ãããããäžè¬çã«æ€çŽ¢ãè¡ããµãŒãã¹ã§ããã°ãé
ããæ©ããããŠãŒã¶ãŒã¯ãšãªã®ãšã©ãŒãä¿®æ£ããæ¹æ³ãåŠã¶å¿
èŠãçããŸãã 人éã®ãšã©ãŒ ãŠãŒã¶ãŒã¯åžžã«å°å°ããã誀解ãããæ€çŽ¢ã®å質ã¯å¿
ç¶çã«ããã«èŠãã¿ãŸã-ãããŠããŠãŒã¶ãŒãšã¯ã¹ããªãšã³ã¹ã«åœ±é¿ããŸãã
ããã«ãåãµãŒãã¹ã«ã¯åºæã®åºæã®çšèªããããããã£ãã©ãªãŒã¯ã¿ã€ããã¹ä¿®æ£ããã°ã©ã ãæäœã§ããã¯ãã§ãããæ¢åã®ãœãªã¥ãŒã·ã§ã³ã®äœ¿çšãéåžžã«è€éã«ããŸãã ããšãã°ããã®ãããªãªã¯ãšã¹ãã¯ãä¿è·è
ã®ç·šéãåŠç¿ããå¿
èŠããããŸããã
ãŠãŒã¶ãŒã«åœŒã®åçŽçŸå®ã®å€¢ãåŠå®ããããã«æãããããããŸããããå®éã«ã¯ãæåKã¯æåUã®é£ã®ããŒããŒãäžã«åçŽã«ç«ã£ãŠããŸãããã®èšäºã§ã¯ãã¢ãã«ã®äœæããPythonããã³Goã§ã®ã³ãŒãã®äœæãŸã§ãã¿ã€ããã¹ãä¿®æ£ããããã®å€å
žçãªã¢ãããŒãã®1ã€ãåæããŸãã ããŒãã¹ãšããŠ-ç§ã®ã¬ããŒãã
Vertical Verticesãã®ãããª
ïŒ Highload ++
ã§ã®æ€çŽ¢ã¯ãšãªã®ã¿ã€ããã¹ã®ä¿®æ£ ã
åé¡ã®å£°æ
ãã®ãããå°å°ããããªã¯ãšã¹ããåãåãããããä¿®æ£ããå¿
èŠããããŸãã éåžžãåé¡ã¯æ¬¡ã®ããã«æ°åŠçã«æèµ·ãããŸãã
- äžããããèšè s ãšã©ãŒãšãšãã«éä¿¡ããã;
- èŸæžãæã£ãŠãã \ã·ããã°ã æ£ããèšè;
- èŸæžå
ã®ãã¹ãŠã®åèªwã«ã¯æ¡ä»¶ä»ã確çããããŸã P ïŒ w | s ïŒ èšèã®æå³ w èšèãåãåã£ããªã s ;
- èŸæžããåèªwãæ倧ã®ç¢ºçã§èŠã€ããå¿
èŠããããŸã P ïŒ w | s ïŒ ã
ãã®ã¹ããŒãã¡ã³ã-æãåºæ¬çãªãã®-ã¯ãè€æ°ã®åèªã®ãªã¯ãšã¹ããåãåã£ãå Žåãååèªãåå¥ã«ä¿®æ£ããããšã瀺åããŠããŸãã ãã¡ãããå®éã«ã¯ãé£æ¥ããåèªã®äºææ§ãèæ
®ããŠããã¬ãŒãºå
šäœãä¿®æ£ããå¿
èŠããããŸãã ããã«ã€ããŠã¯ãããã¬ãŒãºãä¿®æ£ããæ¹æ³ãã»ã¯ã·ã§ã³ã§èª¬æããŸãã
2ã€ã®äžæ確ãªç¬éããããŸã-èŸæžã®å
¥æå Žæãšã«ãŠã³ãæ¹æ³
P ïŒ w | s ïŒ ã æåã®è³ªåã¯ç°¡åãšèŠãªãããŸãã 1990 [1]èŸæžã¯ã
ã¹ãã«ãŠãŒãã£ãªãã£ããŒã¿ããŒã¹ãšé»åçã«å©çšå¯èœãªèŸæžããç·šéãããŸããã 2009幎ã«Google [4]ã䜿çšãããšãã€ã³ã¿ãŒãããäžã§æã人æ°ã®ããåèªïŒããã³äººæ°ã®ããã€ã¥ãã®ééãïŒãç°¡åã«ç解ã§ããããã«ãªããŸããã ç§ã¯ãã®ã¢ãããŒãã§ä¿è·è
ãäœããŸããã
2çªç®ã®è³ªåã¯ããè€éã§ãã 圌ã®æ±ºå®ãéåžžãã€ãºã®å
¬åŒã®é©çšããå§ãŸããšããçç±ã ãã§ïŒ
P ïŒ w | s ïŒ = m a t h r m c o n s t c d o t P ïŒ s | w ïŒ c d o t P ïŒ w ïŒ
ããã§ãå
ã®äžå¯è§£ãªç¢ºçã®ä»£ããã«ã2ã€ã®æ°ãããå°ãç解ãããããã®ãè©äŸ¡ããå¿
èŠããããŸãã
P ïŒ s | w ïŒ -åèªãå
¥åãããšãã®ç¢ºç
w å°å°ããŠåŸãããšãã§ããŸã
s ããããŠ
P ïŒ w ïŒ -ååãšããŠããŠãŒã¶ãŒãåèªã䜿çšãã確ç
w ã
è©äŸ¡ããæ¹æ³
P ïŒ s | w ïŒ ïŒ æããã«ããŠãŒã¶ãŒã¯bãSãšæ¯ã¹ãŠAãšOãæ··åããå¯èœæ§ãé«ãã§ãã ãŸããã¹ãã£ã³ããããã¥ã¡ã³ãããèªèãããããã¹ããä¿®æ£ãããšãrnãšmã®éã§æ··ä¹±ããå¯èœæ§ãé«ããªããŸãã äœããã®æ¹æ³ã§ããšã©ãŒãšãã®ç¢ºçãèšè¿°ããäœããã®çš®é¡ã®ã¢ãã«ãå¿
èŠã§ãã
ãã®ãããªã¢ãã«ã¯ããã€ãºã®å€ããã£ãã«ã¢ãã«ïŒãã€ãºã®å€ããã£ãã«ã¢ãã«ã§ãããã®å Žåããã€ãºã®å€ããã£ãã«
ã¯ããŠãŒã¶ãŒã®
ãããã¯ã®äžå¿ããå§ãŸããããŒããŒãã®å察åŽã§çµãããŸãïŒããŸãã¯ç°¡åã«èšãã°ããšã©ãŒã¢ãã«ããšã©ãŒã¢ãã«ã§ãã 以äžã®å¥ã®ã»ã¯ã·ã§ã³ã§èª¬æãããã®ã¢ãã«ã¯ãã¹ãã«ãã¹ãšå®éã®ã¿ã€ããã¹ã®äž¡æ¹ãèæ
®ããå¿
èŠããããŸãã
åèªã䜿çšãã確çãè©äŸ¡-
P ïŒ w ïŒ -ããã¯ããŸããŸãªæ¹æ³ã§å¯èœã§ãã æãåçŽãªãªãã·ã§ã³ã¯ãããã¹ãã®ããã€ãã®å€§ããªã³ãŒãã¹ã§åèªãåºçŸããé »åºŠãåãããšã§ãã ãã¡ãããä¿è·è
ã«ãšã£ãŠã¯ããã¬ãŒãºã®ã³ã³ããã¹ããèæ
®ããŠãããè€éãªãã®ãå¿
èŠã§ã-å¥ã®ã¢ãã«ã ãã®ã¢ãã«ã¯ãèšèªã¢ãã«ãèšèªã¢ãã«ãšåŒã°ããŸãã
ãšã©ãŒã¢ãã«
æåã®ãšã©ãŒã¢ãã«ãèæ
®ãããŸãã
P ïŒ s | w ïŒ ããã¬ãŒãã³ã°ã»ããã®åºæ¬çãªçœ®æã®ç¢ºçãèšç®ããŸããEã®ä»£ããã«äœåæžããã®ããTã®ä»£ããã«äœåTãæžããã®ããT-Tã®ä»£ããã«äœåæžããã®ããªã©[1]ã ãã®çµæãããã€ãã®ããŒã«ã«å¹æãåŠç¿ã§ããå°æ°ã®ãã©ã¡ãŒã¿ãŒãæã€ã¢ãã«ãäœæãããŸããïŒããšãã°ãEãšIãæ··åããããšããããããŸãïŒã
ç§ãã¡ã®ç 究ã§ã¯ã2000幎ã«BrillãšMooreã«ãã£ãŠææ¡ãã[2]ãåŸã§åå©çšãããïŒããšãã°Googleã®å°é家[4]ã«ãã£ãŠïŒããçºå±ãããšã©ãŒã¢ãã«ã«èœã¡çããŸããã ãŠãŒã¶ãŒãå¥ã
ã®æåã§èããªãããšãæ³åããŠãã ããïŒEãšIãæ··åããYã®ä»£ããã«KãæŒãããœããèšå·ãã¹ãããããŸãïŒãããšãã°ãTSYAãTYSYAã«ãYãKã«ãSHAãSHCHYAã«ãSSã«çœ®ãæããŸãCãªã©ã«ã ãŠãŒã¶ãŒãå°å°ãããTSYAã®ä»£ããã«THYãšèšè¿°ãããŠãã確çã¯ã
PïŒ textthousand rightarrow textthousandïŒ ã¢ãã«ã®ãã©ã¡ãŒã¿ãŒã§ãã ãã¹ãŠã®å¯èœãªãã©ã°ã¡ã³ãã«ã€ããŠ
alphaã beta ç§ãã¡ã¯æ°ããããšãã§ããŸã
PïŒ\ã¢ã«ãã¡\å³ç¢å°\ããŒã¿ïŒ ããã®åŸãææã®ç¢ºç
PïŒs|wïŒ ããªã«ã¢ã³ãã ãŒã¢ã¢ãã«ã§åèªwãå
¥åããããšãããšãã®åèªsã®ã»ããã¯ã次ã®ããã«ããŠååŸã§ããŸãã åããŒãã£ã·ã§ã³ã«ã€ããŠããã¹ãŠã®ãã©ã°ã¡ã³ãwã®ç¢ºçã®ç©ãèšç®ããŠã察å¿ãããã©ã°ã¡ã³ãsã«ããŸãã ãã®ãããªãã¹ãŠã®ããŒãã£ã·ã§ã³ã®æ倧å€ã¯ãã®å€ãšããŠååŸãããŸã
PïŒs|wïŒ ïŒ
PïŒs|wïŒ= maxs= alpha1 alpha2 ldots alphakãw= beta1 beta2 ldots betakPïŒ alpha1 rightarrow beta1ïŒ cdotPïŒ alpha2 rightarrow beta2ïŒ cdot ldots cdotPïŒ alphak rightarrow betakïŒ ,.
ãã¢ã¯ã»ãµãªãã§ã¯ãªããã¢ã¯ã»ãµãªããå°å·ãã確çãèšç®ãããšãã«çºçããããŒãã£ã·ã§ã³ã®äŸãèŠãŠã¿ãŸãããã
beginmatrix textakïŒ textcecïŒ textsouïŒ textaïŒ textp downarrowïŒ downarrowïŒ downarrowïŒ downarrowïŒ\äžç¢å° textaïŒ textccïŒ texteïŒ textsouaïŒ textp endmatrix
ãæ°ã¥ããããããŸããããããã¯ããŸãæåããŠããªãããŒãã£ã·ã§ã³ã®äŸã§ããåèªã®äžéšãäºãã«å¯èœãªéãããŸãéãªãåã£ãŠããªãããšã¯æããã§ãã æ°é
PïŒ\ããã¹ãak\å³ç¢å°\ããã¹ãaïŒ ãããŠ
PïŒ\ããã¹ãp\å³ç¢å°\ããã¹ãpïŒ ãŸã ãããªã«æªããªã
PïŒ\ããã¹ãsou\å³ç¢å°\ããã¹ãeïŒ ãããŠ
PïŒ\ããã¹ãa\å³ç¢å°\ããã¹ãsouaïŒ ã»ãšãã©ã®å Žåããã®ããŒãã£ã·ã§ã³ã®æçµçãªãã¹ã³ã¢ãã¯å®å
šã«æ²ãããªããŸãã ããæåããããŒãã£ã·ã§ã³ã¯æ¬¡ã®ããã«ãªããŸãã
beginmatrix textakïŒ textceïŒ textssïŒ textyïŒ textar downarrowïŒ downarrowïŒ downarrowïŒ downarrowïŒ\äžç¢å° textakïŒ textceïŒ textcïŒ textyïŒ textar endmatrix
ããã§ã¯ããã¹ãŠãããã«æå®ã®äœçœ®ã«èœã¡ãæçµçãªç¢ºçã¯äž»ã«å€ã«ãã£ãŠæ±ºå®ãããããšã¯æããã§ã
PïŒ\ããã¹ãss\å³ç¢å°\ããã¹ãsïŒ ã
èšç®æ¹æ³ PïŒs|wïŒ
2ã€ã®åèªã«å¯ŸããŠå¯èœãªããŒãã£ã·ã§ã³ã®é åºããããšããäºå®ã«ãããããã
OïŒ2|s|+|w|ïŒ åçèšç»æ³èšç®ã¢ã«ãŽãªãºã ã®äœ¿çš
PïŒs|wïŒ ããªãéãããããšãã§ããŸã-ã®ããã«
OïŒ|s|2|w|2ïŒ ã ã¢ã«ãŽãªãºã èªäœã¯ã
ã¬ãŒãã³ã·ã¥ã¿ã€ã³è·é¢ãèšç®ããããã®
ã¯ãŒã°ããŒã»ãã£ãã·ã£ãŒã¢ã«ãŽãªãºã ã«éåžžã«äŒŒãŠ
ããŸãã
è¡ãæ£ããåèªã®æåã«å¯Ÿå¿ããåãå°å°ããããã®ã«å¯Ÿå¿ããé·æ¹åœ¢ã®ããŒãã«ãäœæããŸãã ã¢ã«ãŽãªãºã ã®çµãããŸã§ã«è¡iãšåjã®äº€ç¹ã«ããã»ã«ã¯ã
w[:i]
ãå°å·ããããšãããšãæ£ç¢ºã«
s[:j]
ãååŸããå¯èœæ§ããããŸãã ãããèšç®ããã«ã¯ãåã®è¡ãšåã®ãã¹ãŠã®ã»ã«ã®å€ãèšç®ãã察å¿ããå€ãæããŠãããã調ã¹ãã ãã§ååã§ã
PïŒ\ã¢ã«ãã¡\å³ç¢å°\ããŒã¿ïŒ ã ããšãã°ãããŒãã«ãåããããŠããå Žå
ã4çªç®ã®è¡ãš3çªç®ã®åïŒç°è²ïŒã®ã»ã«ãå¡ãã€ã¶ãã«ã¯ãæ倧å€ãååŸããå¿
èŠããããŸã
0.8 cdotPïŒ\ããã¹ãcc\å³ç¢å°\ããã¹ãcïŒ ãããŠ
0.16 cdotPïŒ\ããã¹ãc\å³ç¢å°\ããã¹ãkïŒ ã åæã«ãåçã®ç·è²ã§åŒ·èª¿è¡šç€ºãããŠãããã¹ãŠã®ã»ã«ãå®è¡ããŸããã ãã©ãŒã ã®å€æŽãèæ
®ããå Žå
PïŒ alpha rightarrow text空è¡ïŒ ãããŠ
PïŒ\ããã¹ã空ã®è¡\å³ç¢å°\ããŒã¿ïŒ ãé»è²ã§åŒ·èª¿è¡šç€ºãããŠããã»ã«ã移åããå¿
èŠããããŸãã
äžã§è¿°ã¹ãããã«ããã®ã¢ã«ãŽãªãºã ã®è€éãã¯
OïŒ|s|2|w|2ïŒ ïŒããŒãã«ã«èšå
¥ããŸã
|s|\å|w| ãå¿
èŠãªã»ã«ïŒiãjïŒãåãã
OïŒi cdotjïŒ æäœã ãã ããäžéšã®å¶éãããé·ã以äžã®ãã©ã°ã¡ã³ãã«ã®ã¿èæ
®ãå¶éããå Žå
L ïŒããšãã°ã[4]ã®ããã«2æå以äžïŒãè€éãã¯æ¬¡ã®ããã«æžå°ããŸãã
OïŒ|s| cdot|w| cdotL2ïŒ ã ç§ã®å®éšã§ãã·ã¢èªã®ããã«
L=3 ã
æ倧åããæ¹æ³ PïŒs|wïŒ
ç§ãã¡ã¯èŠã€ããããšãåŠã³ãŸãã
PïŒs|wïŒ å€é
åŒæéã¯è¯ãã§ãã ããããèŸæžå
šäœã§æé©ãªåèªããã°ããèŠã€ããæ¹æ³ãåŠã¶å¿
èŠããããŸãã ãããŠæé«ã¯
PïŒs|wïŒ ããããŠ
PïŒw|sïŒ ïŒ å®éã次ã®ãããªåŠ¥åœãªäžäœïŒããšãã°ããã¹ã20ïŒã®åèªãååŸããã°ååã§ãã
PïŒs|wïŒ ããããèšèªã¢ãã«ã«éä¿¡ããŠãæãé©åãªä¿®æ£ãéžæããŸãïŒè©³çŽ°ã¯ä»¥äžãåç
§ïŒã
èŸæžå
šäœããã°ãã調ã¹ãæ¹æ³ãåŠç¿ããããã«ãäžèšã®è¡šã«ã¯ãå
±éã®æ¥é èŸãæã€2ã€ã®åèªã«ã€ããŠå€ãã®å
±éç¹ãããããšã«æ³šæããŠãã ããã 確ãã«ããã¢ã¯ã»ãµãªããšããåèªãä¿®æ£ãããšãã«ããã¢ã¯ã»ãµãªããšãã¢ã¯ã»ãµãªããšãã2ã€ã®èªåœã®åèªãèšå
¥ããããšãããšãæåã®9è¡ããŸã£ããå€ãããªãããšã«æ°ä»ãã§ãããã 次ã®2ã€ã®åèªã®å
±éãã¬ãã£ãã¯ã¹ãååã«é·ããªãããã«èŸæžãã¹ãé
眮ã§ããã°ãå€ãã®èšç®ãç¯çŽã§ããŸãã
ãããŠãã§ããã èªåœãåãäžããŠ
ãã©ã€ããŠã¿ãŸãããã æ·±ããèŠãŠãããšãç®çã®ããããã£ãåŸãããŸããã»ãšãã©ã®ã¹ãããã¯ãããŒãã«ããæåŸã®æ°è¡ãåããå¿
èŠããããšãã«ãããŒããããã®åå«ãŸã§ã®ã¹ãããã§ãã
ãã®ã¢ã«ãŽãªãºã ã¯ãããã€ãã®è¿œå ã®æé©åã«ããã100ããªç§ä»¥å
ã«å
žåçãªãšãŒãããèšèªã®èŸæžã50ã10äžèªã§ãœãŒãããããšãã§ããŸã[2]ã ãŸããçµæããã£ãã·ã¥ãããšãããã»ã¹ãããã«é«éã«ãªããŸãã
ååŸæ¹æ³ PïŒ\ã¢ã«ãã¡\å³ç¢å°\ããŒã¿ïŒ
èšç®
PïŒ\ã¢ã«ãã¡\å³ç¢å°\ããŒã¿ïŒ æ€èšäžã®ãã¹ãŠã®ãã©ã°ã¡ã³ã-ãšã©ãŒã¢ãã«ãæ§ç¯ããäžã§æãèå³æ·±ãéèŠãªéšåã ãããã®éããå質ã決ãŸããŸãã
[2ã4]ã§äœ¿çšãããŠããã¢ãããŒãã¯æ¯èŒçåçŽã§ãã ããããã®ã«ããã«ãèŠã€ããŸããã
ïŒsiãwiïŒ ã©ãã§
wi èŸæžããã®æ£ããåèªã§ããã
si -ãã®å¯å°ãããããŒãžã§ã³ã ïŒæ£ç¢ºã«èŠã€ããæ¹æ³ã¯å°ãäœãã§ããïŒæ¬¡ã«ããããã®ãã¢ããç¹å®ã®ã¿ã€ããã¹ã®å¯èœæ§ãæœåºããå¿
èŠããããŸãïŒãããã©ã°ã¡ã³ããå¥ã®ãã©ã°ã¡ã³ãã«çœ®ãæããïŒã
åãã¢ã«ã€ããŠããã®ã³ã³ããŒãã³ããååŸããŸã
w ãããŠ
s ãããŠãæåéã®å¯Ÿå¿ãæ§ç¯ããã¬ãŒãã³ã·ã¥ã¿ã€ã³è·é¢ãæå°åããŸãã
beginmatrix textïŒ textïŒ textïŒ textïŒ textïŒ textïŒ textïŒ textaïŒ textp textaïŒ textkïŒ textcïŒ texteïŒ textcïŒ textïŒ textyïŒ textaïŒ textp endmatrix
ããã§ã眮æãããã«è¡šç€ºãããŸããaâaãeâãcâcãcâ空ã®æååãªã©ã§ãã ãŸãã2ã€ä»¥äžã®æåã®çœ®æã確èªããŸããakâakãceâsiãecâisãssâsãsesâsisãessâisããã³ãã®ä»ãªã©ã ããããã¹ãŠã®çœ®æã¯ãã³ãŒãã¹ã«åèªsãåºçŸãããã³ã«ã«ãŠã³ãããå¿
èŠããããŸãïŒã³ãŒãã¹ããåèªãååŸããå Žåãããã¯éåžžã«å¯èœæ§ãé«ãïŒã
ãã¹ãŠã®ãã¢ãæž¡ããåŸ
ïŒsiãwiïŒ ç¢ºçã®ããã«
PïŒ\ã¢ã«ãã¡\å³ç¢å°\ããŒã¿ïŒ ãã¢ã§çºçãã眮æã®æ°Î±âβãåãå
¥ãããïŒå¯Ÿå¿ããåèªã®çºçãèæ
®ããŠïŒããã©ã°ã¡ã³ãαã®ç¹°ãè¿ãæ°ã§é€ç®ãããŸãã
ã«ããã«ãèŠã€ããæ¹æ³
ïŒsiãwiïŒ ïŒ [4]ã§ã¯ããã®ãããªã¢ãããŒããææ¡ãããŠããŸãã 倧éã®ãŠãŒã¶ãŒçæã³ã³ãã³ãïŒUGCïŒãååŸããŸãã Googleã®å Žåãããã¯äœåãã®WebããŒãžã®ããã¹ãã§ããã ç§ãã¡ã«ã¯äœçŸäžãã®ãŠãŒã¶ãŒæ€çŽ¢ãšã¬ãã¥ãŒããããŸãã éåžžãã³ãŒãã¹å
ã§ãšã©ãŒã®ããããªã¢ã³ããããæ£ããåèªãé »ç¹ã«èŠã€ãããšæ³å®ãããŠããŸãã ããã§ãã³ãŒãã¹ã®ã¬ãŒãã³ã·ã¥ã¿ã€ã³ã«ãããšãããã«è¿ãååèªã®åèªãèŠã€ããŸãããã 人æ°ãåã
w ãããŸã人æ°ããªã-ã®ããã«
s ã ãã®ããããã€ãºãå€ããªããŸããããã¬ãŒãã³ã°å¯Ÿè±¡ã®ãã¢ã¯éåžžã«å€ããªããŸãã
ãã®ãã¢ãããã³ã°ã¢ã«ãŽãªãºã ã«ã¯ãæ¹åã®äœå°ãå€ããããŸãã [4]ã§ã¯ãçºçã«ãããã£ã«ã¿ãŒã®ã¿ïŒ
w 人æ°ã®10å
s ïŒããã ãããã®èšäºã®èè
ã¯ãèšèªã®å
éšçãªç¥èã䜿çšããã«ãŽã·ãããäœæããããšããŠããŸãã ãã·ã¢èªã®ã¿ãèæ
®ããå Žåãããšãã°ã
ãã·ã¢èªã®åèªåœ¢åŒã®èŸæžã®ã»ãããååŸããåèªãšã®ãã¢ã®ã¿ãæ®ãããšãã§ããŸã
w èŸæžã«ããïŒèŸæžã«ã¯ãµãŒãã¹ã«åºæã®èªåœãå«ãŸããŠããªãå¯èœæ§ãé«ãããããå§ãã§ããŸããïŒããŸãã¯éã«ãèŸæžã«ããåèªsãšã®ãã¢ãç Žæ£ããŸãïŒã€ãŸããå°å°ãããªãããšãã»ãŒä¿èšŒãããŸãïŒã
åä¿¡ãããã¢ã®å質ãæ¹åããããã«ããŠãŒã¶ãŒã2ã€ã®åèªãå矩èªãšããŠäœ¿çšãããã©ããã決å®ããç°¡åãªé¢æ°ãäœæããŸããã è«çã¯åçŽã§ãïŒåèªwãšsãåãåèªã§å²ãŸããŠããããšãå€ãå Žåããããã¯ããããå矩èªã§ã-ã¬ãŒãã³ã·ã¥ã¿ã€ã³ã«ãããšããããã®è¿ããèæ
®ãããšãããŸã人æ°ã®ãªãåèªã¯ãã人æ°ã®ããåèªã®èª€ã£ãããŒãžã§ã³ã§ããå¯èœæ§ãé«ãããšãæå³ããŸãã ãããã®èšç®ã§ã¯ã以äžã®èšèªã¢ãã«çšã«äœæããããã©ã€ã°ã©ã ïŒ3èªã®ãã¬ãŒãºïŒã®åºçŸã®çµ±èšã䜿çšããŸããã
èšèªã¢ãã«
ãããã£ãŠãæå®ãããèŸæžã®åèªwã«ã€ããŠãèšç®ããå¿
èŠããããŸã
PïŒwïŒ -ãŠãŒã¶ãŒã«ãã䜿çšã®ç¢ºçã æãç°¡åãªè§£æ±ºçã¯ãããçš®ã®å€§ããªã±ãŒã¹ã§åèªã®åºçŸãååŸããããšã§ãã äžè¬çã«ããããããã©ã®èšèªã¢ãã«ããããã¹ãã®å€§ããªã³ãŒãã¹ãåéãããã®äžã®åèªã®åºçŸãã«ãŠã³ãããããšããå§ãŸããŸãã ããããããã«éå®ãã¹ãã§ã¯ãããŸãããå®éãPïŒwïŒãèšç®ãããšããåèªãä¿®æ£ããããšããŠãããã¬ãŒãºããã®ä»ã®å€éšã³ã³ããã¹ããèæ
®ããããšãã§ããŸãã ã¿ã¹ã¯ã¯èšç®ã¿ã¹ã¯ã«å€ãããŸã
PïŒw1w2 ldotswkïŒ ã©ãã®
wi -ã¿ã€ããã¹ãä¿®æ£ããçŸåšã«ãŠã³ãããŠããåèª
PïŒwïŒ ãããŠæ®ã
wi -ãŠãŒã¶ãŒãªã¯ãšã¹ãã§ä¿®æ£ãããåèªãå²ãåèªã
ããããèæ
®ã«å
¥ããæ¹æ³ãåŠã¶ã«ã¯ãã³ãŒãã¹ãããäžåºŠèª¿ã¹ãŠãn-gramãåèªã·ãŒã±ã³ã¹ã®çµ±èšãã³ã³ãã€ã«ãã䟡å€ããããŸãã éåžžãå¶éãããé·ãã®ã·ãŒã±ã³ã¹ãåããŸãã ã€ã³ããã¯ã¹ãèšããŸããªãããã«ãã©ã€ã°ã©ã ã«éå®ããŸããããããã¯ãã¹ãŠããªãã®å¿ã®åŒ·ã次第ã§ãïŒãããŠã±ãŒã¹ã®ãµã€ãº-ãã©ã€ã°ã©ã ã®çµ±èšã§ãããã€ãºãå€ãããïŒã
åŸæ¥ã®n-gramèšèªã¢ãã«ã¯æ¬¡ã®ããã«ãªããŸãã ãã¬ãŒãºã«ã€ããŠ
w1w2 ldotswk ãã®ç¢ºçã¯åŒã«ãã£ãŠèšç®ãããŸã
PïŒw1w2 ldotswkïŒ=PïŒw1ïŒ cdotPïŒw2|w1ïŒ cdotPïŒw3|w1w2ïŒPïŒwk|w1w2wkâ1ïŒ ,,
ã©ãã§
PïŒw1ïŒ -çŽæ¥åèªã®é »åºŠãããã³
PïŒw3|w1w2ïŒ -åèªã®ç¢ºç
w3 圌ãè¡ãåã«
w1w2 -ãã©ã€ã°ã©ã é »åºŠã®æ¯ä»¥å€
w1w2w3 ãã€ã°ã©ã åšæ³¢æ°ãž
w1w2 ã ïŒãã®åŒã¯ãåçŽã«ãã€ãºåŒãç¹°ãè¿ãé©çšããçµæã§ããããšã«æ³šæããŠãã ãããïŒ
ã€ãŸããèšç®ãããå Žå
PïŒ textmomsoapframeïŒ ã®ä»»æã®n-gramã®é »åºŠã瀺ã
f åŒãååŸããŸã
PïŒ textmomsoapframeïŒ=fïŒ textmomïŒ cdot fracfïŒ textmomsoapïŒfïŒ textmomïŒ cdot fracfïŒ textmomsoapframeïŒfïŒ textmomsoapïŒ=fïŒ textmomsoapframeïŒ\ãã
è«ççã§ããïŒ è«ççã§ãã ãã ãããã¬ãŒãºãé·ããªããšå°é£ãå§ãŸããŸãã ãŠãŒã¶ãŒãå°è±¡çãªè©³çŽ°ã§10èªã®æ€çŽ¢ã¯ãšãªãå
¥åããå Žåã¯ã©ããªããŸããïŒ 10ã°ã©ã ãã¹ãŠã®çµ±èšãä¿æããå¿
èŠã¯ãããŸãããããã¯é«äŸ¡ã§ãããããŒã¿ã¯ãã€ãºãå€ããææšã§ã¯ãªãå¯èœæ§ããããŸãã ããã€ãã®å¶éãããé·ãã®n-gramïŒäŸãã°ããã§ã«äžã§ææ¡ãããé·ã3ïŒã§ããŸãè¡ãããã§ãã
ããã§ãäžèšã®åŒã圹ç«ã¡ãŸãã ãã¬ãŒãºã®æåŸã«åºçŸããåèªã®ç¢ºçã¯ããã®çŽåã®ããããªåèªã ãã«å€§ãã圱é¿ããããšä»®å®ããŸããããã€ãŸãã
PïŒwk|w1w2 ldotswkâ1ïŒ\çŽPïŒwk|wkâL+1 ldotswkâ1ïŒ\ãã
ãããã£ã³ã°
L=3 ãããé·ããã¬ãŒãºã®å ŽåãåŒãåŸãããŸã
PïŒ\ããã¹ã{carlã¯Claraãããµã³ãŽãçãã }ïŒ\çŽfïŒ\ããã¹ã{carl}ïŒ\ cdot \ frac {fïŒ\ text {carl}ïŒ} {fïŒ\ text {carl}ïŒ} \ cdot \ frac {fïŒ\ text {claraããã®ã«ãŒã«}ïŒ} {fïŒ\ text {carlããã®}ïŒ} \ cdot \ frac {fïŒ\ text {claraããã®ã¹ããŒã«}ïŒ} {fïŒ\ text {ããã®ã¯ã©ã©} ïŒ} \ cdot \ frac {fïŒ\ text {claire stole corole}ïŒ}} {fïŒ\ text {claire stole}ïŒ} \ãã泚ïŒãã¬ãŒãºã¯5ã€ã®åèªã§æ§æãããŠããŸãããåŒã«ã¯3ã€ä»¥äžã®n-gramã衚瀺ãããŸãã ããã¯ãŸãã«ç§ãã¡ãç®æããŠãããã®ã§ãã
ããããªç¬éãæ®ããŸããã ãŠãŒã¶ãŒãçµ±èšã«éåžžã«å¥åŠãªãã¬ãŒãºãšå¯Ÿå¿ããn-gramãå
¥åãããŸã£ããå
¥åããªãã£ãå Žåã¯ã©ããªããŸããïŒ ãªãã¿ã®ãªãN-gramã眮ãã®ã¯ç°¡åã ãã
f=0 ãã®å€ã§å²ãå¿
èŠããªãã£ãå Žåã ããã§ã¯ãããŸããŸãªæ¹æ³ã§è¡ãããšãã§ããã¹ã ãŒãžã³ã°ïŒã¹ã ãŒãžã³ã°ïŒã«ã€ããŠèª¬æããŸãã ãã ãã
Kneser-Neyã®å¹³æ»åãªã©ã®æ·±å»ãªã¢ã³ããšã€ãªã¢ã·ã³ã°ã¢ãããŒãã®è©³çŽ°ãªèª¬æã¯ããã®èšäºã®ç¯å²ãã¯ããã«è¶
ããŠããŸãã
ãã¬ãŒãºãä¿®æ£ããæ¹æ³
å®è£
ã«ç§»ãåã«ãæåŸã®åŸ®åŠãªç¹ã«ã€ããŠèª¬æããŸãã äžèšã§èª¬æããåé¡ã®èª¬æã¯ã1ã€ã®åèªããããä¿®æ£ããå¿
èŠãããããšãæ瀺ããŠããŸãã 次ã«ããã®1ã€ã®åèªãä»ã®ããã€ãã®åèªã®äžã§ãã¬ãŒãºã®éäžã«ããå¯èœæ§ããããããããèæ
®ã«å
¥ããŠæé©ãªä¿®æ£ãéžæããå¿
èŠãããããšãæ確ã«ããŸããã ããããå®éã«ã¯ããŠãŒã¶ãŒã¯ã©ã®åèªã®ã¹ãã«ãæå®ããã«ãã¬ãŒãºãéä¿¡ããã ãã§ãã å€ãã®å Žåãããã€ãã®åèªãŸãã¯ãã¹ãŠãä¿®æ£ããå¿
èŠããããŸãã
å€ãã®ã¢ãããŒãããããŸãã ããšãã°ããã¬ãŒãºå
ã®åèªã®å·ŠåŽã®ã³ã³ããã¹ãã®ã¿ãèæ
®ããããšãã§ããŸãã 次ã«ãå·Šããå³ã®åèªã«åŸã£ãŠãå¿
èŠã«å¿ããŠä¿®æ£ãããšãæ°ããå質ã®ãã¬ãŒãºãåŸãããŸãã ããšãã°ãæåã®åèªãããã€ãã®äžè¬çãªåèªã®ããã«ãªããééã£ããªãã·ã§ã³ãéžæããå Žåãå質ã¯äœäžããŸãã ãã¬ãŒãºã®æ®ãã®éšåïŒããããæåã¯å®å
šã«ãšã©ãŒããªãå ŽåïŒã¯ãééã£ãæåã®åèªã«åãããŠèª¿æŽãããå
ã®ããã¹ããšã¯ãŸã£ããé¢ä¿ã®ãªãããã¹ããååŸã§ããŸãã
[4]ã§ææ¡ãããŠããããã«ãåèªãåå¥ã«æ€èšããç¹å®ã®åé¡åãé©çšããŠãç¹å®ã®åèªãå°å°ãããŠãããã©ãããç解ããããšãã§ããŸãã åé¡åšã¯ãã«ãŠã³ãæ¹æ³ããã§ã«ç¥ã£ãŠãã確çãããã³ä»ã®å€ãã®æ©èœã«ã€ããŠãã¬ãŒãã³ã°ãããŠããŸãã åé¡åãä¿®æ£ããå¿
èŠãããããšã瀺ããŠããå Žåãæ¢åã®ã³ã³ããã¹ããèæ
®ããŠä¿®æ£ããŸãã ç¹°ãè¿ããŸãããè€æ°ã®åèªã®ã¹ãã«ãééã£ãŠããå Žåããšã©ãŒã®ããã³ã³ããã¹ãã«åºã¥ããŠæåã®åèªã«ã€ããŠæ±ºå®ããå¿
èŠããããå質ã®åé¡ã«ã€ãªããå¯èœæ§ããããŸãã
ã¬ãŒãã£ã¢ã³ã®å®è£
ã§ã¯ããã®ã¢ãããŒãã䜿çšããŸããã èšèããšã«ããŸããã
si ç§ãã¡ã®ãã¬ãŒãºã§ã¯ããšã©ãŒã¢ãã«ã䜿çšããŠãæå³ã®ããäžäœNåã®èŸæžã®åèªãèŠã€ããèããããããããæ¹æ³ã§ãããããã¬ãŒãºã«é£çµããŸãã
NK çµæã®ãã¬ãŒãº
K -å
ã®ãã¬ãŒãºã®åèªæ°ãå€ãæ£çŽã«èšç®ãã
PïŒs1|w1ïŒ cdotPïŒsK|wKïŒ cdotPïŒsK|wKïŒ cdotPïŒw1w2 ldotswKïŒ lambda\ãã
ããã«
si -ãŠãŒã¶ãŒãå
¥åããåèªã
wi -ãããã«å¯ŸããŠéžæãããä¿®æ£ïŒçŸåšããœãŒãäžïŒãããã³
\ã©ã ã -[4]ã§ææ¡ãããŠããããšã©ãŒã¢ãã«ãšèšèªã¢ãã«ã®æ¯èŒå質ã«ãã£ãŠæ±ºå®ãããä¿æ°ïŒå€§ããªä¿æ°-èšèªã¢ãã«ãããä¿¡é Œããå°ããªä¿æ°-ãšã©ãŒã¢ãã«ãããä¿¡é ŒããŸãïŒã å
šäœãšããŠãåãã¬ãŒãºã«ã€ããŠã察å¿ããèŸæžã®ããªãšãŒã·ã§ã³ã§ä¿®æ£ãããåã
ã®åèªã®ç¢ºçãæããããã«ãããèšèªã®ãã¬ãŒãºå
šäœã®ç¢ºçã§æããŸãã ã¢ã«ãŽãªãºã ã®çµæã¯ããã®å€ãæ倧åããèŸæžã®åèªããã®ãã¬ãŒãºã§ãã
ã ããäœãæ¢ããŸããïŒ ãã«ãŒããã©ãŒã¹
NK ãã¬ãŒãºïŒ
幞ããªããšã«ãn-gramã®é·ããå¶éãããŠãããšããäºå®ã«ããããã¹ãŠã®ãã¬ãŒãºã®æ倧å€ãã¯ããã«é«éã«èŠã€ããããšãã§ããŸãã èŠããŠãããŠãã ããïŒäžèšã®åŒãç°¡ç¥åããŸãã
PïŒw1w2 ldotswKïŒ 3以äžã®é·ãã®n-gramã®åšæ³¢æ°ã®ã¿ã«äŸåããããã«ãªããŸããã
PïŒw1w2 ldotswKïŒ=PïŒw1ïŒ cdotPïŒw2|w1ïŒ cdotPïŒw3|w1w2ïŒ cdot ldots cdotPïŒw K | Wã®K - 2 Wã®K - 1ïŒ\ã ã
ãã®å€ã«ä¹ç®ãããš
P ïŒs i | w i ïŒ ãããŠãæ倧åããããšããŸã
w K ããã¹ãŠã®çš®é¡ãæŽçããã®ã«ååã§ããããšãããããŸã
w K - 2 ãããŠ
w K - 1 ãããŠåœŒãã®ããã«åé¡ã解決ããŸã-ã€ãŸãããã¬ãŒãºã®ããã«
w 1 w 2 l d o t s w K - 2 w K - 1 ã åèšãããšãåé¡ã¯åçããã°ã©ãã³ã°ã§è§£æ±ºãããŸã
O ïŒ K N 3 ïŒ ã
å®è£
ã±ãŒã¹ããŸãšããŠnã°ã©ã ãæ°ãã
ããã«äºçŽããŸããè€éãªMapReduceãéå§ããã®ã«ååãªããŒã¿ããããŸããã§ããã ãã®ãããã¬ãã¥ãŒãã³ã¡ã³ããæ€çŽ¢ã¯ãšãªã®ããã¹ãããã¹ãŠãã·ã¢èªã§åéããŸããïŒååã®èª¬æã¯æ²ããããªãè±èªã§è¡šç€ºãããèªå翻蚳ã®çµæã®äœ¿çšã¯çµæãæ¹åããããããããæªåããŸããïŒããµãŒãã¹ãã1ã€ã®ããã¹ããã¡ã€ã«ã«åéããã«ãŠã³ããããµãŒããŒãå€ã«èšå®ããŸããåçŽãªPythonã¹ã¯ãªããã䜿çšãããã©ã€ã°ã©ã ã
èŸæžãšããŠãé »åºŠã®é«ãäžäœã®åèªãåãäžããçŽ10äžèªãåŸãŸããã é·ãããåèªïŒ20æå以äžïŒãšçãããïŒããŒãã³ãŒããããæåãªãã·ã¢èªãé€ã3æåæªæºïŒã¯é€å€ãããŸããã èŠåæ§
r"^[a-z0-9]{2}$"
ã®åèªãå¥ã«
r"^[a-z0-9]{2}$"
ããŒãžã§ã³ãšé·ã2ã®ä»ã®èå³æ·±ãèå¥åãçãæ®ã£ãããã«ã
ãã¬ãŒãºã§ãã€ã°ã©ã ãšãã©ã€ã°ã©ã ãæ°ãããšãèŸæžã«èŒã£ãŠããªãåèªãçºçããå ŽåããããŸãã ãã®å Žåãç§ã¯ãã®åèªãæšãŠã2ã€ã®éšåïŒãã®åèªã®ååŸïŒã§ãã¬ãŒãºå
šäœãå©ããå¥ã
ã«äœæ¥ããŸããã ããã§ã¯ã
ãabyrvalgããšã¯äœããç¥ã£ãŠããŸããïŒ ããã¯... HEADMANãåå㯠ããã©ã€ã°ã©ã ãèæ
®ã«å
¥ããŸããç¥ã£ãŠããŸããããããäœãç¥ã£ãŠãããããããäœãç¥ã£ãŠãããããããŠãããæŒåž«ã®äž»ä»»ã®ååã§ãïŒãã¡ããããéŠé·ããšããèšèãèŸæžã«
åãŸããªãéã...ïŒã
ãšã©ãŒã¢ãã«ããã¬ãŒãã³ã°ãã
ããã«ãJupyterã§ãã¹ãŠã®ããŒã¿åŠçãå®è¡ããŸããã n-gramã®çµ±èšã¯JSONããèªã¿èŸŒãŸããåŸåŠçãå®è¡ãããŠãLevenshteinã«åŸã£ãŠäºãã«è¿ãåèªããã°ããèŠã€ããŸããã«ãŒãå
ã®ãã¢ã«ã€ããŠã¯ãåèªãé
眮ãããã©ãŒã ssâsïŒã¹ãã€ã©ãŒã®äžïŒã®çãç·šéãæœåºããïŒããé¢åãªïŒé¢æ°ãåŒã³åºãããŸã
Pythonã³ãŒã def generate_modifications(intended_word, misspelled_word, max_l=2):
ç·šéã®èšç®èªäœã¯åºæ¬çã«èŠããŸãããæéããããå ŽåããããŸãã
ãšã©ãŒã¢ãã«ãé©çšãã
ãã®éšåã¯ãGoã®ãã€ã¯ããµãŒãã¹ãšããŠå®è£
ãããgRPCãä»ããŠã¡ã€ã³ããã¯ãšã³ãã«æ¥ç¶ãããŸãã BrillãšMooreèªèº«ã«ãã£ãŠèšè¿°ãããã¢ã«ãŽãªãºã [2]ããããããªæé©åãšãšãã«å®è£
ãããŸããã ãã®çµæãèè
ã®äž»åŒµã®çŽ2åã®é床ã§åäœããŸãã Goãç§ããå€æããåæ°ã¯ãããŸããã ãããããããã¡ã€ãªã³ã°ã®éçšã§ãGoã«ã€ããŠå°ãæ°ããããšãåŠã³ãŸããã
math.Max
ã䜿çšããŠæ倧å€ãã«ãŠã³ãããªãã§ãã ããã ããã¯if a > b { b = a }
ãããçŽ3åé
ãã§ãïŒ ãã®é¢æ°ã®å®è£
ãèŠãŠãã ããïŒ
çªç¶+0ã-0ãã倧ããããå¿
èŠãããå Žåãmath.Max
䜿çšããªãã§math.Max
ã
- é
åã䜿çšã§ããå Žåã¯ãããã·ã¥ããŒãã«ã䜿çšããªãã§ãã ããã ãã¡ãããããã¯éåžžã«æçœãªã¢ããã€ã¹ã§ãã ãã©ã€ããŒãã®åå«é
åã®ã€ã³ããã¯ã¹ãšããŠäœ¿çšã§ããããã«ãããã°ã©ã ã®éå§æã«Unicodeæåã®çªå·ãçªå·ã«å€æŽããå¿
èŠããããŸããïŒãã®ãããªæ€çŽ¢ã¯éåžžã«äžè¬çãªæäœã§ããïŒã
- ãŽãŒããã¯ã³ãŒã«ããã¯ã¯å®ãã¯ãããŸããã ã³ãŒãã¬ãã¥ãŒäžã®ãªãã¡ã¯ã¿ãªã³ã°äžã«ãã¢ã«ãŽãªãºã ãæ£åŒã«å€æŽãããªãã£ãã«ããããããããã«ãããªã³ã°ãè©Šã¿ãç§ã®è©Šã¿ã®ããã€ãã¯ãããã°ã©ã ã倧å¹
ã«é
ãããŸããã ãã以æ¥ãGoæé©åã³ã³ãã€ã©ã«ã¯æé·ã®äœå°ããããšèããŠããŸãã
èšèªã¢ãã«ãé©çšãã
ããã§ã¯ãé©ãããšãªããäžèšã®ã»ã¯ã·ã§ã³ã§èª¬æããåçããã°ã©ãã³ã°ã¢ã«ãŽãªãºã ãå®è£
ãããŸããã ãã®ã³ã³ããŒãã³ãã®äœæ¥ã¯æãå°ãªããæãé
ãéšåã¯ãšã©ãŒã¢ãã«ã®é©çšã§ãã
ãããã£ãŠããããã®2ã€ã®ã¬ã€ã€ãŒéã§ã¯ãRedisã§ã®ãšã©ãŒã¢ãã«ã®çµæã®ãã£ãã·ã¥ãããã«ãã蟌ãŸããŸãããçµæ
ãã®äœæ¥ã®çµæïŒçŽ1ãæããããŸããïŒã«åºã¥ããŠããŠãŒã¶ãŒã«A / Bãã¹ãã¬ãŒããå®æœããŸãããã¬ãŒãã£ã¢ã³ã®å°å
¥åã«ãã£ããã¹ãŠã®æ€çŽ¢ã¯ãšãªã®ãã¡ã空ã®æ€çŽ¢çµæã®10ïŒ
ã®ä»£ããã«ããããã®5ïŒ
ããããŸãããåºæ¬çã«ãæ®ãã®ãªã¯ãšã¹ãã¯ãã©ãããã©ãŒã äžã«ãªãååã«å¯Ÿãããã®ã§ãã2çªç®ã®æ€çŽ¢ã¯ãšãªã®ãªãã»ãã·ã§ã³ã®æ°ãå¢å ããŸããïŒãããŠãã®çš®ã®UXã«é¢é£ããããã€ãã®ã¡ããªãã¯ïŒããã ããéã«é¢é£ããã¡ããªãã¯ã¯å€§ããå€åããŸããã§ãããããã¯äºæ³å€ã®ããšã§ãããä»ã®ã¡ããªãã¯ã®åŸ¹åºçãªåæãšããã«ãã§ãã¯ã«ã€ãªãããŸããããããã«
ã¹ãã£ãŒãã³ã»ããŒãã³ã°ã¯ãã€ãŠåœŒãæ¬ã«å«ãããã¹ãŠã®åŒãèªè
ã®æ°ãååã«ããã ãããšèšãããŸãããããŠããã®èšäºã«ã¯çŽ50人ãããŸã-ããã§ãšãããããŸã10 - 10èªè
ã¯ãã®å Žæã«è¡ããŸãïŒããŒãã¹
åç
§è³æ
[1]ã¯ã·ã³ãã³å·ã²ãŒã«ãKWæäŒã®MDã«ãŒãã¬ã³ããã€ãºã®å€ããã£ãã«ã¢ãã«ã«åºã¥ãã¹ãã«ä¿®æ£ããã°ã©ã ã第13åèšç®èšèªåŠã«é¢ããäŒè°ã®è°äºé²-1990幎第2å·»ã[2] E.BrillãRCã ãŒã¢ãéé³ã®å€ããã£ã³ãã«ã¹ãã«èšæ£ã®ããã®æ¹è¯ããããšã©ãŒã¢ãã«ã第38åèšç®èšèªåŠåäŒã«é¢ãã第38å幎次äŒè°ã®è°äºé²ã2000ãæ©æ¢°ç¿»èš³ã«ããã倧èšèªã¢ãã«ãèªç¶èšèªåŠçã®çµéšçæ¹æ³ã«é¢ãã2007幎äŒè°ã®è°äºé²ã[4] C.ãã¯ã€ãããŒãBããããã³ãœã³ãGYãã§ã³ãGããšãªã¹ãèšèªã«äŸåããªãã¹ãã«ãã§ãã¯ãšèªåä¿®æ£ã®ããã®Webã®äœ¿çšã2009幎èªç¶èšèªåŠçã®çµéšçæ¹æ³ã«é¢ããäŒè°ã®è°äºé²ïŒç¬¬2å·»ã