ãã¬ã€$$ \ widehat y =ã·ã°ã¢ã€ãïŒzïŒ= \ frac {1} {1 + e ^ {-z}} $$ãã£ã¹ãã¬ã€$$
ããªãã¿ïŒ ã¯ããããã¯æ§æ¥ã®
ããžã¹ãã£ãã¯ååž°ã§ãã ãã ããã·ã°ã¢ã€ã掻æ§åé¢æ°ãåããç·åœ¢ããŒã»ãããã³ãšããŠã¢ãã«ã解éããããšã¯ãããäžè¬çãªã¢ãããŒãã®æ©äŒãå¢ããããã圹ç«ã¡ãŸãã ãŸãã解éã§ããããã«ãªã£ããã
$ã€ã³ã©ã€ã³$ \ hat {y} $ã€ã³ã©ã€ã³$
確çãšããŠãããã«å¿ããŠæ±ºå®ã«ãŒã«ãå€æŽããå¿
èŠããããŸãã
$$ display $$ fïŒxïŒ= {\ begin {cases} 1ïŒ{\ text {if}} \ \ widehat {y}> 0.5 \\ 0ïŒ{\ text {otherwise}} \ end {cases}} $$ãã£ã¹ãã¬ã€$$
åé¡ã®äŸãç¶ããŠã次ã®éžæãããã¢ãã«ããããšä»®å®ããŸãã
$$ display $$ \ begin {bmatrix} w_1ïŒw_2ïŒw_3ïŒw_4 \ end {bmatrix} = \ begin {bmatrix} -0.140ïŒ-0.145ïŒ0.121ïŒ0.092 \ end {bmatrix} $$ display $$
$$衚瀺$$ b = -0.008 $$衚瀺$$
$$ãã£ã¹ãã¬ã€$$ \ widehat y = \ frac {1} {1 + e ^ {-ïŒ-0.140x_1 -0.145x_2 + 0.121x_3 + 0.092x_4 -0.008ïŒ}} $$ãã£ã¹ãã¬ã€$$
åã®ã»ã¯ã·ã§ã³ã®ç»åã®åãäŸã§ãã®ã¢ãã«ãã©ã®ããã«åäœãããã芳å¯ããŸãã
ç§ãã¡ã¯ééããªãåé¡1ã解決ããããšãã§ããŸããã
ã±ãŒã¹A
ç»å[100ã0ã0ã100]ããå§ããŸãããã å¢ãã
$ã€ã³ã©ã€ã³$ x_3 $ã€ã³ã©ã€ã³$ ã0ã50ã
ã±ãŒã¹B
ç»å[100ã0ã50ã100]ããå§ããŸãããã å¢ãã
$ã€ã³ã©ã€ã³$ x_3 $ã€ã³ã©ã€ã³$ ã50ãã100ã
ã·ã°ã¢ã€ãã®æ²çã«ããã
ã±ãŒã¹Aãå¢å ããã«ã€ããŠ
ã±ãŒã¹Aãã©ã®ããã«ãåäœãïŒæ¥éã«å¢å ïŒãããã«æ³šç®ããŠãã ããã
$ã€ã³ã©ã€ã³$ z = w \ cdot x $ã€ã³ã©ã€ã³$ ããããå¢å ãç¶ããšããŒã¹ã¯é
ããªããŸã
$ã€ã³ã©ã€ã³$ z $ã€ã³ã©ã€ã³$ ã ããã¯ã
ã±ãŒã¹Aã¯ã
ã±ãŒã¹Bãããé段ãã¿ãŒã³ã®å¯èœæ§ã®å€§å¹
ãªå¢å ãåæ ãã¹ãã§ãããšããçŽæçãªç解ãšäžèŽããŠããŸã
ã
æ®å¿µãªããããã®ã¢ãã«ã«ã¯ãŸã åé¡ããããŸãã
- $ã€ã³ã©ã€ã³$ \ widehat y $ã€ã³ã©ã€ã³$ åå€æ°ãšå調ãªé¢ä¿ããããŸãã ããããæããæ¥é°ã®é段ãèªèããå¿
èŠãããå Žåã¯ã©ãã§ããããïŒ
- ã¢ãã«ã¯å€æ°ã®çžäºäœçšãèæ
®ããŸããã ç»åã®äžçªäžã®è¡ãé»ã§ãããšããŸãã å·Šäžã®ãã¯ã»ã«ãçœã®å Žåãå³äžã®ãã¯ã»ã«ãæããããšãé段ãã¿ãŒã³ã®å¯èœæ§ãé«ããªããŸãã å·Šäžã®ãã¯ã»ã«ãé»ã®å Žåãå³äžã®ãã¯ã»ã«ãã·ã§ãŒãã£ã³ã°ãããšãé段ã®å¯èœæ§ãäœããªããŸãã èšãæããã°ãå¢å $ã€ã³ã©ã€ã³$ x_3 $ã€ã³ã©ã€ã³$ æœåšçã«å¢å ãŸãã¯æžå°ããã¯ãã§ã $ã€ã³ã©ã€ã³$ \ widehat y $ã€ã³ã©ã€ã³$ ãä»ã®å€æ°ã®å€ã«å¿ããŠã çŸåšã®ã¢ãã«ã§ã¯ãããã¯éæã§ããŸããã
ã·ã°ã¢ã€ã掻æ§åæ©èœãåããå€å±€ããŒã»ãããã³ïŒã¢ãã«2ã®å埩ïŒ
äžèšã®åé¡ã®äž¡æ¹ã解決ããã«ã¯ãããŒã»ãããã³ã¢ãã«ã«å¥ã®
ã¬ã€ã€ãŒãè¿œå ããŸãã äžèšã®ã¢ãã«ã«äŒŒãããã€ãã®åºæ¬ã¢ãã«ãäœæããŸãããååºæ¬ã¢ãã«ã®åºåã
å¥ã®ããŒã»ãããã³ã®å
¥åã«è»¢éããŸãã ãã®ã¢ãã«ã¯ãå®éã«ã¯ãããã©ããã¥ãŒã©ã«ãããã¯ãŒã¯ã§ãã ããŸããŸãªäŸã§ã©ã®ããã«æ©èœããããèŠãŠã¿ãŸãããã
äŸ1ïŒé段ãã¿ãŒã³èªè
- ãå·Šé段ããèªèããããšãã«æ©èœããã¢ãã«ãæ§ç¯ãã $ã€ã³ã©ã€ã³$ \ widehat y_ {å·Š} $ã€ã³ã©ã€ã³$
- ãå³é段ããèªèããããšãã«æ©èœããã¢ãã«ãæ§ç¯ãã $ inline $ \ widehat y_ {right} $ inline $
- åºæ¬ã¢ãã«ã«æšå®å€ãè¿œå ããŠã äž¡æ¹ã®å€ïŒ $ã€ã³ã©ã€ã³$ \ widehat y_ {å·Š} $ã€ã³ã©ã€ã³$ ã $ inline $ \ widehat y_ {right} $ inline $ ïŒçŽ æŽããã
å¥ã®ãªãã·ã§ã³- äžã®è¡ãæããšãã«æ©èœããã¢ãã«ãäœæãã $ã€ã³ã©ã€ã³$ \ widehat y_1 $ã€ã³ã©ã€ã³$
- å·Šäžã®ãã¯ã»ã«ãæããå³äžã®ãã¯ã»ã«ãæããå Žåã«æ©èœããã¢ãã«ãäœæããŸãã $ã€ã³ã©ã€ã³$ \ widehat y_2 $ã€ã³ã©ã€ã³$
- å·Šäžã®ãã¯ã»ã«ãæãããå³äžã®ãã¯ã»ã«ãæããšãã«æ©èœããã¢ãã«ãæ§ç¯ããŸãããã $ã€ã³ã©ã€ã³$ \ widehat y_3 $ã€ã³ã©ã€ã³$
- æçµã·ã°ã¢ã€ãé¢æ°ã次ã®å Žåã«ã®ã¿æ©èœããããã«ãåºæ¬ã¢ãã«ãè¿œå ããŸãã $ã€ã³ã©ã€ã³$ \ widehat y_1 $ã€ã³ã©ã€ã³$ ãã㊠$ã€ã³ã©ã€ã³$ \ widehat y_2 $ã€ã³ã©ã€ã³$ çŽ æŽããããšã $ã€ã³ã©ã€ã³$ \ widehat y_1 $ã€ã³ã©ã€ã³$ ãã㊠$ã€ã³ã©ã€ã³$ \ widehat y_3 $ã€ã³ã©ã€ã³$ çŽ æŽãããã§ãã ïŒããšã«æ³šæããŠãã ãã $ã€ã³ã©ã€ã³$ \ widehat y_2 $ã€ã³ã©ã€ã³$ ãã㊠$ã€ã³ã©ã€ã³$ \ widehat y_3 $ã€ã³ã©ã€ã³$ åæã«å€§ããããããšã¯ã§ããŸãããïŒ


äŸ2ïŒæããè²ã®é段ãèªèãã
- ã圱ä»ãã®äžæ®µããã圱ä»ãx1ãšçœx2ããã圱ä»ãx2ãšçœx1ãã $ã€ã³ã©ã€ã³$ \ widehat y_1 $ã€ã³ã©ã€ã³$ ã $ã€ã³ã©ã€ã³$ \ widehat y_2 $ã€ã³ã©ã€ã³$ ãã㊠$ã€ã³ã©ã€ã³$ \ widehat y_3 $ã€ã³ã©ã€ã³$
- ãæãäžã®åãããæãx1ãšçœãx2ãããæãx2ãšçœãxãã $ã€ã³ã©ã€ã³$ \ widehat y_4 $ã€ã³ã©ã€ã³$ ã $ã€ã³ã©ã€ã³$ \ widehat y_5 $ã€ã³ã©ã€ã³$ ãã㊠$ã€ã³ã©ã€ã³$ \ widehat y_6 $ã€ã³ã©ã€ã³$
- ã¢ãã«ãæ¥ç¶ããŠãã·ã°ã¢ã€ãã§çµæãå§çž®ããåã«ããæ¿ããèå¥åããã·ã§ãŒãã£ã³ã°ããããèå¥åããæžç®ãããããã«ããŸã


çšèªã¡ã¢
1ã€ã®å±€ã®ããŒã»ãããã³ã«ã¯
1ã€ã®åºåå±€ããããŸãã ã€ãŸããäœæããã¢ãã«ã¯
2å±€ããŒã»ãããã³ãšåŒã°ããŸããããã¯ãå¥ã®åºåå±€ã®å
¥åã§ããåºåå±€ãããããã§ãã ãã ããåãã¢ãã«ããã¥ãŒã©ã«ãããã¯ãŒã¯ãšåŒã¶ããšãã§ããŸãããã®å Žåããããã¯ãŒã¯ã«ã¯
3ã€ã®å±€ïŒå
¥åå±€ãé衚瀺局ãåºåå±€ïŒããããŸãã

代æ¿ã¢ã¯ãã£ããŒã·ã§ã³æ©èœ
ãã®äŸã§ã¯ãã·ã°ã¢ã€ã掻æ§åé¢æ°ã䜿çšããŸããã ãã ããä»ã®ã¢ã¯ãã£ããŒã·ã§ã³æ©èœã䜿çšã§ããŸãã ãã°ãã°
tanhãš
reluã䜿çšã
ãŸãã ã 掻æ§åé¢æ°ã¯éç·åœ¢ã§ãªããã°ãªããŸãããããã§ãªããã°ããã¥ãŒã©ã«ãããã¯ãŒã¯ã¯åæ§ã®åââå±€ããŒã»ãããã³ã«åçŽåãããŸãã
ãã«ãã¯ã©ã¹åé¡
æçµåºåã¬ã€ã€ãŒã§è€æ°ã®ããŒãã䜿çšããããšã§ãã¢ãã«ãç°¡åã«æ¡åŒµããŠããã«ãã¯ã©ã¹åé¡ã§æ©èœããããã«ããããšãã§ããŸãã ããã§ã®èãæ¹ã¯ãååºåããŒããã¯ã©ã¹ã®1ã€ã«å¯Ÿå¿ãããšããããšã§ã
$ã€ã³ã©ã€ã³$ c $ã€ã³ã©ã€ã³$ äºæž¬ããããšããŠããŸãã ããã®èŠçŽ ãåæ ããã·ã°ã¢ã€ãã§åºåãçãã代ããã«
$ã€ã³ã©ã€ã³$ \ mathbb {R} $ã€ã³ã©ã€ã³$ åºé[0ã1]ããèŠçŽ ã«å
¥ãããšã
softmaxé¢æ°ã䜿çšã§ããŸãã
ãã®é¢æ°ã¯ ã
$ã€ã³ã©ã€ã³$ \ mathbb {R} ^ n $ã€ã³ã©ã€ã³$ ãã¯ãã«ã§
$ã€ã³ã©ã€ã³$ \ mathbb {R} ^ n $ã€ã³ã©ã€ã³$ çµæã®ãã¯ãã«ã®èŠçŽ ã®åèšã1ã«ãªãããã«ããŸããèšãæãããšããã¯ãã«[
$ã€ã³ã©ã€ã³$ probïŒclass_1ïŒ$ã€ã³ã©ã€ã³$ ã
$ã€ã³ã©ã€ã³$ probïŒclass_2ïŒ$ã€ã³ã©ã€ã³$ ã...ã
$ã€ã³ã©ã€ã³$ probïŒclass_CïŒ$ã€ã³ã©ã€ã³$ ]ã

3ã€ä»¥äžã®ã¬ã€ã€ãŒã䜿çšããïŒæ·±å±€åŠç¿ïŒ
çåã«æããããããŸãã-ãããã©ããã¥ãŒã©ã«ãããã¯ãŒã¯ãæ¡åŒµããŠããã®åºåå±€ã4çªç®ã®å±€ïŒããã«5çªç®ã6çªç®ãªã©ïŒã«è»¢éããããšã¯å¯èœã§ããïŒ ã¯ã ããã¯éåžžããã£ãŒãã©ãŒãã³ã°ããšåŒã°ããŸãã å®éã«ã¯ãéåžžã«å¹æçã§ãã ãã ãã1ã€ä»¥äžã®é ãå±€ã§æ§æããããããã¯ãŒã¯ã¯ã1ã€ã®é ãå±€ãæã€ãããã¯ãŒã¯ã§ã·ãã¥ã¬ãŒãã§ããããšã«æ³šæããŠãã ããã å®éã
æ®éè¿äŒŒå®çã«ããã°ã1ã€ã®é ãå±€ãæã€ãã¥ãŒã©ã«ãããã¯ãŒã¯ã䜿çšããŠ
ãä»»æã®é£ç¶é¢æ°ãè¿äŒŒã§ããŸãã 1ã€ã®é ãå±€ãæã€ãããã¯ãŒã¯ã§ã¯ãªãããã£ãŒããã¥ãŒã©ã«ãããã¯ãŒã¯ã¢ãŒããã¯ãã£ãé »ç¹ã«éžæããçç±ã¯ãéžææé äžã«ãéåžžããœãªã¥ãŒã·ã§ã³ã«ãã°ããåæããããã§ãã

ã©ãã«ä»ããã¬ãŒãã³ã°ãµã³ãã«ã®ã¢ãã«ã®éžæïŒåŠç¿ãšã©ãŒã®éååžïŒ
æ²ããããªãç§ãã¡ã¯éžææé ã«å°éããŸããã ããã«å
ç«ã¡ããã¥ãŒã©ã«ãããã¯ãŒã¯
ãå¹ççã«æ©èœãããšããäºå®ã«ã€ããŠè©±ããŸãããããã¥ãŒã©ã«ãããã¯ãŒã¯ãã©ãã«ä»ããã¬ãŒãã³ã°ãµã³ãã«ã«ã©ã®ããã«é©å¿ãããã«ã€ããŠã¯èª¬æããŸããã§ããã ãã®è³ªåã®é¡äŒŒç¹ã¯ããã©ãã«ä»ãã®ãã¬ãŒãã³ã°ãµã³ãã«ã«åºã¥ããŠãããã¯ãŒã¯ã«æé©ãªéã¿ãéžæããã«ã¯ã©ãããã°ããã§ããïŒãã§ãã éåžžã®çãã¯åŸé
éäžã§ãïŒãã ãã
MMPãé©ããŠããå ŽåããããŸãïŒã åé¡ã®äŸãåŒãç¶ãåŠçãããšãåŸé
éäžæé ã¯æ¬¡ã®ããã«ãªããŸãã
- ã©ãã«ä»ãã®ãã¬ãŒãã³ã°ããŒã¿ããå§ããŸã
- 埮åå¯èœãªæ倱é¢æ°ãæå°åããã«ã¯ã $ã€ã³ã©ã€ã³$ LïŒ\ mathbf {\ widehat Y}ã\ mathbf {Y}ïŒ$ inline $
- ãããã¯ãŒã¯æ§é ãéžæããŸãã ç¹ã«ãã¬ã€ã€ãŒã®æ°ãšåã¬ã€ã€ãŒã®ããŒãã決å®ããå¿
èŠããããŸãã
- ã©ã³ãã ãªéã¿ã§ãããã¯ãŒã¯ãåæåããŸãã
- ãããã¯ãŒã¯ãä»ããŠãã¬ãŒãã³ã°ããŒã¿ãæž¡ããåãµã³ãã«ã®äºæž¬ãçæããŸãã æ倱é¢æ°ã«åŸã£ãŠåèšèª€å·®ã枬å®ãã $ã€ã³ã©ã€ã³$ LïŒ\ mathbf {\ widehat Y}ã\ mathbf {Y}ïŒ$ inline $ ã ïŒããã¯çŽæ¥é
åžãšåŒã°ããŸããïŒ
- åéã¿ã®å°ããªå€åã«å¯ŸããŠãçŸåšã®æ倱ãã©ã®ããã«å€åããããå€æããŸãã ã€ãŸããåŸé
ãèšç®ããŸã $ã€ã³ã©ã€ã³$ L $ã€ã³ã©ã€ã³$ ãããã¯ãŒã¯å
ã®åéã¿ãèæ
®ã«å
¥ããŸãã ïŒããã¯éäŒæãšåŒã°ããŸããïŒ
- è² ã®åŸé
ã®æ¹åã«å°ããªãã¹ãããããäœæããŸãã ããšãã°ã $ã€ã³ã©ã€ã³$ w_ {23} = 1.5 $ã€ã³ã©ã€ã³$ ããã㊠$ inline $ \ frac {\ partial L} {\ partial w_ {23}} = 2.2 $ inline $ ãã®åŸæžå° $ã€ã³ã©ã€ã³$ w_ {23} $ã€ã³ã©ã€ã³$ å°ãã§ãé»æµæ倱ããããã«æžå°ããã¯ãã§ãã ãããã£ãŠãæã
ã¯å€åããŠããŸã $ inline $ w_3ïŒ= w_3-2.2 \ times 0.001 $ inline $ ïŒããã§ã0.001ã¯æå®ããããã¹ããããµã€ãºãã§ãïŒã
- ãã®ããã»ã¹ãïŒã¹ããã5ããïŒäžå®åæ°ç¹°ãè¿ãããæ倱ãåæãããŸã§ç¹°ãè¿ããŸã
å°ãªããšããããäž»ãªã¢ã€ãã¢ã§ãã å®éã«å®è£
ãããšãå€ãã®å°é£ãçããŸãã
é£æ床1-èšç®ã®è€éã
éžæããã»ã¹ã§ã¯ããšããããåŸé
ãèšç®ããå¿
èŠããããŸã
$ã€ã³ã©ã€ã³$ L $ã€ã³ã©ã€ã³$ åééãèæ
®ã«å
¥ããŸãã ããã¯é£ããã®ã§
$ã€ã³ã©ã€ã³$ L $ã€ã³ã©ã€ã³$ åºåå±€ã®
åããŒãã«äŸåãããããã®
åããŒãã¯ãã®åã®å±€ã®
åããŒãã«äŸåããŸãã ããã¯ãèšç®ã
$ inline $ \ frac {\ partial L} {\ partial w_ {ab}} $ inline $ è€éãªå°é¢æ°åŒã䜿çšããŠãå®éã®æªå€¢ã«å€ãããŸãã ïŒå®äžçã®å€ãã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã«ã¯ãæ°åã®å±€ã«æ°åã®ããŒããå«ãŸããŠããããšãå¿ããªãã§ãã ãããïŒãã®åé¡ã¯ãè€éãªåŸ®åæ¹çšåŒãé©çšããéã«ã
$ inline $ \ frac {\ partial L} {\ partial w_ {ab}} $ inline $ åãäžéããªããã£ããåå©çšããŸãã ããã泚ææ·±ãç£èŠããã°ãåãèšç®ãäœååãç¹°ãè¿ãããã®ãé¿ããããšãã§ããŸãã
å¥ã®ããªãã¯ã¯ãç¹å¥ãªã¢ã¯ãã£ããŒã·ã§ã³é¢æ°ã䜿çšããããšã§ãããã®æŽŸçé¢æ°ã¯ãå€ã®é¢æ°ãšããŠèšè¿°ã§ããŸãã ããšãã°ãããªããã£ã
$ã€ã³ã©ã€ã³$ã·ã°ã¢ã€ãïŒxïŒ$ã€ã³ã©ã€ã³$ =
$ã€ã³ã©ã€ã³$ã·ã°ã¢ã€ãïŒxïŒïŒ1-ã·ã°ã¢ã€ãïŒxïŒïŒ$ã€ã³ã©ã€ã³$ ã çŽæ¥ãã¹äžã«èšç®ãããããããã¯äŸ¿å©ã§ã
$ã€ã³ã©ã€ã³$ \ widehat y $ã€ã³ã©ã€ã³$ åãã¬ãŒãã³ã°ãµã³ãã«ã«ã€ããŠãèšç®ããå¿
èŠããããŸã
$ã€ã³ã©ã€ã³$ã·ã°ã¢ã€ãïŒ\ mathbf {x}ïŒ$ã€ã³ã©ã€ã³$ ããã€ãã®ãã¯ãã«ã®ãããåäœ
$ã€ã³ã©ã€ã³$ \ mathbf {x} $ã€ã³ã©ã€ã³$ ã ããã¯ãããã²ãŒã·ã§ã³äžã«ããããã®å€ãåå©çšããŠåŸé
ãèšç®ã§ããŸã
$ã€ã³ã©ã€ã³$ L $ã€ã³ã©ã€ã³$ éã¿ãèæ
®ããŠãæéãšã¡ã¢ãªãç¯çŽããŸãã
3çªç®ã®ããªãã¯ã¯ããã¬ãŒãã³ã°ãµã³ãã«ããããã°ã«ãŒããã«åå²ããåã°ã«ãŒãã次ã
ã«èæ
®ããŠéã¿ãå€æŽããããšã§ãã ããšãã°ããã¬ãŒãã³ã°ããŒã¿ã{batch1ãbatch2ãbatch3}ã«åå²ãããšããã¬ãŒãã³ã°ããŒã¿ã®æåã®ãã¹ã¯æ¬¡ã®ããã«ãªããŸãã
- batch1ã«åºã¥ããŠéã¿ãå€æŽãã
- batch2ã«åºã¥ããŠéã¿ãå€æŽãã
- batch3ã«åºã¥ããŠéã¿ãå€æŽãã
åŸé
ã¯ã©ãã§ãã
$ã€ã³ã©ã€ã³$ L $ã€ã³ã©ã€ã³$ åå€æŽåŸã«åèšç®ãããŸããã
æåŸã«ãèšåãã䟡å€ã®ããå¥ã®ææ³ã¯ãäžå€®åŠçè£
眮ã®ä»£ããã«ãããªåŠçè£
眮ã䜿çšããããšã§ããããã¯ãå€æ°ã®äžŠåèšç®ãå®è¡ããã®ã«ããé©ããŠããããã§ãã
é£æ床2-åŸé
éäžæ³ã§ã¯çµ¶å¯Ÿæå°å€ãèŠã€ããã®ã«åé¡ããã
ããã¯ãåŸé
éäžã»ã©ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®åé¡ã§ã¯ãããŸããã åŸé
éäžäžã«ãéã¿ã極å°å€ã§ã¹ã¿ãã¯ããå¯èœæ§ããããŸãã å°ãªããšãéã¿ãããžã£ã³ããããå¯èœæ§ããããŸãã ãããåŠçãã1ã€ã®æ¹æ³ã¯ãç°ãªãã¹ããããµã€ãºã䜿çšããããšã§ãã å¥ã®æ¹æ³ã¯ããããã¯ãŒã¯å
ã®ããŒããã¬ã€ã€ãŒã®æ°ãå¢ããããšã§ãã ïŒããããé床ã«è¿ãé©åãæããïŒã ããã«ã
ã¢ãŒã¡ã³ãã䜿çšãããªã©ã®ããã€ãã®ãã¥ãŒãªã¹ãã£ãã¯ææ³ãå¹æçã§ãã
é£æ床3-å
±éã®ã¢ãããŒããéçºããæ¹æ³
ä»»æã®æ°ã®ããŒããšã¬ã€ã€ãŒãæã€ä»»æã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®å€ãéžæã§ããéºäŒçããã°ã©ã ãäœæããæ¹æ³ã¯ïŒ æ£è§£ã¯ã
Tensorflowã䜿çšããå¿
èŠããããšããããšã§ãã ããããè©ŠããŠã¿ããå Žåãæãé£ããéšåã¯æ倱é¢æ°ã®åŸé
ãèšç®ããããšã§ãã ããã§ã®ã³ãã¯ãã°ã©ããŒã·ã§ã³ãååž°é¢æ°ãšããŠè¡šçŸã§ãããã©ãããå€æããããšã§ãã 5å±€ã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ãäžéšã®ããŒã»ãããã³ã«ããŒã¿ãéä¿¡ãã4å±€ã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã§ãã ãããã4å±€ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ãããŒã»ãããã³ãªã©ã«ããŒã¿ã転éãã3å±€ãã¥ãŒã©ã«ãããã¯ãŒã¯ã«ãããŸããã ããæ£åŒã«ã¯ãããã¯
èªå埮åãšåŒã°ã
ãŸã ã