
ïŒ ãœãŒã¹ ïŒ
æ©æ¢°åŠç¿ãç¹ã«ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®ä»çµã¿ãä»ã®äººã«äŒããªããã°ãªããªãããšããããŸãã éåžžãåŸé
éäžãšç·åœ¢ååž°ããå§ããåŸã
ã«å€å±€ããŒã»ãããã³ãèªåãšã³ã³ãŒããŒãç³ã¿èŸŒã¿ãããã¯ãŒã¯ã«ç§»è¡ããŸãã å
šå¡ãé ãããªãããªããããªãããŸãããããæç¹ã§ãæãç®ã®ãªã人ã¯å¿
ãå°ããŸãïŒ
ãããŠããªãç·åœ¢ååž°ã®å€æ°ãç¬ç«ããŠããããšãããã»ã©éèŠãªã®ã§ããããïŒ
ãŸãã¯
ãŸããéåžžã®å®å
šã«æ¥ç¶ããããããã¯ãŒã¯ã§ã¯ãªããç»åã«ç³ã¿èŸŒã¿ãããã¯ãŒã¯ã䜿çšãããã®ã¯ãªãã§ããïŒ
ããããç°¡åã§ãããšçãããã§ãã -ãå€æ°ãäŸåããŠããå Žåãå€æ°éã®æ¡ä»¶ä»ã確çååžãã¢ãã«åããå¿
èŠãããããããŸãã¯ãå°ããªããŒã«ã«ãšãªã¢ã§ãã¯ã»ã«ã®å
±åååžãåŠç¿ããæ¹ãã¯ããã«ç°¡åã§ããããã ããããããã«åé¡ããããŸããçåŸã¯ãŸã 確çååžãšç¢ºçå€æ°ã«ã€ããŠäœãç¥ããªãã®ã§ãä»ã®æ¹æ³ã§åºãŠãããè€éã«èª¬æããŸãããæŠå¿µãšçšèªã¯å°ãªããªããŸãã ãŸãããããã«é¢ããæ£èŠåã¢ãã«ãŸãã¯çæã¢ãã«ã«ã€ããŠèª¬æããããã«æ±ããããå Žåã¯ã©ãããã°ãããããããŸããã
ã§ããããèªåèªèº«ãä»äººãèŠãããã®ã§ã¯ãªãã確çè«ã®åºæ¬æŠå¿µãèŠããŠãããŠãã ããã
ã©ã³ãã å€æ°
幎霢ã身é·ãæ§å¥ãåäŸã®æ°ã瀺ãããŠãã人ã
ã®ãããã¡ã€ã«ããããšæ³åããŠãã ããã
幎霢 | èº«é· | æ§å¥ | åã©ããã¡ |
---|
32 | 175 | 1 | 2 |
28 | 180 | 1 | 1 |
17 | 164 | 0 | 0 |
... | ... | .... | .... |
ãã®ãããªããŒãã«ã®åè¡ã¯ãªããžã§ã¯ãã§ãã åã»ã«ã¯ããã®ãªããžã§ã¯ããç¹åŸŽä»ããå€æ°ã®å€ã§ãã ããšãã°ãæåã®äººã¯32æ³ã§ã2人ç®ã®äººã¯èº«é·180 cmã§ãã ãããããã¹ãŠã®ãªããžã§ã¯ãã«å¯ŸããŠå€æ°ãäžåºŠã«èšè¿°ãããå Žåãã€ãŸã åå
šäœãåããŸããïŒ ãã®å Žåã1ã€ã®ç¹å®ã®å€ã§ã¯ãªããäžåºŠã«è€æ°ã®å€ããããããããã«åºæã®çºçé »åºŠããããŸãã å¯èœãªå€ã®ãªã¹ã+察å¿ãã確çã¯ã ã©ã³ãã å€æ° ïŒã©ã³ãã å€æ°ãrvïŒãšåŒã°ããŸãã
é¢æ£ããã³é£ç¶ç¢ºçå€æ°
ãããé ã«çããŠããããã«ãããäžåºŠç¹°ãè¿ããŸããã©ã³ãã å€æ°ã¯ããã®å€ã®ç¢ºçååžã«ãã£ãŠå®å
šã«æ±ºå®ãããŸãã ã©ã³ãã å€æ°ã«ã¯ãé¢æ£åãšé£ç¶åã®2ã€ã®äž»ãªã¿ã€ãããããŸãã
é¢æ£å€æ°ã¯ãæ確ã«åé¢å¯èœãªå€ã®ã»ãããåãããšãã§ããŸãã éåžžãç§ã¯ãããã次ã®ããã«æåããŸãïŒç¢ºç質éé¢æ°ãpmfïŒïŒ

ãžã¥ãªã¢ã³ãŒãPkg.add("Plots") using Plots plotly() plot(["0","1"], [0.3, 0.7], linetype=:bar, legend=false)
ããã¹ãã§ã¯ãããã¯é垞次ã®ããã«æžãããŠããŸãïŒg-æ§å¥ïŒïŒ
pïŒg=0ïŒ=0.3pïŒg=1ïŒ=0.7
ã€ãŸã ãµã³ãã«ããã©ã³ãã ãªäººã女æ§ã«ãªã確çïŒ g=0 ïŒã¯0.3ã§ãç·ïŒ g=1 ïŒ-0.7ãããã¯å¥³æ§ã®30ïŒ
ãšç·æ§ã®70ïŒ
ããµã³ãã«ã«å«ãŸããŠãããšããäºå®ã«çžåœããŸãã
é¢æ£å€æ°ã«ã¯ã1人ãããã®åäŸã®æ°ãããã¹ãå
ã®åèªã®åºçŸé »åºŠãæ ç»ãèŠèŽãããåæ°ãªã©ãå«ãŸããŸãã ã¡ãªã¿ã«ãæéæ°ã®ã¯ã©ã¹ãžã®åé¡ã®çµæããé¢æ£ç¢ºçå€æ°ã§ãã
é£ç¶å€æ°ã¯ãç¹å®ã®ééã§ä»»æã®å€ãåãããšãã§ããŸãã ããšãã°ã身é·ã175cmã§ãããšèšé²ããå Žåã§ããã€ãŸã 1ã»ã³ãã¡ãŒãã«ã«äžžããŸããå®éã«ã¯175.8231 cmã«ãªããŸãã é£ç¶å€æ°ã¯éåžžã確çå¯åºŠé¢æ°ïŒpdfïŒæ²ç·ã䜿çšããŠæãããŸãã

ã³ãŒã Pkg.add("Distributions") using Distributions xs = 140:0.1:200 ys = [pdf(Normal(172, 10), x) for x in xs] plot(xs, ys; xlabel="h", ylabel="p(h)", legend=false, show=true)
確çå¯åºŠã®ã°ã©ãã¯æ³šæãå¿
èŠã§ãïŒååã®é«ãããã®ãããªå€ãåŸã確çãçŽæ¥ç€ºãé¢æ£å€æ°ã®ç¢ºç質éã®ã°ã©ããšã¯ç°ãªãã確çå¯åºŠã¯ç¹å®ã®ãã€ã³ãåšèŸºã®çžå¯Ÿçãªç¢ºçéã瀺ããŸãã ãã®å Žåã確çèªäœã¯åºéã«ã€ããŠã®ã¿èšç®ã§ããŸãã ããšãã°ããã®äŸã§ã¯ããµã³ãã«ããç¡äœçºã«æœåºããã人ã®èº«é·ã160ã170 cmã«ãªã確çã¯çŽ0.3ã§ãã
ã³ãŒã d = Normal(172, 10) prob = cdf(d, 170) - cdf(d, 160)
質åïŒããæç¹ã§ã®ç¢ºçå¯åºŠã¯1ããã倧ãããªããŸããïŒ ãã¡ãããçãã¯ã€ãšã¹ã§ããäž»ãªããšã¯ãã°ã©ãã®äžã®ç·é¢ç©ïŒãŸãã¯æ°åŠçã«èšãã°ã確çå¯åºŠç©åïŒã1ã«çããããšã§ãã
é£ç¶å€æ°ã®ãã1ã€ã®é£ç¹ã¯ããã®ç¢ºçå¯åºŠãåžžã«ããŸãè¡šçŸã§ãããšã¯éããªãããšã§ãã é¢æ£å€æ°ã®å Žåãå€ã®ããŒãã«->確çããããŸããã é£ç¶ã®å Žåããããã¯äžè¬ã«ç¡éã®æ°ã®æå³ãæã€ãããæ©èœããŸããã ãããã£ãŠã圌ãã¯éåžžãããç 究ããããã©ã¡ããªãã¯ååžã«ãã£ãŠããŒã¿ã»ãããè¿äŒŒããããšããŸãã ããšãã°ãäžã®ã°ã©ãã¯ããããäŸã§ãã æ£èŠååžã ãã®ç¢ºçå¯åºŠã¯æ¬¡ã®åŒã§äžããããŸãã
pïŒxïŒ= frac1 sqrt2 pi sigma2eâ fracïŒxâ muïŒ22 sigma2
ã©ã㧠mu ïŒmatãæåŸ
ãå¹³åïŒããã³ \ã·ã°ã2 ïŒåæ£ïŒ-ååžãã©ã¡ãŒã¿ãŒã ã€ãŸã 2ã€ã®æ°å€ãããªããããååžãå®å
šã«èšè¿°ããä»»æã®ç¹ã§ã®ç¢ºçå¯åºŠãŸãã¯2ã€ã®å€éã®åèšç¢ºçãèšç®ã§ããŸãã æ®å¿µãªãããã©ã®ããŒã¿ã»ãããããé ãé¢ããŠããããçŸããè¡šçŸã§ããååžããããŸãã ããã«å¯ŸåŠããã«ã¯å€ãã®æ¹æ³ããããŸãïŒå°ãªããšãæ£èŠååžã®æ··åãåããŸãïŒããããã¯å®å
šã«ç°ãªããããã¯ã§ãã
ç¶ç¶çååžã®ä»ã®äŸïŒäººã®å¹Žéœ¢ãç»åå
ã®ãã¯ã»ã«ã®åŒ·åºŠããµãŒããŒããã®å¿çæéãªã©ã
å
±åååžãåšèŸºååžãæ¡ä»¶ä»ãååž
éåžžããªããžã§ã¯ãã®ããããã£ã¯äžåºŠã«1ã€ã§ã¯ãªããä»ã®ããããã£ãšçµã¿åãããŠèæ
®ãããŸããããã§ã¯ãããã€ãã®å€æ°ã®å
±åååžã®æŠå¿µã衚瀺ãããŸãã 2ã€ã®é¢æ£å€æ°ã®å ŽåãããŒãã«ã®åœ¢åŒã§ãããè¡šãããšãã§ããŸãïŒg-æ§å¥ãc-åã®æ°ïŒïŒ
| c = 0 | c = 1 | c = 2 |
---|
g = 0 | 0.1 | 0.1 | 0.1 |
g = 1 | 0.2 | 0.4 | 0.1 |
ãã®ååžã«ãããšãããŒã¿ã»ããã§2人ã®åäŸãæã€å¥³æ§ã«äŒã確çã¯æ¬¡ã®ãšããã§ãã pïŒg=0ãc=2ïŒ=0.1 ãšåäŸã®ãªãç·- pïŒg=1ãc=0ïŒ=0.2 ã
ããšãã°ã身é·ãšå¹Žéœ¢ãªã©ã®2ã€ã®é£ç¶å€æ°ã®å Žåãåã³åæååžé¢æ°ãå®çŸ©ããå¿
èŠããããŸã pïŒhãaïŒ ãããæŠç®ãã
ããšãã°ã å€æ¬¡å
æ³ç· ã ãããããŒãã«ã«æžãããšã¯ã§ããŸããããæãããšãã§ããŸãïŒ

ã³ãŒã d = MvNormal([172.0, 30.0], [10 0; 0 5]) xs = 160:0.1:180 ys = 22:1:38 zs = [pdf(d, [x, y]) for x in xs, y in ys] surface(zs)
å
±åååžãããå Žåãæ®ãã®å€æ°ãåçŽã«åèšïŒé¢æ£ã®å ŽåïŒãŸãã¯ç©åïŒé£ç¶ã®å ŽåïŒããããšã§ãåå€æ°ã®ååžãåå¥ã«èŠã€ããããšãã§ããŸãã
pïŒgïŒ= sumcpïŒgãcïŒpïŒhïŒ= intpïŒaãhïŒda
ããã¯ãããŒãã«ã®åè¡ãŸãã¯åã®åèšãšããŠè¡šãããçµæãããŒãã«ã®ãã£ãŒã«ãã«å
¥ããããšãã§ããŸãã
| c = 0 | c = 1 | c = 2 |
---|
g = 0 | 0.1 | 0.1 | 0.1 | 0.3 |
g = 1 | 0.2 | 0.4 | 0.1 | 0.7 |
ã ããåã³ pïŒg=0ïŒ=0.3 ãã㊠pïŒg=1ïŒ=0.7 ã ããŒãžã³ããã»ã¹ã¯ãçµæã®ååžèªäœã«ååãäžããŸã-éç確çã
ããããå€æ°ã®1ã€ã®å€ããã§ã«ããã£ãŠããå Žåã¯ã©ãã§ããããïŒ ããšãã°ãç®ã®åã«ç·æ§ãããŠããã®åäŸã®æ°ã®ç¢ºçååžãååŸãããããšãããããŸããïŒ å
±å確çè¡šãããã§åœ¹ç«ã¡ãŸãïŒåã«ç·ãããããšã確å®ã«ç¥ã£ãŠããã®ã§ã g=1 ãä»ã®ãã¹ãŠã®ãªãã·ã§ã³ãèæ
®ããç Žæ£ãã1è¡ã®ã¿ãèæ
®ããããšãã§ããŸãã
| c = 0 | c = 1 | c = 2 |
---|
g = 1 | 0.2 | 0.4 | 0.1 |
barpïŒc=0|g=1ïŒ=0.2 barpïŒc=1|g=1ïŒ=0.4 barpïŒc=2|g=1ïŒ=0.1
確çã¯äœããã®æ¹æ³ã§1ã€ã«åèšããå¿
èŠããããããçµæã®å€ãæ£èŠåããå¿
èŠããããŸãã
pïŒc=0|g=1ïŒ=0.29pïŒc=1|g=1ïŒ=0.57pïŒc=2|g=1ïŒ=0.14
æ¢ç¥ã®å€ãæã€å¥ã®å€æ°ã®ååžã¯ãæ¡ä»¶ä»ã確çãšåŒã°ããŸãã
ãã§ãŒã³ã«ãŒã«
ãããŠããããã®ãã¹ãŠã®ç¢ºçã¯ããã§ãŒã³ã«ãŒã«ãšåŒã°ãã1ã€ã®ç°¡åãªå
¬åŒã«ãã£ãŠçµã³ä»ããããŠããŸãïŒãã§ãŒã³ã«ãŒã«ãå·®å¥åã«ãããŠãã§ãŒã³ã«ãŒã«ãšæ··åããªãã§ãã ããïŒã
pïŒxãyïŒ=pïŒy|xïŒpïŒxïŒ
ãã®åŒã¯å¯Ÿç§°ã§ããããããããå®è¡ã§ããŸãã
pïŒxãyïŒ=pïŒx|yïŒpïŒyïŒ
ã«ãŒã«ã®è§£éã¯éåžžã«ç°¡åã§ãïŒif pïŒxïŒ -ç§ã赀信å·ã«è¡ã確çããã㊠pïŒy|xïŒ -赀信å·ã«ç®ãåãã人ãããããã確çã赀信å·ã«ç§»åããŠãããããå
±å確çã¯ãããã2ã€ã®ã€ãã³ãã®ç¢ºçã®ç©ã«æ£ç¢ºã«çãããªããŸãã ããããäžè¬çã«ãç·ã«ãªããŸãã
åŸå±å€æ°ãšç¬ç«å€æ°
ãã§ã«è¿°ã¹ãããã«ãå
±åååžè¡šãããå Žåãã·ã¹ãã ã«é¢ãããã¹ãŠãç¥ã£ãŠããŸããå€æ°ã®éç確çãèšç®ããããããå€æ°ãå¥ã®æ¢ç¥ã®å€æ°ã§æ¡ä»¶ä»ãã§ååžãããã§ããŸãã æ®å¿µãªãããå®éã«ã¯ããã®ãããªããŒãã«ãã³ã³ãã€ã«ããïŒãŸãã¯é£ç¶ååžã®ãã©ã¡ãŒã¿ãŒãèšç®ããïŒããšã¯ã§ããŸããã ããšãã°ã1000åã®åèªã®åºçŸã®å
±åååžãèšç®ããå Žåã¯ã次ã®è¡šãå¿
èŠã§ãã
107150860718626732094842504906000181056140481170553360744375038837035105112493612
249319837881569585812759467291755314682518714528569231404359845775746985748039345
677748242309854210746050623711418779541821530464749835819412673987675591655439460
77062914571196477686542167660429831652624386837205668069376
ïŒ1e301ãå°ãè¶
ããïŒã»ã«ã æ¯èŒã®ããã«ã芳枬å¯èœãªå®å®ã®ååæ°ã¯çŽ1e81ã§ãã ãããããè¿œå ã®ã¡ã¢ãªããŒã賌å
¥ããã ãã§ã¯ååã§ã¯ãããŸããã
ãã ãã詳现ã1ã€ãããŸãããã¹ãŠã®å€æ°ãäºãã«äŸåããŠããããã§ã¯ãããŸããã ææ¥éšãéã確çã¯ãç§ãéè·¯ã暪æããŠèµ€ä¿¡å·ã«ãªããã©ããã«ã»ãšãã©äŸåããŸããã ç¬ç«å€æ°ã®å Žåãäžæ¹ããä»æ¹ãžã®æ¡ä»¶ä»ãååžã¯åçŽã«åšèŸºååžã§ãã
pïŒy|xïŒ=pïŒyïŒ
æ£çŽã«èšããšã1000èªã®çµå確çã¯æ¬¡ã®ããã«èšè¿°ãããŸãã
pïŒw1ãw2ã...ãw1000ïŒ=pïŒw1ïŒ timespïŒw2|w1ïŒ timespïŒw3|w1ãw2ïŒ times... timespïŒw1000|w1ãw2ã...ïŒ
ããããåèªãäºãã«ç¬ç«ããŠãããšãåçŽã«ãä»®å®ãããšãåŒã¯æ¬¡ã®ããã«ãªããŸãã
pïŒw1ãw2ã...ãw1000ïŒ=pïŒw1ïŒ timespïŒw2ïŒ timespïŒw3ïŒ times... timespïŒw1000ïŒ
ãããŠã確çãä¿ã€ããã« pïŒwiïŒ 1000ã¯ãŒãã®å Žåã1000ã»ã«ã®ã¿ã®ããŒãã«ãå¿
èŠã§ããããã¯ãŸã£ããåé¡ãããŸããã
ã§ã¯ããã¹ãŠã®å€æ°ãç¬ç«ãšèŠãªããªãã®ã¯ãªãã§ãã æ®å¿µãªããã倧éã®æ
å ±ã倱ãããŸãã åã®çã¿ãšçºç±ãšãã2ã€ã®å€æ°ã«å¿ããŠãæ£è
ãã€ã³ãã«ãšã³ã¶ã«ããã確çãèšç®ããããšããŸãã ãããšã¯å¥ã«ãåã®çã¿ã¯ãç
æ°ãšæ£è
ã倧声ã§æã£ãŠããã ãã®ããšã瀺ããŸãã 枩床ãå¥ã«äžæããŠããå Žåã¯ãç
æ°ãšãèµ°ãããæ»ã£ãã°ããã®äºå®ã®äž¡æ¹ã瀺ããŸãã ããããäœæž©ãšã®ã©ã®çã¿ãåæã«èŠ³å¯ããå Žåãããã¯æ£è
ã®ç
æ°äŒæãåŠæ¹ããé倧ãªçç±ã§ãã
察æ°
æç®ã§ã¯ã確çã ãã§ãªããã®å¯Ÿæ°ã䜿çšãããããšããããããŸãã ãªãã§ïŒ ãã¹ãŠãããªãå¹³å¡ã§ãïŒ
- 察æ°ã¯å調ã«å¢å ããé¢æ°ã§ãã ã®ããã« pïŒx1ïŒ ãã㊠pïŒx2ïŒ ãã pïŒx1ïŒ>pïŒx2ïŒ ãããã logpïŒx1ïŒ> logpïŒx2ïŒ ã
- ç©ã®å¯Ÿæ°ã¯ã察æ°ã®åèšã«çãããªããŸãã logïŒpïŒx1ïŒpïŒx2ïŒïŒ= logpïŒx1ïŒ+ logpïŒx2ïŒ ã
åèªãå«ãäŸã§ã¯ãä»»æã®åèªã«åºäŒã確ç pïŒwiïŒ ãååãšããŠãçµ±äžãããã¯ããã«å°ãªãã èšç®ç²ŸåºŠãéãããŠããã³ã³ãã¥ãŒã¿ãŒã§å€ãã®å°ããªç¢ºçãæããããšãããšãã©ããªãã®ã§ããããïŒ ãããç§ãã¡ã®ç¢ºçã¯ããã«ãŒãã«äžžããããŸãã ãã ããå€æ°ã®åå¥ã®å¯Ÿæ°ãè¿œå ãããš ãèšç®ã®ç²ŸåºŠã®éçãè¶
ããããšã¯äºå®äžäžå¯èœã«ãªããŸãã
é¢æ°ãšããŠã®æ¡ä»¶ä»ã確ç
ãããã®ãã¹ãŠã®äŸã®åŸãç¹å®ã®å€ãçºçããåæ°ãã«ãŠã³ãããããšã§æ¡ä»¶ä»ã確çãåžžã«èšç®ããããšããå°è±¡ãããå Žåãç§ã¯ãã®ãšã©ãŒãææããããšãæ¥ãã§ããŸãïŒäžè¬çãªå Žåãæ¡ä»¶ä»ã確çã¯å¥ã®ã©ã³ãã å€æ°ã®é¢æ°ã§ãïŒ
pïŒy|xïŒ=fïŒxïŒ+\ã€ãã·ãã³
ã©ã㧠\ã€ãã·ãã³ -ããã¯ãã€ãºã§ãã ãã€ãºã®çš®é¡-ããã¯å¥ã®ãããã¯ã§ããããŸãããããã§ã¯åãäžããŸããããæ©èœã«ã€ããŠã¯ fïŒxïŒ ãã£ãšè©³ããèŠãŠã¿ãŸãããã äžèšã®é¢æ£å€æ°ã®äŸã§ã¯ãé¢æ°ãšããŠåçŽãªåºçŸåæ°ã䜿çšããŸããã ããã¯ãããèªäœã§å€ãã®å Žåãããšãã°ãããã¹ããŸãã¯ãŠãŒã¶ãŒã®æ¯ãèãã«å¯ŸããåçŽãªãã€ãžã¢ã³åé¡åšã§ããŸãæ©èœããŸãã ããå°ãè€éãªã¢ãã«ã¯ç·åœ¢ååž°ã§ãïŒ
pïŒy|xïŒ=fïŒxïŒ+ epsilon= theta0+ sumi thetaixi+ epsilon
ããã§ããå€æ°ã¯ xi äºãã«ç¬ç«ããŠãããååž pïŒy| mathbfxïŒ ãã©ã¡ãŒã¿ãŒãç·åœ¢é¢æ°ã䜿çšããŠæ¢ã«ã¢ãã«åãããŠãã mathbf theta èŠã€ããå¿
èŠããããŸãã
å€å±€ããŒã»ãããã³ãæ©èœã§ããããã¹ãŠã®å
¥åå€æ°ã®åœ±é¿ãäžåºŠã«åããäžéå±€ã®ãããã§ãMLPã䜿çšãããšãåã
ã®å€æ°ã ãã§ãªããå
¥åã®çµã¿åããã«å¯Ÿããåºåå€æ°ã®äŸåæ§ãã·ãã¥ã¬ãŒãããããšãã§ããŸãïŒåãšæž©åºŠã®äŸãæãåºããŠãã ããïŒã
ç³ã¿èŸŒã¿ãããã¯ãŒã¯ã¯ããã£ã«ã¿ãŒãµã€ãºã§ã«ããŒãããããŒã«ã«ãšãªã¢ã®ãã¯ã»ã«ååžã§åäœããŸãã ãªã«ã¬ã³ããããã¯ãŒã¯ã¯ãåã®ããŒã¿ãšå
¥åããŒã¿ããã®æ¬¡ã®ç¶æ
ã®æ¡ä»¶ä»ãååžãšãçŸåšã®ç¶æ
ããã®åºåå€æ°ãã¢ãã«åããŸãã ãŸããäžè¬çã«ãããªãã¯ã¢ã€ãã¢ãåŸãã
ãã€ãºã®å®çãšé£ç¶å€æ°ã®ä¹ç®
ãããã¯ãŒã¯ã«ãŒã«ãèŠããŠããŸããïŒ
pïŒxãyïŒ=pïŒy|xïŒpïŒxïŒ=pïŒx|yïŒpïŒyïŒ
å·ŠåŽãåé€ãããšãåçŽã§æçœãªåçæ§ãåŸãããŸãã
pïŒy|xïŒpïŒxïŒ=pïŒx|yïŒpïŒyïŒ
ãããŠãä»è»¢éããå Žå pïŒxïŒ å³ã«ãæåãªãã€ãºã®å
¬åŒãååŸããŸãã
pïŒy|xïŒ= fracpïŒx|yïŒpïŒyïŒpïŒxïŒ
ããã®çºé³èå³æ·±ãäºå®ïŒè±èªã®ãbayesãã®ãã·ã¢èªã®çºé³ã¯ãbiasããšããèšèã®ããã«èãããŸãã ããªãã»ãããã ããããç§åŠè
ãBayesãã®å§ã¯ãbaseããŸãã¯ãbayesããšèªã¿ãŸãïŒYandex TranslateãèŽãæ¹ãè¯ãã§ãïŒã
åŒã¯éåžžã«æã¡è§£ãããŠãããããåéšåã«ã¯ç¬èªã®ååãä»ããŠããŸãã
- pïŒyïŒ äºåé
åžïŒäºåïŒãšåŒã°ããŸãã ããã¯ãç¹å®ã®ãªããžã§ã¯ãïŒããšãã°ãæéå
ã«ããŒã³ãæ¯æã£ã人ã®ç·æ°ïŒãèŠãåããããã£ãŠããããšã§ãã
- pïŒx|yïŒ å°€åºŠãšåŒã°ããŸãã ããã¯ããã®ãããªãªããžã§ã¯ããèŠã確çã§ãïŒå€æ°ã«ãã£ãŠèšè¿°ãããŸã x ïŒåºåå€æ°ã®ãã®å€ã§ y ã ããšãã°ãèè³ãè¡ã£ã人ã«2人ã®åäŸãããå¯èœæ§ã
- pïŒxïŒ= intpïŒxãyïŒdy -éç劥åœæ§ãäžè¬çã«ãã®ãããªãªããžã§ã¯ããèŠã確çã ã¿ããªåãã§ã y ããããã£ãŠãã»ãšãã©ã®å Žåèæ
®ãããããã€ãºã®åŒã®ååã«ãã£ãŠåçŽã«æ倧åãããŸãã
- pïŒy|xïŒ -äºåŸååžïŒäºåŸïŒã ããã¯å€æ°ã®ç¢ºçååžã§ã y ãªããžã§ã¯ããèŠãåŸã ããšãã°ã2人ã®åäŸãæã€äººãæéå
ã«ããŒã³ãè¿æžããå¯èœæ§ã
ãã€ãžã¢ã³çµ±èšã¯ãšãŠã€ããªãèå³æ·±ããã®ã§ãããããããã¯å
¥ããŸããã ç§ã觊ãããå¯äžã®è³ªåã¯ãé£ç¶å€æ°ã®2ã€ã®ååžã®ä¹ç®ã§ããããã¯ãããšãã°ããã€ãºåŒã®ååãããã³å®éã«ã¯é£ç¶å€æ°ã®2çªç®ã®åŒãã¹ãŠã«ãããŸãã
2ã€ã®ååžããããšããŸããã p1ïŒyïŒ ãã㊠p2ïŒyïŒ ïŒ

ã³ãŒã d1 = Normal(175, 5) d2 = Normal(168, 5) space = 150:0.1:200 y1 = [pdf(d1, y) for y in space] y2 = [pdf(d2, y) for y in space] plot(space, y1, label="p_1(y)") plot!(space, y2, label="p_2(y)")
ãããŠã圌ãã®è£œåãå
¥æãããã®ã§ãã
pïŒyïŒ=p1ïŒyïŒp2ïŒyïŒ
åãã€ã³ãã§ã®äž¡æ¹ã®ååžã®ç¢ºçå¯åºŠãç¥ã£ãŠããã®ã§ãæ£çŽãªãšãããäžè¬çãªå Žåãåãã€ã³ãã§å¯åºŠãæããå¿
èŠããããŸãã ããããç§ãã¡ãããŸãè¡ãã°ã p1ïŒyïŒ ãã㊠p2ïŒyïŒ ããšãã°ã2ã€ã®æ°å€ã«ããæ£èŠååžïŒæåŸ
å€ãšåæ£ïŒã®ãã©ã¡ãŒã¿ãŒãæå®ãããããã®è£œåã®åãã€ã³ãã§ã®ç¢ºçãââèæ
®ããå¿
èŠããããŸããïŒ
幞ããªããšã«ãå€ãã®æ¢ç¥ã®ååžã®ç©ã¯ãç°¡åã«èšç®å¯èœãªãã©ã¡ãŒã¿ãŒãæã€å¥ã®æ¢ç¥ã®ååžãäžããŸãã ããã§ã®ããŒã¯ãŒãã¯ã å
±åœ¹äºåã§ãã
èšç®æ¹æ³ã«é¢ä¿ãªãã2ã€ã®æ£èŠååžã®ç©ã«ããããã1ã€ã®æ£èŠååžãåŸãããŸãïŒæ£èŠåãããŠããŸããïŒã

ã³ãŒã # # , plot(space, y1 .* y2, label="p_1(y)p_2(y)")
ããŠãæ¯èŒã®ããã«ã3ã€ã®æ£èŠååžã®æ··åã®ååžïŒ

ã³ãŒã plot(space, [pdf(Normal(130, 5), x) for x in space] .+ [pdf(Normal(150, 20), x) for x in space] .+ [pdf(Normal(190, 3), x) for x in space])
ã質å
ããã¯ãã¥ãŒããªã¢ã«ã§ããããããã誰ããããã«æžãããå
容ãæãåºããããšæãã§ããããããããã«è³æãä¿®æ£ããããã®ããã€ãã®è³ªåããããŸãã
人éã®æé·ããã©ã¡ãŒã¿ãæã€æ£èŠååžã®ã©ã³ãã å€æ°ãšãã mu=172 ãã㊠\ã·ã°ã2=10 ã 身é·178cmã®äººãšåºäŒã確çã¯ã©ã®ãããã§ããïŒ
çãæ£è§£ã¯ãã0ãããç¡éã«å°ãããããŸãã¯ãå®çŸ©ãããŠããªãããšèããããšãã§ããŸãã ãããŠãã¹ãŠã¯ãé£ç¶å€æ°ã®ç¢ºçãç¹å®ã®ééã§èæ
®ãããããã§ãã ãã€ã³ãã®å Žåãééã¯ãã®å¹
ã§ãããæ°åŠãåŠç¿ããå Žæã«å¿ããŠããã€ã³ãã®é·ãã¯ãŒããç¡éã«å°ããããŸãã¯ãŸã£ããå®çŸ©ãããŠããªããšèŠãªãããšãã§ããŸãã
ããã x -ããŒã³ã®åãæã§ããåäŸã®æ°ïŒ3ã€ã®å¯èœãªå€ïŒã y -人ãããŒã³ãæäŸãããã©ããã®ãµã€ã³ïŒ2ã€ã®å¯èœãªå€ïŒã ãã€ãºã®å
¬åŒã䜿çšããŠãåäŸã1人ããç¹å®ã®é¡§å®¢ãããŒã³ãæäŸãããã©ãããäºæž¬ããŸãã å
éšçååžãšäºåŸååžã¯ã尀床ãšéç尀床ãšåæ§ã«ãããã€ã®å€ãåãããšãã§ããŸããïŒ
çããã®å Žåã®2ã€ã®å€æ°ã®å
±åååžã®è¡šã¯å°ããã次ã®ããã«ãªããŸãã
| c = 0 | c = 1 | c = 2 |
---|
s = 0 | pïŒs = 0ãc = 0ïŒ | pïŒs = 0ãc = 1ïŒ | pïŒs = 0ãc = 2ïŒ |
s = 1 | pïŒs = 1ãc = 0ïŒ | pïŒs = 1ãc = 1ïŒ | pïŒs = 1ãc = 2ïŒ |
ã©ã㧠s -ããŒã³æåã®ãµã€ã³ã
ãã®å Žåã®ãã€ãºåŒã®åœ¢åŒã¯æ¬¡ã®ãšããã§ãã
pïŒs|cïŒ= fracpïŒc|sïŒpïŒsïŒpïŒcïŒ
ãã¹ãŠã®å€ãããã£ãŠããå ŽåïŒ
- pïŒcïŒ -ããã¯ãåäŸã1人ãã人ãèŠãéç確çã§ãããåã®éé¡ãšèŠãªãããŸã c=1 ãããŠåãªãæ°åã§ãã
- pïŒsïŒ -ç§ãã¡ãäœãç¥ããªãã©ã³ãã ã«é£ããŠè¡ããã人ãããŒã³ãè¿éããå
éšç/éç確çã ããŒãã«ã®1è¡ç®ãš2è¡ç®ã®åèšã«å¯Ÿå¿ãã2ã€ã®å€ãæã€ããšãã§ããŸãã
- pïŒc|sïŒ -å¯èœæ§ãããŒã³ã®æåã«å¿ããåäŸã®æ°ã®æ¡ä»¶ä»ãååžã ããã¯åäŸã®æ°ã®ååžã§ããããã3ã€ã®å¯èœãªå€ãããã¯ãã§ãããããã§ã¯ãããŸããïŒåäŸã1人ãã人ãæ¥ãããšã確ãã«ç¥ã£ãŠãããããããŒãã«ã®1åã®ã¿ãèæ
®ããŸãã ããããããŒã³ã®æåã¯äŸç¶ãšããŠåé¡ã§ããããã2ã€ã®ãªãã·ã§ã³ãå¯èœã§ã-ããŒãã«ã®2è¡ã
- pïŒs|cïŒ -äºåŸååžãæ¢ç¥ã®å Žå c ãããã2ã€ã®å¯èœãªãªãã·ã§ã³ãæ€èšããŠãã ãã s ã
2ã€ã®ååžéã®è·é¢ãæé©åãããã¥ãŒã©ã«ãããã¯ãŒã¯ qïŒxïŒ ãã㊠pïŒxïŒ å€ãã®å Žåãæé©åã®ç®æšãšããŠã¯ãã¹ãšã³ããããŒãŸãã¯Kullback-Leiblerçºæ£è·é¢ã䜿çšããŸãã åŸè
ã¯æ¬¡ã®ããã«å®çŸ©ãããŸãïŒ
KLïŒq||pïŒ= intqïŒxïŒ log fracqïŒxïŒpïŒxïŒdx
intqïŒxïŒïŒãïŒdx -ããã¯ä»²éã§ãã åŸ
ã£ãŠãã qïŒxïŒ ããããŠãªãäž»ãªéšåã§- log fracqïŒxïŒpïŒxïŒ -2ã€ã®é¢æ°ã®å¯åºŠã®å·®ã ãã§ãªããé€ç®ã䜿çšãããŸã qïŒxïŒâpïŒxïŒ ïŒ
çã log fracqïŒxïŒpïŒxïŒ= logqïŒxïŒâ logpïŒxïŒ
èšãæããã°ãããã¯å¯åºŠã®å·®ã§ããã察æ°ç©ºéã§èšç®ãããå®å®ããŠããŸãã