ãã®èšäºãæžããçç±ã¯ãæ¥æ¬ãšå島å島ã§ä»åŸ30幎éã«æ倧40ïŒ
ã®ç¢ºçã§çºçããå¯èœæ§ã®ãããæã匷åãªãå°éã®äºæž¬ã«ã€ããŠãå€ãã®ã¡ãã£ã¢ããé
åžãããæ
å ±ã§ãã ãžã£ãŒããªã¹ãã¯æ¥æ¬ã®ç§åŠè
ã«èšåããã ã©ãããæ
å ±ãååŸãããå Žæãããå
ã®èšäºãèŠã€ããããšãã§ããŸããã 12æ20æ¥ã«
Japan Newsã§å
¬éãããçŸåšã¯ææã®ã¢ãŒã«ã€ãã«ãããŸããããã°ããã
ãŠã§ã€ããã¯ãã·ã³ãªãœãŒã¹ããããŸãã
以äžã§ã¯ãå
ã®ãœãŒã¹ãå®éã«äœã§ããããæããã«ããæ°åŠã®å€§èªç¶ãšå°éãã¶ãŒãã®ç¢ºçè«çåæã®åºç€ã«çªå
¥ããŸãã äžèšã§èšãã°ãæ¥æ¬ã®å°éåŠè
ã¯å島å島ã®å·šå€§å°éã®äºå ±ãåºããªãã£ãããä»åŸ30幎éã®å°éãŸãŒãã³ã°ãããã建ç©ãšæ§é ç©ã®å¯¿åœãšãšãã«ç·šéããéã«èæ
®ãããéæºã®ã¢ãã«ç¹æ§ã説æããã èšç®ããŠã¿ãŸãããã ã¹ãŒããŒã³ã³ãã¥ãŒã¿ãŒãªã...
ãããã£ãŠãå°éãŸãŒãã³ã°ã®äž»ãªã¿ã¹ã¯ã¯ãæãå¯èœæ§ã®é«ãå°éã®åœ±é¿ãå€æããããšã§ãã 以äžã§ãã»ãšãã©ããšããçšèªã解èªããŸãã ãŸããç°¡åãªæ°åŠãæžãã確çè«ãšæ°åŠççµ±èšã«å€å°ãªããšã粟éããŠããã»ãšãã©ã®èªè
ãç解ã§ããããã€ãã®çšèªã玹ä»ããŸãã æ確ã«ããããã«ãå°éã®åœ±é¿ã¯å é床ã®ç©ççãã©ã¡ãŒã¿ãŒã§æž¬å®ãããŸãã å°äžã®æ倧å é床
0.7g
ïŒ
g=9.81 /^2
ã¯éåå é床ïŒã¯ãIXãã€ã³ãåšèŸºã®æºãã®åŒ·ãã«å¯Ÿå¿ããIXãã€ã³ãã¯çœå®³ã§ãã
åå°éã«ã¯ç¬èªã®ãã°ããã¥ãŒãMããããŸããããã¯ãéæºã®åŒ·åºŠïŒã®ã£ããã®å€§ããããšãã«ã®ãŒãªã©ïŒãç¹åŸŽä»ããå€ã§ãã ã¹ã³ã¢ãšæ··åããªãã§ãã ããïŒ ã¹ã³ã¢ã¯ãã§ã«è¡šé¢ã®æºããã€ãŸãææ§ã®çŸãã§ãã éæºã«è¿ã¥ãã»ã©ãå°çè¡šé¢ã®å€åãæ¿ãããªããå°éå¹æã®ã¬ãã«ãé«ããªããéæºããé ããããšãå°éä¿¡å·ãæžè¡°ããŸãã ããã¯ãé£ç¶åªäœã®ãã¹ãŠã®ä¿¡å·ã«åºæã®åºæ¬çãªããããã£ã§ãã ãããå°éã®åœ±é¿ã®æžè¡°ã®æ³åãšåŒã³ãŸãã æããã«ã建ç©ãç Žå£ããã®ã¯ãã°ããã¥ãŒãã§ã¯ãªããèšèšãšå»ºèšäžã«å®ããããç¹å®ã®å¶éã¬ãã«ãè¶
ããæ倧å°äžå é床ã§ãïŒå³1ïŒã
å³1. 2007幎ã®ããã«ã¹ããŒå°éã®çµæ
ããŒã¯å°äžå é床æžè¡°ã¢ãã«ã¯ãé¢æ°
g(m,r)
ã«ãã£ãŠæå®ãããŸããé¢æ°
g(m,r)
ã¯ãããŒã¯å°äžå é床
lnâ¡ PGA
ã®å¹³åïŒèªç¶ïŒå¯Ÿæ°ã®ã倧ãã
m
ã€ãã³ããšè·é¢
r
ã§ã®äŸåæ§ã決å®ããŸãã ãã®é¢æ°ã¯ãå é床èšã®ãããã¯ãŒã¯ã䜿çšããŠååŸãããå é床å³ã®å°åããŒã¹ã«åºã¥ããŠæ§ç¯ãããååž°é¢ä¿ïŒå³2ïŒã§è¡šãããŸãã éåžžã圢åŒã¯æ¬¡ã®ãšããã§ãã
gïŒmãrïŒ=ln\ãªãŒããŒã©ã€ã³PGAïŒmãrïŒ=c1+c2m+c3lnïŒr+c4ïŒâc5r+c6F+c7S+ÏãïŒ1ïŒ
ããã§ã
c_1, c_2, c_3, c_4, c_5, c_6, c_7
ã¯ååž°ä¿æ°ã§ããã
F
ãš
S
ã¯ãããããæå±€ã®ã¿ã€ãïŒæå±€ïŒãšåå£ç¹æ§ïŒåå£ïŒãžã®äŸåæ§ãè¡šããŸãã
å³2.ãã°ããã¥ãŒãM = 5.8ã®å°éã®è·é¢ã«å¯ŸããããŒã¯åå£å é床ã®æžè¡°æ²ç·ïŒ1-枬å®å€ã2-å°åååž°ã3-ä¿¡é Œåºé±Ïã4-è·é¢10 kmã§ã®ããŒã¯å é床ã®èªç¶å¯Ÿæ°ã®æšæºæ£èŠååžã®å¯åºŠé¢æ°ãœãŒã¹ããã5-ããŒã¯å é床ã®ã¬ãã«0.7gã匷ã
ln â¡PGA(m,r)
ã«é¢ããããŒã¿ã§èŠ³æž¬ãããå€åæ§ïŒã€ãã³ãããã€ãã³ããããã³ãã€ã³ããããã€ã³ãïŒã¯ããŒãå¹³åãšæšæºèª€å·®
Ï
ã«ããåãã€ã³ã
(m,r)
ã§ã®é
ln â¡PGA(m,r)
ã®æ£èŠååžã«ãã£ãŠèšè¿°ãããŸãïŒå³ã2ïŒã ããã«ããããããããããä»®å®ãšããŠæ±ã䟡å€ã¯ãããŸãããããã¯éåžžã«å¹æçã§ã[Cornellã1968]ã
次ã«ãåå£ã®ããŒã¯å é床ã®å¯Ÿæ°æ£èŠååžã«é¢ããäžèšã®ä»®å®ãããèæ
®äžã®ãã€ã³ãããè·é¢
r
çºçãããã°ããã¥ãŒã
m
ãã¹ãŠã®ã€ãã³ãã®ãå é床
a
ãè¶
ããå°éå¹æãåŒãèµ·ãããªãã€ãã³ãã®å²åã«åŸã
FïŒ fraclnaâgïŒmãrïŒ sigmaïŒãïŒ2ïŒ
ããã§ã
ã¯æšæºæ£èŠå€ã®ååžé¢æ°ã§ãã ä»é²ã«ã¯ãæ£èŠååžã®æ°å€ãå«ãè¡šãå«ãŸããŠããŸãã [Bakerã2008]ããåããŸããã
ãããã£ãŠãè·é¢
r
ã§ãã°ããã¥ãŒã
m
å°éã€ãã³ãããæå®ãããã¬ãã«ã®å°éã®åœ±é¿
a
ãè¶
ããªã確çã¯ãæšæºæ£èŠå€ã®ååžé¢æ°ã«ãã£ãŠå®å
šã«æ±ºå®ãããŸãã ãã®ç¢ºçã
Pr(Aâ€aâm,r)
ãšããŠè¡šããŸãã 次ã«ãå®çŸ©ïŒ2ïŒã«åŸã£ãŠã次ã®ããã«èšè¿°ã§ããŸãã
PrïŒAâ€aâmãrïŒ= int limitsaâ infty frac1 sigma sqrt2 pi expïŒâ frac12ïŒ fraclnxâgïŒmãrïŒ sigmaïŒ2ïŒdxãïŒ3ïŒ
åŒïŒ1ïŒãïŒ3ïŒã®ã°ã©ãã£ã«ã«ãªè§£éãå³ã«ç€ºããŸãã 2.ååž°ã¯ãããŒã¯åå£å é床ã®æž¬å®å€ãè¡šããŠããããšãããããŸãã ãã¹ãŠã®ãã€ã³ãã¯1ã€ã®å°éãæããŸãã ããæ£ç¢ºã«ã¯ãååž°èªäœã¯ããŸããŸãªå°éããåŸãããå€æ°ã®çµéšçããŒã¿ã«åºã¥ããŠæ§ç¯ãããŠããŸããã説æãç°¡åã«ããããã«ããã°ããã¥ãŒã
M=5.8
å°éã®ã°ã©ãã瀺ããŸãã ããšãã°ãããã«ã¹ã¯ä»è¿ïŒå³1ïŒã§ã¯ãäžé£ã®å°éãMã6ã«è¿ãèŠæš¡ã§çºçããéœåžã«è¢«å®³ããããããŸããã
å³
Ï=0.783
2ã¯ãïŒ1ïŒããæšæºèª€å·®
Ï=0.783
ã決å®ããããŒã¯å é床å€ã®ã°ãã€ãã瀺ããŠããŸãã ãã€ã³ã
m=5.8
ããã³
r=10
ã®ããŒã¯å°äžå é床ã®èªç¶å¯Ÿæ°ã¯ã
g(m,r)=4.868 (PGA=125 /^2)
ã§ãã æ倧å é床
0.7g (687 /^2)
å°éè¡æã¯ã
0.7g (687 /^2)
lnâ¡ a=6.532
察å¿ããŸãã ãã®å Žåãè·é¢
r=10
ã§ãã°ããã¥ãŒã
m=5.8
å°éã«ãã£ãŠåŒãèµ·ããããå°éã®åœ±é¿
A
ã
0.7g
ïŒIXãã€ã³ãïŒãè¶
ããªã
0.7g
ã¯çãããªããŸãïŒä»é²ãåç
§ïŒã
PrïŒAâ€0.7gâm=5.8ãr=10ïŒ=ïŒ frac6.532â4.8680.783ïŒ=0.983
建ç©ã¯ç¡éã®çšŒåæéã®ããã«å»ºãŠããããã®ã§ã¯ãããŸããã ãã¹ãŠã«ç¬èªã®èçšå¹Žæ°ããããæé
T
ã«ãã£ãŠæ±ºå®ãããŸã
T
å³3.éæºã®æŠç¥å³ããã®å Žåãéæºããã€ã³ã
k
ïŒå³3ïŒã«ãããã°ããã¥ãŒã
M_i
å°éã®åœ±é¿ã¯ã次ã®æé
T
ã«ããã£ãŠå é床aã®æå®å€ãè¶
ããŸãããïŒ ãã®ãããªé·ã質åã«å¯Ÿããæåã®çãã¯æçœã§ããèæ
®ãããæéééäžã«åäžã®å°éãçºçããªãå Žåã 2çªç®ã®ã±ãŒã¹ã¯ããã»ã©æçœã§ã¯ãããŸããã1ã€ã®å°éãçºçããŠããïŒ1ïŒã§å®çŸ©ãããæžè¡°åã«åŸã£ãŠãäºæ³ãããå°éã®åœ±é¿ã¯çºçããŸããã äžè¬ã«ãæé
T
éã«å°ãªããšã2ã€ã®å°éãŸãã¯3ã€ãŸãã¯
Ns
å°éãçºçããå¯èœæ§ããããŸã
T
確çã®èŠ³ç¹ããèšãããããšãèšãæããŸãã
ç¹å®ã®ãã€ã³ãã1ã€ã®ãã°ããã¥ãŒãã®ã¿ã®å°éãçæããåçŽåãããã¢ãã«ãèŠãŠã¿ãŸãããã ããŒãã«ãèŠãŠã¿ãŸãããã 1.å°éã®åœ±é¿ãè¶
ããªãããŸããŸãªçµæã瀺ããŸããåäžã®å°éã€ãã³ãïŒ0ïŒã1ïŒ1ïŒã2ïŒ1 + 1ïŒã3ïŒ1 + 1 + 1ïŒãªã©ã§ã¯ãããŸããã æé
T
éã«1ã€ã®ã€ãã³ããçºçãã確çã¯ããããã
p1
ã§ã¯ãªãã
p1
ã
p2
ã«2ã
p3
ã«3ãªã©ã«çãããªããŸãã åœç¶ãèæ
®ãããçµæã®ã»ããã¯å®å
šã§ãã ä»ã®ãªãã·ã§ã³ã¯ãããŸããïŒ
p0+p1+p2+p3+\ããã=1ãïŒ4ïŒ
äžãããããã°ããã¥ãŒãã®å°éããã®æ¯åãäžãããããã€ã³ãã§äžããããå°éå¹æãè¶
ããªã確çã¯ã
Pr
ã§ç€ºãããïŒ3ïŒã§å®å
šã«æå®ãããŸãã ãã®å Žåã2ã€ã®å°éã®æ¯åãæå®ãããå°éã®åœ±é¿ãè¶
ããªã確çã¯ã
Pr*Pr
ã3-
Pr*Pr*Pr
ãªã©ã§ãã å°éããªãå Žåãè¶
éããªã確çã¯
1
ã§ããããšã¯æããã§ãã ãããã£ãŠãæé
T
éã«äžãããããã€ã³ãã§
T
å°éã®åœ±é¿ãè¶
ããããªãåèšç¢ºç
P
ïŒ
P=p0 astïŒ1ïŒ+p1 astïŒPrïŒ+p2 astïŒPr astPrïŒ+p3 astïŒPr astPr astPrïŒ+\ãããïŒ5ïŒ
è¡š1.ç¹å®ã®å°ç¹ã«ãããç¹å®ã®ãã°ããã¥ãŒãã®å°éæºã®ç¢ºçã¢ãã«ã
çµæïŒã€ãã³ãã®æ°ïŒ | çºç確ç | è¶
ããªã確ç |
---|
0 | p0 | 1 |
1 | p1 | Pr |
1 + 1 | p2 | Pr * Pr |
1 + 1 + 1 | p3 | Pr * Pr * Pr |
... | ... | ... |
åŒïŒ5ïŒãå®å
šã«æ¶åãããåŸãäžè¬çãªã±ãŒã¹ãæ€èšããŸãã ãããè¡ãã«ã¯ã次ã«
T
s
ã€ãã³ããçºçãã確çãèšå®ããå¿
èŠããããŸãã
s=0,1,2,âŠ,Ns
ã§ãã åŸç¶ã®æé
T
ããç¹
k
ã§ãã°ããã¥ãŒã
M_i
ã®sã€ãã³ãã®çºç確çã
P_k(s,M_i,T)
ãŸãã
次ã«ã次ã®æééé
T
ã§ãã€ã³ã
k
ïŒå³3ïŒã§ãã°ããã¥ãŒã
M_i
å°éã€ãã³ãããæå®ãããã¬ãã«ã®å°éè¡æaãè¶
ããªã確çã¯ãïŒ5ïŒãšã®é¡æšã«ãã£ãŠèšå®ãããŸãã
PïŒA leqa midMiãTãkïŒ= sumNss=0PkïŒsãMiãTïŒ[PrïŒA leqa midMiãRkïŒ]SãïŒ6ïŒ
ããã§ã
R_k
ã¯ããã€ã³ã
k
å°éæºããå°éã®åœ±é¿ãäºæ³ããããã€ã³ããŸã§ã®è·é¢ã§ãã
ããã«ç°¡åã§ãã 倧ãã
M_i
ç¬ç«ããå®è£
ãèæ
®ããå¿
èŠããããŸãã ãã¡ããã倧ããªå°éåŠã«ã¯äŸå€ããããŸãã ããšãã°ã匷ãå°éãäžé£ã®äœéãåŒãèµ·ãããå ŽåïŒãŸãã¯ãèšãæããã°ã倧ããã®ããç¹°ãè¿ãã€ãã³ãã¯ã¡ã€ã³ã€ãã³ãããããããã«å°ãªãïŒã ãããããã®ããã«ãããããå°éã«ã¿ãã°ã®ã¯ã©ã¹ã¿å解é€ãå®è¡ãããŸãã äœéããã®ä»ã®äŸåã€ãã³ãã®é€å»ã
ïŒ6ïŒããã®ãã°ããã¥ãŒãã®ç¬ç«æ§ã®æ¡ä»¶ãèæ
®ããŠã次ã®æééé
T
ãã€ã³ã
k
ã§ã®äžé£ã®å°éãããäžããããã¬ãã«ã®å°éè¡æaãè¶
ããªã確çãååŸããŸãã
$$衚瀺$$ PïŒAâ€aâTãkïŒ= \ prod_ {i = 1} ^ {N_m} PrïŒAâ€aâM_iãTãkïŒã ïŒ7ïŒ$$衚瀺$$
éæºã¯ç¬ç«ããŠããããããããç¬èªã®ç掻ãéã£ãŠãããšæ³å®ããã®ã¯åççã§ãã ç¹°ãè¿ããŸããã倧èŠæš¡ãªå°éåŠã§ã¯ãäžæ¹ã®æå±€ã®æ§é ç掻åãä»æ¹ã®å°é掻åã®æŽ»æ§åãåŒãèµ·ããå ŽåããããŸãã ããã§ãã
N
éæºã®ã»ãããç¬ç«ããŠãããšããä»®å®ããã次ã®æé
T
ãåŸ
æ©ããã€ã³ãã§ãæå®ãããã¬ãã«ã®å°é圱é¿aãè¶
ããªã確çãååŸããŸãã
$$衚瀺$$ PïŒAâ€aâTïŒ= \ prod_ {i = 1} ^ {N} \ prod_ {i = 1} ^ {N_m} PrïŒAâ€aâTãkïŒã ïŒ8ïŒ$$衚瀺$$
ïŒ8ïŒã®è¶
éããªã確çããè¶
éãã確çã«æž¡ããŸãã
PïŒA>aâTïŒ=1âPïŒAâ€aâTïŒãïŒ9ïŒ
åŒïŒ9ïŒã¯ãå°éãã¶ãŒãã®ç¢ºççåæã«ãããå°éãŸãŒãã³ã°ãããã®äœæã®åºç€ã§ãã
å°é
P_k (s,M_i )
çºç確çãç°¡åã«
P_k (s,M_i )
ãŸãã å°éãŸãŒãã³ã°ã§ã¯ãææ°ãã¢ãœã³ã¢ãã«ããã䜿çšãããŸããã€ãŸãã次ã®
T
幎ã«sã®å°éãçºçãã確çã¯æ¬¡ãšçãããªããŸãã
PkïŒsãMiãTïŒ= frac[λkïŒMiïŒT]sexp[âλkïŒMiïŒT]sïŒãïŒ10ïŒ
ããã§ã
λ_k (M_i )
ã¯ããã€ã³ã
k
ã§ãã°ããã¥ãŒã
M_i
ã®å°éã®çºçé »åºŠã§ãã äºæ³ã©ããããŒãããç¡é倧ãŸã§ã®ãã¹ãŠ
s
åèšïŒ10ïŒã¯1ã§ãã
æ¥æ¬ã®ç§åŠè
ã¯ãå€å°éã«é¢ããããŒã¿ã«åºã¥ããŠæŽå²çãªå°éãåçŸããŸããã ãåç¥ã®ããã«ã接波ã¯éåžžã«åŒ·ãå°éã€ãã³ãã«ãã£ãŠåŒãèµ·ãããããããã®ççºã¯æµ·å²žã®å°è³ªåŠçããã³åœ¢æ
åŠçæŽå²ã«ä¿åãããŠããŸãã æ¥æ¬ã®æšå®ã«ãããšãå島å島åéšã®å°åã§çºçããå¯èœæ§ã®ããæ倧å°éã®å€§ããã¯ã
M=8.8
以äžã§ããå¯èœæ§ããããŸãã 圌ãã«ãããšãåé¡ã®ã€ãã³ãã¯å¶ç¶ã§ã¯ãªããå®æçã«çºçããŸãã å°ééééã¯340ã380幎ã®ç¯å²ã«ãããŸãã å¹³ååçºæéã¯360幎ã§ãã å°éã®é »åºŠ
λ
ã¯ã
1/360 ^-1
ãšæšå®ãããŸãã
éæºã®åçŽåãããã¢ãã«ãèããŠã¿ãŸããã-äžãããããã°ããã¥ãŒãã®äžãããããã€ã³ãã§ïŒå³3ïŒã æšæºã®æéééã¯
T=30
ã§ãã ãããŠã
λT << 1
ããããšã¯æããã§ãã ããã¯ãåŒïŒ10ïŒã§ããæåã®ã確ç
p0
ããã³
p1
å¶éã§ããããšãæå³ããŸãã
$$衚瀺$$ p0 =expâ¡ïŒ-λTïŒãp1 =λTexpâ¡ïŒ-λTïŒã ïŒ11ïŒ$$衚瀺$$
ïŒ11ïŒãããåæç¹ã§ãå°éã®çºçã¯åæ§ã«çºçããå¯èœæ§ããããŸãã ããšãã°ããã®ã¢ãã«ã«ãããšãã»ã³ã»ãŒã·ã§ãã«ãªãæã匷åãªãå°éã¯ãä»åŸ30幎éã«
0.083
確çã§çºçããŸãã
åŒïŒ5ïŒã«ãã£ãŠæå®ãããå°éã®åœ±é¿ãè¶
ããªã確çã¯ã次ã®ããã«æšå®ãããŸãã
$$衚瀺$$ P = p0 + p1 * Pr =expâ¡ïŒ-λTïŒ+Prâ¡*λT*expâ¡ïŒ-λTïŒãïŒ12ïŒ$$衚瀺$$
ïŒ9ïŒããã³ïŒ12ïŒã«ããè¶
éã®æãŸãã確çã¯ã
$$衚瀺$$ Q = 1-P =1-expâ¡ïŒ-λTïŒ-Prâ¡*λT*expâ¡ïŒ-λTïŒã ïŒ13ïŒ$$衚瀺$$
ïŒ13ïŒã
λT
ã¹ãä¹ã§å±éããå±éã®æåã®é
ã®ã¿ãæ®ããšã次ã®ããã«ãªããŸãã
$$衚瀺$$ QïŒA>aâTïŒ=λT*ïŒ1-PrïŒAâ€aâmãrïŒïŒã ïŒ14ïŒ$$衚瀺$$
ãããã£ãŠãç¹å®ã®ä»®å®ã®äžã§ã確çè«çææ³ã«ããèŠç¯çãªå°éã®åœ±é¿ãè©äŸ¡ããããã®ç°¡åãªåŒãååŸããŸããã æåŸã®è©³çŽ°ã¯æ®ããŸãã ããã¯ãå島å島ã®åŒ·ãå°åã®æžè¡°ã®æ³åã§ãã
å島å島ã§ã¯ãæ¥æ¬ã®è¿é£å°åã¯å°è³ªåŠçããã³æ§é çæ¡ä»¶ã«è¿ãã ããã§ã¯ãã«ãªãã©ã«ãã¢ã®ããã«ãå°äžå é床ã®æžè¡°ã®æ¹çšåŒãææ°ã¬ãã«ã§éçºãããŠããŸãã å°é掻åã®æ²ã¿èŸŒã¿ãšå°æ®»ã¿ã€ããžã®åé¢ãèæ
®ããæãçµ±äžãããã¢ãã«ã¯ãShiãšMidorikawaã®åºæ¬ã¢ãã«ã§ã[SiãMidorikawaã1999]ã ãã®ã¢ãã«ã®ãã®åŸã®ä¿®æ£ã¯
ã2011幎ã®æ±åã®å·šå€§å°éã®å°éå¹æã®è©³çŽ°ãªåæ
ïŒMw 9.0ïŒåŸã®ä¿æ°ã®æ¹è¯ã«å€§ããé¢é£ããŠããŸãã
$$衚瀺$$ \ begin {cases}logâ¡A=b-logâ¡ïŒX + cïŒ-kXãDâ€30km \\logâ¡A= b + 0.6logâ¡ïŒ1.7D + cïŒ-1.6 log XïŒX + cïŒ-kXãD> 30 kmãïŒ15ïŒ\ end {cases} $$衚瀺$$
ã©ãã§
b=αMw+hD+ sumdiSi+eãïŒ16ïŒ
A
ã¯
/^2
ã®æ倧å é床ã§ãã
D
ã¯ãkmåäœã®ã®ã£ããå¹³é¢ã®ãå¹³åãæ·±ãïŒéå¿ã®æ·±ãïŒã§ãã
X
ã¯ãã®ã£ãããŸã§ã®æçè·é¢ïŒ
ã§ãã
Mw
ã¢ãŒã¡ã³ãã®å€§ãã;
+ãã®ä»ã®ãªããºÎ±=0.59;
h=0.0023;
d1=0.00;
d2=0.08;
d3=0.30;
e=0.02;
c=0.006â100.5Mw;
k=0.003;
sigmalogPGA=0.27
å°æ®»å°éã®å Žåã
S_1=1, S_2=0, S_3=0;
ãã¬ãŒãéå°éã®å Žåã
S_1=0, S_2=1, S_3=0;
ãã¬ãŒãå
S_1=0, S_2=0, S_3=1.
å³4.å島å島åéšã®éæºã®ã¢ãã«ïŒéæºïŒãç§ãã¡ã®ã巚倧å°éã¯ã2ã€ã®ãã¬ãŒãã®æ¥åéšã§äºæ³ãããŸãã å°éã¿ã€ã-ãã¬ãŒãéã çŠå³¶åååçºé»æã®æ²åã§ç¥ããã2011幎ã®æ±åå°æ¹ã®å·šå€§å°éã¯ãæ·±ãçŽ11 kmã§çºçããã ãããã£ãŠãç§ãã¡ã®å ŽåãçŠç¹æ·±åºŠ
D=11
ã倧ãã
Mw=8.8
ïŒæ¥æ¬äººã瀺åããŠããããã«ïŒãåããŸãã å³ å³4ã¯ãå島å島ã§äºæ³ããã巚倧å°éã®ç©ºéã¢ãã«ã瀺ããŠããŸãã ã ãããäŸãã°ãã«ã€ããŠã ããããå島å島ã«åãã£ãŠæ¥éäžããŠããæå±€ãã島ã®äžå¿ãŸã§ã®æçè·é¢ã¯çŽ40 kmã§ããããã
X=40
ãŸãã ãã¹ãŠã®å
¥åãã©ã¡ãŒã¿ãŒã決å®ãããã®ã§ãæžè¡°åïŒ15ïŒã«åŸã£ãŠïŒ14ïŒãã確ç
Pr(Aâ€aâm=8.8,r=40)
ã決å®ããŸãã ãããè¡ãã«ã¯ãå°ãæãå ããå¿
èŠããããŸããåŒïŒ15ïŒã¯èªç¶å¯Ÿæ°ãªã©ã«ã€ãªãããŸãã ãã®çµæã
g(m,r)=7.22
ã
Ï_lnâ¡ PGA =0.62
ãŸãã äžã®è¡šã 2ãèšç®ããã確çå€ã衚瀺ãããŸãã
è¡š2.ç¹å®ã®å°éå¹æãè¶
ãã確çå é床a, g | å é床a, /^2 | Ln a | 確çPr(Aâ€aâm,r) | 確çQ(A>aâT) |
---|
0.30 | 294.30 | 5.68 | 0.99 | 0.083 |
0.40 | 392.40 | 5.97 | 0.98 | 0.081 |
0.50 | 490.50 | 6.20 | 0.95 | 0.079 |
0.60 | 588.60 | 6.38 | 0.91 | 0.076 |
0.70 | 686.70 | 6.53 | 0.87 | 0.072 |
0.80 | 784.80 | 6.67 | 0.82 | 0.068 |
0.90 | 882.90 | 6.78 | 0.76 | 0.063 |
1.00 | 981.00 | 6.89 | 0.71 | 0.059 |
1.20 | 1177.20 | 7.07 | 0.60 | 0.050 |
1.40 | 1373.40 | 7.23 | 0.50 | 0.042 |
ãã®åæã®ç®çã¯ãåå£ã®ç§»åã¬ãã«ãè¶
ãã確çãè©äŸ¡ããããšã§ãããäž»ãªçµæã¯ã移åã®ã¬ãã«ã«å¯Ÿããè¶
é確çã®äŸåæ§ã決å®ããããšã§ãããããã¯ãã¶ãŒãæ²ç·ãšåŒã°ããŸãã ãã¶ãŒãæ²ç·ãå³ã«å³ã§ç€ºããŸãã ããŒãã«ããã®ããŒã¿ã«å¿ããŠ5ã 2.å³ãã 5ä»åŸ30幎éã§0.06ãè¶
ãã確çã¯ãçŽ0.9gã®å°éã¬ãã«ã«å¯Ÿå¿ããããšãããããŸãã ããã¯9ãã€ã³ã以äžã§ãã ãã®ãããªå島å島ã®è©äŸ¡ã¯ã1994幎ã«
ã·ã³ã¿ã³ã¹ããŒãšåŒã°ãã倧å°éããã£ãããšãæãåºããšãèªç¶ã§äºæ³ãããæ³¢ã§ãã æ§é ç©ã®ç Žå£ã人åœã®æ倱ã接波ãå€æ°ã®å°æ»ãã䌎ããŸããã éãã®åŒ·ãã«ã€ããŠã Shikotanã¯ãMSK-64ã¹ã±ãŒã«ã§VIIIããIXãã€ã³ãã®ç¯å²ã§ããã
å³5. Fr.ã®ãã¶ãŒãæ²ç· ãã®éæºã«ãããšãå島å島åéšã®éæºã®ã¢ãã«ã«ãããšãããããããã¢ãœã³ã¢ãã«ã«å ããŠã以åã®å°é掻åã®å±¥æŽãèæ
®ãããèšæ¶ãã䌎ãå°éã®çºçã®ã¢ãã«ããããŸãã ãããã«ã¯ããã©ãŠã³ã¢ãã«ïŒãã©ãŠã³ééæéïŒãå«ãŸããŸãã ããã¯ãããç 究ãããå°åã®å°éãŸãŒãã³ã°ãããã®æ§ç¯ã«æ¥æ¬äººã®ååã«ãã£ãŠäœ¿çšãããŠããŸãã 圌ãã®æšå®ã«ãããšãåå島å島ã§ã®ä»åŸ30幎éã®å·šå€§å°éã®ç¢ºçã¯0.07ãã0.4ã®ç¯å²ã§ããïŒå³4ïŒã
æ倧ã®å°éãå³å¯ã«å®æçã«çºçããããšãæ³åããŠãã ãã-1000幎ã«1åã ãããŠãããã¯ãäŸãã°ã20幎åã«èµ·ãããŸããããããŠãç§ãã¡ã¯ããã®å Žæã«æ¬¡ã®50幎ç¶ãäœå®
ã建ãŠãã€ããã§ãã ãã®æéäžã匷ãåºæ¥äºã¯èµ·ããã°ããã§ããã次ã®åºæ¥äºã¯980幎åŸããæ©ãèµ·ãããªãã§ãããã ãã®ãããªåšææ§ã®äºå®ã確ç«ãããå Žåããã©ãŠã³ã¢ãã«ã䜿çšãããŸãã 次ã«ãèšç®ãããå°éè¡æ匷床ã®å€ãäœãå°éãŸãŒãã³ã°ã®ããããååŸããŸããããã«ãããåºåã§ã®å»ºèšã³ã¹ããåæžãããŸãã ã©ã®ã¢ãã«ãéžæãããã¯ã1人ã®å°é家ã§ã¯ãªããå°é家ã°ã«ãŒãã決å®ããŸãã
ãã©ãŠã³ã¢ãã«ã«åŸã£ãŠãã¶ãŒãæ²ç·ãèšç®ããã«ã¯ãããå€ãã®æéãšææãå¿
èŠã§ãã ããããç°¡åã«ããããã«ãæ¥æ¬ã®ååã®å ±åã«ãããšã次ã®30幎éã®1ã€ã®å°éã®ç¢ºçã¯æ¢ç¥ã§ãããp1ã«çãããšæ³å®ããŠããŸãã ãã®åŸãä»åŸ30幎éã«ã€ãã³ããçºçããªã確çã¯ãp0 = 1-p1ã«ãªããŸãã æåŸã«ã
è¶
éã®ç¢ºçã¯æ¬¡ã®ããã«èšå®ãããŸãã
$$衚瀺$$ QïŒA>aâTïŒ= 1-P =1-p0-Prâ¡* p1 = p1 *ïŒ1-PrïŒAâ€aâmãrïŒïŒ ïŒ17ïŒ$$衚瀺$$
0.4ã¡ã¬å°éã®æ倧確çã«ã€ããŠããã¶ãŒãæ²ç·ãäœæããŸããïŒå³5ïŒã ããã¯ãèšèšäžã®å°éã®åœ±é¿ã®è¶
è¶å€ã瀺ããŠããŸãïŒå³5ïŒãXãã€ã³ããè¶
ããŠããŸãã çŸå®ã«ã¯ãå°é¢ã®ç¶æ
ã巚倧å°éã«ããå°éã®åœ±é¿ã®æžè¡°ã®æ§è³ªãªã©ã«é¢ããå€ãã®ç¹ãèæ
®ããŠããŸããã§ããã
ãã°ããã¥ãŒãã®Mw=9.0
倧ããå°éã«ããå°éã®åœ±é¿ã¯ãã€ãã³ãpã«ãã£ãŠåŒãèµ·ãããããã®ãããããã»ã©å€§ãããªãããšãç¥ãããŠããŸãMw=8.3
ããããŠããã¯ãåŒïŒ15ïŒã«åŸã£ãŠå°éã®åœ±é¿ãæããã«é倧è©äŸ¡ããããšãæå³ããŸããããã§ããæ瀺ãããèšç®ã«ãããåé¡ã®èŠæš¡ãæããããšãã§ããŸããæåŸã®1ã€ããªãæ¥æ¬ã®å°éåŠè
ã¯ãä»åŸ30幎éãéæºã®ç¢ºçã¢ãã«ãæäŸããã®ã§ããïŒæ¥æ¬ã®åºæºã§ã¯ã建ç©ãšæ§é ç©ã®éçšå¯¿åœã¯30幎ãš50幎ã§ããããã·ã¢ã®å»ºç¯èŠå¶ã§ã¯50幎ã§ããäžçäžã®å°éãŸãŒãã³ã°æè¡ïŒããåœãå«ãïŒã¯ã30幎ãŸãã¯50幎ã«ããã£ãŠäžå®ã®ç¢ºçã§è¶
ããå°éã®åœ±é¿ãè©äŸ¡ããããšã«ãªããŸããéåžžã®è²¬ä»»ã®ãããªããžã§ã¯ãïŒããã³ãããã¯ç§ãã¡ã®ã¢ããŒãããªãã£ã¹ã§ãïŒã«ã€ããŠã¯ã建ç¯åºæºã«ãã50幎éã§0.1ãè¶
ãã確çãèšå®ãããŠããŸãã 30幎éã確çã¯0.06ã«èšå®ãããŸãïŒãããã¯æ¥æ¬ãšä»ã®ããã€ãã®åœã§ãïŒããã®ããã«ãæ¥æ¬ã®å°éåŠè
ã¯ãå°éã¢ãã«ã®ä¿å®çãªè©äŸ¡ãæ¡çšããŸãããããã¯ãå°éãŸãŒãã³ã°ãããã®æŽæ°ã«äœ¿çšãããŸããããã¯ãæ¥æ¬ã®ç§åŠè
ã«ããå°é調æ»ã®é«ã責任ãšæåã匷調ããŠããŸããããã¯ãŸããå°çã¯å¢çãç¥ããªãããšã瀺åããŠãããèªç¶çŸè±¡ã®ç 究ã«ã¯ããŸããŸãªåœã®ç§åŠè
ã®ååãå¿
èŠã§ããåæã¯ãLLC GEOFIZTECHã®ç 究æ
åœå¯éšé·ã§ããAlexey KonovalovïŒa.konovalov@geophystech.ruïŒãå®æœããŸãããä»é²1
Baker, JW An introduction to probabilistic seismic hazard analysis (PSHA) / JW Baker // Report for the US Nuclear Regulatory Commission, Version 1.3. 2008. Section 1. P. 5-27.