ä»é±ã¯ã
ãéçºè
åãã¢ã«ãŽãªãºã ãã³ãŒã¹ã®éå§ã«åœ¹ç«ã€æçšãªè³æããå§ãŸããŸãã èªæžãã楜ãã¿ãã ããã
1.æŠèŠããã·ã¥ã¯ãèå³æ·±ã埮åŠãªçè«ãæã€åªããå®çšçãªããŒã«ã§ãã èªåœæ§é ãšããŠããŒã¿ã䜿çšããããšã«å ããŠãæå·åãè€éæ§çè«ãªã©ãããŸããŸãªåéã§ããã·ã¥ãçºçããŸãã ãã®è¬çŸ©ã§ã¯ã2ã€ã®éèŠãªæŠå¿µã«ã€ããŠèª¬æããŸãããŠãããŒãµã«ããã·ã¥ïŒããã·ã¥é¢æ°ã®ãŠãããŒãµã«ãã¡ããªãŒãšãåŒã°ããŸãïŒãšçæ³çãªããã·ã¥ã§ãã
ãã®è¬çŸ©ã§åŒ·èª¿ãããŠããè³æã«ã¯ä»¥äžãå«ãŸããŸãã
- æ£åŒãªèšå®ãšããã·ã¥ã®äžè¬çãªèãæ¹ã
- ãŠãããŒãµã«ããã·ã¥ã
- å®å
šãªããã·ã³ã°ã
2.ã¯ããã«åã«èª¬æããèŸæžã®äž»ãªåé¡ãæ€èšããéçãšåçã®2ã€ã®ããŒãžã§ã³ãæ€èšããŸãã
- Static ïŒå€æ°ã®SèŠçŽ ãäžããããå Žåãæ€çŽ¢ããã°ããå®è¡ã§ããããã«ä¿åããŸãã
- ããšãã°ãåºå®èŸæžã
- åç ïŒããã«ã¯ãæ¿å
¥ãæ€çŽ¢ãããã³åé€ã®ãªã¯ãšã¹ãã®ã·ãŒã±ã³ã¹ããããŸãã ããããã¹ãŠãå¹æçã«è¡ããããšæããŸãã
æåã®åé¡ã«ã€ããŠã¯ããœãŒããããé
åãšãã€ããªæ€çŽ¢ã䜿çšã§ããŸãã 2çªç®ã®æ¹æ³ã§ã¯ããã©ã³ã¹ã®åããæ€çŽ¢ããªãŒã䜿çšã§ããŸãã ãã ããããã·ã¥ã¯ä»£æ¿ã¢ãããŒããæäŸããŸããããã¯å€ãã®å Žåããããã®åé¡ã解決ããããã®æéãã€æã䟿å©ãªæ¹æ³ã§ãã ããšãã°ãAIæ€çŽ¢çšã®ããã°ã©ã ãäœæããŠããŠãåèšç®ãããšãã«åãèšç®ãç¹°ãè¿ããªãããã«ããã§ã«è§£æ±ºããç¶æ³ïŒããŒãäžã®äœçœ®ãŸãã¯ç¶æ
空éã®èŠçŽ ïŒãä¿åãããšããŸãã ããã·ã¥ã䜿çšãããšããã®æ
å ±ãç°¡åã«ä¿åã§ããŸãã æå·ããããã¯ãŒã¯ãè€éæ§çè«ã«ãå€ãã®ã¢ããªã±ãŒã·ã§ã³ããããŸãã
3.ããã·ã¥ã®åºæ¬ããã·ã¥ã®æ£åŒãªèšå®ã¯æ¬¡ã®ãšããã§ãã
- ããŒã¯ããã€ãã®å€§ããªUã®ã»ããã«å±ããŸãïŒããšãã°ãUã¯æ倧é·80ã¢ã¹ããŒæåã®ãã¹ãŠã®æååã®ã³ã¬ã¯ã·ã§ã³ã§ãããšæ³åããŠãã ããïŒã
- Uã«ã¯æ¬åœã«å¿
èŠãªSããŒãããã€ããããŸãïŒããŒã¯éçãŸãã¯åçã®ãããã§ãããŸããŸããïŒã N = | S |ãšããŸãããã NãUã®ãµã€ãºãããã¯ããã«å°ããããšãæ³åããŠãã ãããããšãã°ãSã¯ã128 ^ 80ãããã¯ããã«å°ããã¯ã©ã¹ã®åŠçåã®ã»ããã§ãã
- ãµã€ãºMã®é
åAãšããã·ã¥é¢æ° hã䜿çšããŠãæ¿å
¥ãšæ€çŽ¢ãå®è¡ããŸãïŒUâ{0ã...ãM-1}ã èŠçŽ xãäžããããå Žåãããã·ã¥ã®èãæ¹ã¯ãA [hïŒxïŒ]ã«æ ŒçŽããããšã§ãã Uãå°ããå ŽåïŒããšãã°ã2æåã®æååïŒããããã¯ãœãŒãã®ããã«xãA [x]ã«ä¿åã§ããããšã«æ³šæããŠãã ããã åé¡ã¯ãUã倧ãããããããã·ã¥é¢æ°ãå¿
èŠãªããšã§ãã
- è¡çªã解決ããæ¹æ³ãå¿
èŠã§ãã è¡çªã¯ã2ã€ã®ç°ãªãããŒxããã³yã«å¯ŸããŠhïŒxïŒ= hïŒyïŒã®å Žåã§ãã ãã®è¬çŸ©ã§ã¯ãAã®åèŠçŽ ããªã³ã¯ãªã¹ããšããŠå®çŸ©ããããšã«ãããè¡çªãåŠçããŸãã ä»ã«ãå€ãã®æ¹æ³ããããŸãããããã§çŠç¹ãåœãŠãåé¡ã«ã¯ããããæé©ã§ãã ãã®æ¹æ³ã¯ãé£éæ¹æ³ãšåŒã°ããŸãã ã¢ã€ãã ãæ¿å
¥ããã«ã¯ããªã¹ãã®äžçªäžã«é
眮ããŸãã hãé©åãªããã·ã¥é¢æ°ã§ããå Žåããªã¹ããå°ãããªãããšãé¡ã£ãŠããŸãã
ããã·ã¥ã®åªããç¹ã®1ã€ã¯ããã¹ãŠã®èŸæžæäœãéåžžã«ç°¡åã«å®è£
ã§ããããšã§ãã ããŒxãæ€çŽ¢ããã«ã¯ãã€ã³ããã¯ã¹i = hïŒxïŒãèšç®ããA [i]ã®ãªã¹ããèŠã€ãããŸã§ïŒãŸãã¯ãªã¹ããçµäºããŠïŒèª¿ã¹ãŸãã æ¿å
¥ããã«ã¯ããªã¹ãã®äžçªäžã«æ°ããã¢ã€ãã ãé
眮ããã ãã§ãã åé€ããã«ã¯ããªã³ã¯ãªã¹ãã§åé€æäœãå®è¡ããã ãã§ãã ããã§ãè¯ãããã©ãŒãã³ã¹ãéæããããã«äœãå¿
èŠããšãã質åã«ç§»ããŸãã
æãŸããããããã£ã é©åãªããã·ã¥ã¹ããŒã ã«å¿
èŠãªäž»èŠãªããããã£ïŒ
- ããŒã¯ååã«åæ£ãããŠãããããè¡çªã¯æ€çŽ¢æéãšåé€æéã«åœ±é¿ãããããè¡çªãå€ãããŸããã
- M = OïŒNïŒïŒç¹ã«ãããŒãã«Mã®ãµã€ãºãèŠçŽ æ°Nããã¯ããã«å€§ããããããšãªããåè·¯ã«ããããã£ïŒ1ïŒãå®çŸãããããšèããŠããŸãã
- é¢æ°hã¯è¿
éã«èšç®ããå¿
èŠããããŸãã ä»æ¥ã®åæã§ã¯ãhïŒxïŒãå®æ°ãšããŠèšç®ããæéãèæ
®ããŸãã ãã ããå
šäœã®å®è¡æéã«åœ±é¿ãããããè€éãããªãããšãèŠããŠãã䟡å€ããããŸãã
ãã®å ŽåãèŠçŽ xã®æ€çŽ¢æéã¯Oã§ãïŒãªã¹ãã®ãµã€ãºã¯A [hïŒxïŒ]ã§ãïŒã åé€ã«ã€ããŠãåæ§ã§ãã æ¿å
¥ã«ã¯ããªã¹ãã®é·ãã«é¢ä¿ãªãOïŒ1ïŒæéããããŸãã ãããã£ãŠããããã®ãªã¹ãã®å€§ãããåæããããšæããŸãã
åºæ¬çãªçŽæïŒèŠçŽ ãçŸããåé
ãã1ã€ã®æ¹æ³ã¯ãèŠçŽ ãã©ã³ãã ã«åé
ããããšã§ãã æ®å¿µãªããšã«ã次ã®èŠçŽ ãã©ãã«åãããã決å®ããããã«ä¹±æ°ãžã§ãã¬ãŒã¿ã䜿çšããããšã¯ã§ããŸãããããã¯ããããåã³èŠã€ããããšãã§ããªãããã§ãã ãããã£ãŠãhã圢åŒçãªæå³ã§ãæ¬äŒŒä¹±æ°ãã«ãããã®ã§ãã
ããã§ãæªããã¥ãŒã¹ãããã€ã瀺ãã次ã«è¯ããã¥ãŒã¹ã瀺ããŸãã
ã¹ããŒãã¡ã³ã1ïŒæªããã¥ãŒã¹ïŒä»»æã®ããã·ã¥é¢æ°h if | U | â¥ïŒN -1ïŒM +1ããã¹ãŠã1ãæã§ããã·ã¥ãããNåã®èŠçŽ ã®ã»ããSããããŸãã
蚌æïŒãã£ãªã¯ã¬åçã«ããã ç¹ã«ãã«ãŠã³ã¿ãŒãã€ã³ããèæ
®ããããã«ãåãã±ãŒã·ã§ã³ãããã·ã¥ããUã®N-1å以äžã®èŠçŽ ãæã£ãŠããå ŽåãUã¯MïŒN-1ïŒä»¥äžã®ãµã€ãºãæã€ããšãã§ããŸãã
ããããéšåçã«ããã·ã¥ããšãŠãç¥ç§çãªããã«èŠããçç±ã§ã-ããã·ã¥é¢æ°ã«ã€ããŠããããé²ãæ¹æ³ãèããããšãã§ãããªããã©ã®ããã«ããã·ã¥ãè¯ããšäž»åŒµã§ããŸããïŒ 1ã€ã®çãã¯ãå
žåçãªSã»ããã«å¯ŸããŠå®éã«ããŸãæ©èœããå€ãã®åçŽãªããã·ã¥é¢æ°ããããšããããšã§ãã
éèŠãªã¢ã€ãã¢ã¯æ¬¡ã®ãšããã§ããã©ã³ãã åãããã¯ã€ãã¯ãœãŒããšåæ§ã«ãhã³ã³ã¹ãã©ã¯ãã§ã©ã³ãã åã䜿çšããŸãããã ïŒèšããŸã§ããªããhã¯æ±ºå®çãªé¢æ°ã«ãªããŸãïŒã æ¿å
¥æäœãšæ€çŽ¢æäœã®ã·ãŒã±ã³ã¹ã«ã€ããŠïŒæ¿å
¥ãããèŠçŽ ã®ã»ããSãã©ã³ãã ã§ãããšä»®å®ããå¿
èŠã¯ãããŸããïŒããã®ç¢ºçè«çãªæ¹æ³ã§hãéžæãããšããã®ã·ãŒã±ã³ã¹ã§ã®hã®ããã©ãŒãã³ã¹ãæåŸ
ã§ããããšã瀺ããŸãã ãããã£ãŠãããã¯ã©ã³ãã åãããã¯ã€ãã¯ãœãŒããŸãã¯ãã©ãããšåãä¿èšŒã§ãã ç¹ã«ãããã¯ãŠãããŒãµã«ããã·ã¥ã®èãæ¹ã§ãã
ãã®ã¢ã€ãã¢ãéçºãããããããŒãã§ã¯ãããã·ã¥ããšåŒã°ããç¹ã«æ¥œããã¢ããªã±ãŒã·ã§ã³ã«äœ¿çšããŸãã
4.ãŠãããŒãµã«ããã·ã¥å®çŸ©1.ããã·ã¥é¢æ°hãæ§ç¯ããããã®ã©ã³ãã åã¢ã«ãŽãªãºã HïŒUâ{1ã...ãM}
Uã®ãã¹ãŠã®xïŒ= yã«ã€ããŠ
ãŸãããhâHãã©ã³ãã ã«éžæãããæé ãæ®éçã§ããå Žåãããã·ã¥é¢æ°ã®ã»ããHã¯ããã·ã¥é¢æ°ã®æ®éçãªãã¡ããªãŒã§ãããšèšããŸãã ïŒããã§ãã»ããå
šäœã«åäžãªååžãæã€é¢æ°ã®ã»ãããç¹å®ããŸããïŒ
å®ç2. Hãæ®éçã§ããå Žåããµã€ãºNã®ä»»æã®ã»ããS for Uãä»»æã®xâUïŒããšãã°ãæ¢ãããšãã§ããïŒãHã«åŸã£ãŠã©ã³ãã ã«hãæ§ç¯ããå Žåãxãšä»ã®è¡çªã®äºæ³æ°Sã®èŠçŽ ã¯N / M以äž
蚌æïŒåyâSïŒyïŒ= XïŒã«ã¯ãããŠãããŒãµã«ãã®å®çŸ©ã«ãããæ倧ã§1 / Mã®xãšã®è¡çªã®å¯èœæ§ããããŸãã ã ãã
- xãšyãè¡çªããå Žåã¯Cxy = 1ãããã§ãªãå Žåã¯0ãšããŸãã
- Cxãxã®è¡çªã®ç·æ°ã瀺ãããã«ããŸãã ãããã£ãŠãCx =PyâSãyïŒ= X Cxyã
- E [Cxy] = PrïŒxãšyãè¡çªããïŒâ€1 / M
- ãããã£ãŠãæåŸ
ã®ç·åœ¢æ§ã§ã¯ãE [Cx] = Py E [Cxy] <N / Mã§ãã
次ã®çµæãåŸãããŸãã
åž°çµ3. Hãæ®éçã§ããå ŽåãäžåºŠã«ã·ã¹ãã å
ã«Må以äžã®èŠçŽ ããååšã§ããªãæ¿å
¥ãæ€çŽ¢ãããã³åé€æäœLã®ã·ãŒã±ã³ã¹ã§ã¯ãã©ã³ãã hâHã«å¯ŸããLæäœã®äºæ³ç·ã³ã¹ãã¯OïŒLïŒã®ã¿ã§ãïŒæéã衚瀺hãå®æ°ãšããŠèšç®ããŸãïŒã
蚌æïŒã·ãŒã±ã³ã¹å
ã®ä»»æã®æäœã«ã€ããŠããã®äºæ³ã³ã¹ãã¯å®ç2ã«ãã£ãŠäžå®ã§ãããããLæäœã®äºæ³ç·ã³ã¹ãã¯äºæ³ã®ç·åœ¢æ§ã§OïŒLïŒã§ãã
質åïŒãŠãããŒãµã«Hãå®éã«æ§ç¯ã§ããŸããïŒ ããã§ãªãå Žåãããã¯ãã¹ãŠããªãç¡æå³ã§ãã 幞ããªããšã«ãçãã¯ã€ãšã¹ã§ãã
4.1ã ãŠãããŒãµã«ããã·ã¥ãã¡ããªã®äœæïŒè¡åæ³ããŒãuãããé·ã§ãããšããŸãã ããšãã°ãããŒãã«Mã®ãµã€ãºã¯æ¬¡æ°2ã«çãããããã€ã³ããã¯ã¹ã¯M = 2bã§bãããé·ã§ãã
ããã§ã¯ãhãã©ã³ãã ãªè¡å0/1 bè¡uåãšããŠéžæããhïŒxïŒ= hxãå®çŸ©ããŸããããã§mod 2ãè¿œå ããŸãããããã®è¡åã¯çã倪ãã§ãã äŸïŒ
åœé¡4. For xïŒ= Y Prh [hïŒxïŒ= hïŒyïŒ] = 1 / M = 1/2 bã
蚌æïŒæåã«ãhãxã§ä¹ç®ãããšã©ããªããŸããïŒ ããã¯ãhã®åã®äžéšãè¿œå ããïŒãã¯ãã«å ç®mod 2ãè¡ãïŒãšèããããšãã§ããŸããxã®1ãããã¯ãè¿œå ããåã瀺ããŸãã ïŒããšãã°ãäžèšã®hã®1åç®ãš3åç®ãè¿œå ããŸããïŒ
ããã§ãxïŒ= Yãšãªãä»»æã®ããŒãã¢xãyãååŸããŸãã ãããã¯ã©ããã§ç°ãªãã¯ããªã®ã§ãããšãã°ãiçªç®ã®åº§æšãç°ãªããŸããå
·äœçã«ã¯ãxi = 0ããã³yi = 1ãšããŸããiçªç®ã®åãé€ããã¹ãŠã®hãæåã«éžæãããšããŸãã içªç®ã®åã®æ®ãã®ãµã³ãã«ã§ã¯ãââhïŒxïŒãåºå®ãããŠããŸãã ãã ããibåã®2bã®ç°ãªãèšå®ã®ããããã¯ãhïŒyïŒã®ç°ãªãå€ãäžããŸãïŒç¹ã«ããã®åã®ãããã1ååããã³ã«ã察å¿ããããããhïŒyïŒã«å€ããŸãïŒã ãããã£ãŠãhïŒxïŒ= hïŒyïŒã®1 / 2bã®ãã£ã³ã¹ãæ£ç¢ºã«ãããŸãã
åããçŽ æ°ã®ä¹ç®ã«åºã¥ããŠããŠãããŒãµã«ããã·ã¥ãã¡ããªãæ§ç¯ããä»ã®æ¹æ³ããããŸãïŒã»ã¯ã·ã§ã³6.1ãåç
§ïŒã
次ã«èæ
®ãã¹ãåé¡ã¯ãéåSãä¿®æ£ããå Žåããã¹ãŠã®æ€çŽ¢ã«äžå®ã®æéãããããããªããã·ã¥é¢æ°hãèŠã€ããããšãã§ãããã©ããã§ãã çãã¯ã€ãšã¹ã§ãããããã¯å®å
šãªããã·ã¥ã®ãããã¯ã«ã€ãªãããŸãã
5.å®å
šãªããã·ã¥ãã¹ãŠã®æ€çŽ¢ãOïŒ1ïŒã§è¡ãããå Žåãããã·ã¥é¢æ°ã¯Sã«ãšã£ãŠçæ³çã§ãããšèšããŸãã æå®ãããã»ããSã«å¯ŸããŠå®å
šãªããã·ã¥é¢æ°ãäœæãã2ã€ã®æ¹æ³ã次ã«ç€ºããŸãã
5.1æ¹æ³1ïŒç©ºéOïŒN2ïŒã§ã®è§£èŸæžSã®ãµã€ãºNã2次ã®ãµã€ãºã®ããŒãã«ãå¿
èŠã ãšããŸãããã次ã«ãçæ³çãªããã·ã¥é¢æ°ãäœæããç°¡åãªæ¹æ³ã瀺ããŸãã HããŠãããŒãµã«ãM = N2ãšããã 次ã«ãHããã©ã³ãã ãªhãéžæããŠãè©ŠããŠãã ããïŒ å£°æã§ã¯ãå°ãªããšã50ïŒ
ã®ç¢ºçã§è¡çªããªããšããŠããŸãã
åœé¡5ãHãæ®éçã§M = N2ã®å ŽåãPrhãHïŒSã§ã®è¡çªãªãïŒâ¥1/2ã
蚌æïŒ
â¢Sã«ã¯ããã€ã®ãã¢ïŒxââãyïŒããããŸããïŒ çãã¯ïŒ
â¢åãã¢ã®è¡çªã®ç¢ºçã¯ãæ®éæ§ã®å®çŸ©ã«ããâ€1 / Mã§ãã
â¢ãããã£ãŠãPrïŒè¡çªããïŒâ€
/ M <1/2ã
ããã¯ããèªçæ¥ã®ãã©ããã¯ã¹ãã®å察åŽã®ãããªãã®ã§ãã æ¥æ°ãäºä¹ãã人ã®æ°ãããã¯ããã«å€ãå Žåãåãèªçæ¥ãæã€ã«ããã«ã¯ããªãå¯èœæ§ããããŸãã
ãããã£ãŠãHããã©ã³ãã ãªhãéžæãã競åãçºçããå Žåã¯ãæ°ããhãéžæããŸãã å¹³åããŠããããè¡ãå¿
èŠãããã®ã¯2åã ãã§ãã ããŠãOïŒNïŒã¹ããŒã¹ã®ã¿ã䜿çšãããå Žåã¯ã©ãã§ããããïŒ
5.2æ¹æ³2ïŒç©ºéOïŒNïŒã®è§£
OïŒNïŒç©ºéã§å®å
šãªããã·ã¥ãå®çŸããããšãã§ãããã©ããã®åé¡ã¯ããã°ããã®éããããŒãã«ããœãŒãããå¿
èŠããããŸããïŒã ã€ãŸããåºå®ã»ããã®å Žåãç·åœ¢ç©ºéã§ã®ã¿äžå®ã®æ€çŽ¢æéãååŸã§ããŸããïŒ 2ã¬ãã«ã®ã¹ããŒã ã§ãŠãããŒãµã«ããã·ã¥é¢æ°ã®è¯ãã¢ã€ãã¢ã䜿çšããŠæçµçã«è§£æ±ºããããŸã§ãäžé£ã®ãŸããŸãè€éãªè©Šã¿ããããŸããã
æ¹æ³ã¯æ¬¡ã®ãšããã§ãã ãŸãããŠãããŒãµã«ããã·ã¥ã䜿çšããŠãµã€ãºNã®ããŒãã«ã«ããã·ã¥ããŸãã ããã«ãããããã€ãã®è¡çªãçºçããŸãïŒå¹žéã§ãªãéãïŒã ãã ããæ¹æ³1ã䜿çšããŠåãã¹ã±ãããåããã·ã¥ãããã¹ã±ãããµã€ãºã2ä¹ããŠè¡çªããŒãã«ããŸãã ãããã£ãŠãã¹ããŒã ã¯ãæåã®ã¬ãã«hã®ããã·ã¥é¢æ°ãšæåã®ã¬ãã«ã®ããŒãã«Aãããã次ã«2çªç®ã®ã¬ãã«h1ã®Nåã®ããã·ã¥é¢æ°h1 ...ãhNãš2çªç®ã®ã¬ãã«A1ã®ããŒãã«ã®Nã...ã....èŠçŽ xãèŠã€ããã«ã¯ããŸãi = hïŒxïŒãèšç®ãã次ã«Ai [hiïŒxïŒ]ã®èŠçŽ ãèŠã€ããŸãã ïŒå®éã«ãããè¡ã£ãå Žåãã€ã³ããã¯ã¹iãšå®éã«ç«¶åãããå Žåã«ã®ã¿2çªç®ã®ã¹ããããå®è¡ããããã«ãã©ã°ãèšå®ã§ããŸããããã§ãªãå Žåã¯ãxèªäœãA [i]ã«å
¥ããŸãããããã§å¿é
ããªãã§ãã ãããïŒ
ããã·ã¥é¢æ°hãnåã®èŠçŽ Sãäœçœ®iã«ããã·ã¥ãããšããŸãã ïŒæ¹æ³1ãåæããããšã«ããïŒh1ã...ãhNãèŠã€ããããšãã§ããããšããã§ã«èšŒæããŠããã®ã§ãäºæ¬¡ããŒãã«ã§äœ¿çšãããåèšã¹ããŒã¹ã¯PiïŒniïŒ2ã§ãã次ã®ãããªç¬¬1ã¬ãã«é¢æ°hãèŠã€ããããšãã§ããããšã瀺ããŸãã PiïŒniïŒ2 = OïŒNïŒã å®éã以äžã瀺ããŸãã
å®ç6.æ®ééåHããéå§ç¹hãéžæãããšã
Pr[X i (ni)2 > 4N] < 1/2.
蚌æã E [PiïŒniïŒ2] <2Nã§ããããšã瀺ãããšã§ããã蚌æããŸãã ããã¯ããã«ã³ãã®äžçåŒããæããã®ãæå³ããŸãã ïŒéã4Nãè¶
ããå¯èœæ§ããã1/2ã®ç¢ºçããããã°ããã®äºå®ã ãã§æåŸ
å€ã2Nãè¶
ããŠããã¯ãã§ãããããã£ãŠãæåŸ
å€ã2Næªæºã§ããã°ã倱æã®ç¢ºçã¯äœããªããŸã1/2ãïŒ
ããŠãããªãããŒãªããªãã¯ã¯ããã®éãèšç®ãã1ã€ã®æ¹æ³ã¯ãèªåèªèº«ãšã®è¡çªãå«ããè¡çªã®ããé åºä»ãããããã¢ã®æ°ãæ°ããããšã§ãã ããšãã°ããã¹ã±ããã«{dãeãf}ãããå Žåãdã¯{dãeãf}ã®ãããããšç«¶åããeã¯{dãeãf}ã®ãããããšç«¶åããfã¯ãšç«¶åããŸã{dãeãf}ã®ããããããããã£ãŠ9ãåŸãããŸãã
E[X i (ni)2] = E[X x X y Cxy] (Cxy = 1 if x and y collide, else Cxy = 0) = N +X x X y6=x E[Cxy] †N + N(N â 1)/M (where the 1/M comes from the definition of universal) < 2N. (since M = N)
ãããã£ãŠãPi n2 i <4Nã®ãããªãã®ãèŠã€ãããŸã§Hããã©ã³ãã hãè©Šãããã®é¢æ°hãä¿®æ£ããŠãæ¹æ³1ã®ããã«Nåã®äºæ¬¡ããã·ã¥é¢æ°h1ã...ãhNãèŠã€ããŸãã
6.ãããªãè°è«6.1å¥ã®æ±çšããã·ã¥æ³ãŠãããŒãµã«ããã·ã¥é¢æ°ãæ§ç¯ããå¥ã®æ¹æ³ã次ã«ç€ºããŸããããã¯ãåè¿°ã®ãããªãã¯ã¹æ³ããããããã«å¹ççã§ãã
ãããªãã¯ã¹æ³ã§ã¯ãããŒããããã®ãã¯ãã«ãšèŠãªããŸããã ãã®æ¹æ³ã§ã¯ã代ããã«ãããŒxãæŽæ°ã®ãã¯ãã«[x1ãx2ã...ãxk]ãšèŠãªããŸããåxiã{0ã1ã...ãM-1}ã®ç¯å²ã«ãããšããå¯äžã®èŠä»¶ããããŸãã ããšãã°ãé·ãkã®æååãããã·ã¥ããå Žåãxiã¯içªç®ã®æåïŒããŒãã«ã®ãµã€ãºãå°ãªããšã256ã®å ŽåïŒãŸãã¯içªç®ã®æåã®ãã¢ïŒããŒãã«ã®ãµã€ãºãå°ãªããšã65536ã®å ŽåïŒã«ãªããŸãã ããã«ãããŒãã«Mã®ãµã€ãºãçŽ æ°ã§ããå¿
èŠããããŸãã ããã·ã¥é¢æ°hãéžæããã«ã¯ã{0ã1ã...ãM-1}ããkåã®ä¹±æ°r1ãr2ã...ãpkãéžæãã以äžã決å®ããŸãã
h(x) = r1x1 + r2x2 + . . . + rkxk mod M.
ãã®æ¹æ³ãæ®éçã§ãããšãã蚌æã¯ãè¡åæ³ã®èšŒæãšãŸã£ããåãæ¹æ³ã§æ§ç¯ãããŸãã xãšyã2ã€ã®ç°ãªãããŒãšããŸãã PrhïŒhïŒxïŒ= hïŒyïŒïŒâ€1 / M. xïŒ= Yãªã®ã§ãxiïŒ= Yiã®ãããªã€ã³ããã¯ã¹iãååšããå ŽåããããŸãã ããã§ãjïŒ= Iã®ãã¹ãŠã®ä¹±æ°rjãæåã«éžæãããšããŸãã h â²ïŒxïŒ= Pj6 = i rjxjãšããã ãããã£ãŠãriãéžæãããšãhïŒxïŒ= h â²ïŒxïŒ+ rixiãåŸãããŸãã ããã¯ãxãšyã®éã«æ£ç¢ºã«ç«¶åãããããšãæå³ããŸã
hâ²(x) + rixi = hâ²(y) + riyi mod M, or equivalently when ri(xi â yi) = hâ²(y) â hâ²(x) mod M.
Mã¯çŽ æ°ã§ãããããmod Mã®éãŒãå€ã§é€ç®ããããšã¯æå¹ã§ãïŒ1ããM -1ãŸã§ã®ãã¹ãŠã®æŽæ°ã¯Mãæ³ãšããä¹æ³ã®éæ°ãæã¡ãŸãïŒãã€ãŸããäžèšã®åŒãæãç«ã€M trueãã€ãŸãri =ïŒh â²ïŒyïŒ-hâ²ïŒxïŒïŒ/ïŒxi-yiïŒmodMããããã£ãŠããã®ã€ã³ã·ãã³ãã®ç¢ºçã¯æ£ç¢ºã«1 / Mã§ãã
6.2ããã·ã¥ã®ä»ã®çšéèŠçŽ ã®é·ãã·ãŒã±ã³ã¹ãããããªã¹ãå
ã«ããã€ã®ç°ãªãèŠçŽ ããããã確èªãããšããŸãã ãããè¡ãè¯ãæ¹æ³ã¯ãããŸããïŒ
1ã€ã®æ¹æ³ã¯ãããã·ã¥ããŒãã«ãäœæããåèŠçŽ ãæ€çŽ¢ããŠãããŒãã«ã«ãŸã ãªãå Žåã¯æ¿å
¥ããããšã«ãããã·ãŒã±ã³ã¹ã1åééãããããšã§ãã åã
ã®èŠçŽ ã®æ°ã¯ãåã«æ¿å
¥ã®æ°ã§ãã
ãªã¹ããæ¬åœã«å·šå€§ã§ãä¿åããå Žæããªãã®ã«ãããããã®çããé©åãªå Žåã¯ã©ãã§ããããã ããšãã°ãç§ãã¡ãã«ãŒã¿ãŒã§ãããééãããã±ããã®æ°ã芳å¯ããïŒãããïŒããã€ã®ç°ãªãéä¿¡å
IPã¢ãã¬ã¹ãååšãããã確èªããããšããŸãã
ããã¯è¯ãèãã§ãïŒã©ã³ãã é¢æ°ã®ããã«æ¯ãèãããã·ã¥é¢æ°hããããhïŒxïŒã0ãã1ãŸã§ã®å®æ°ã§ãããšæ³åããŠã¿ãŸããããã§ããããšã®1ã€ã¯ãæå°å€ã远跡ããããšã§ãããã·ã¥å€ã¯ãããŸã§ã«çæãããŠããŸãïŒãããã£ãŠãããŒãã«ã¯ãŸã£ãããããŸããïŒã ããšãã°ãããŒã3,10,3,3,12,10,12ã§ãããhïŒ3ïŒ= 0.4ãhïŒ10ïŒ= 0.2ãhïŒ12ïŒ= 0.7ã®å Žåã0ãåŸãããŸãã 2ã
å®éã[0ã1]ã§Nåã®ä¹±æ°ãéžæãããšãäºæ³ãããæå°å€ã¯1 /ïŒN + 1ïŒã«ãªããŸãã ããã«ãããªãè¿ãå¯èœæ§ããããŸãïŒããã€ãã®ããã·ã¥é¢æ°ãå®è¡ããäœå€ã®äžå€®å€ãåãããšã§æšå®å€ãæ¹åã§ããŸãïŒã
質åïŒæ¯åä¹±æ°ãéžã¶ã ãã§ãªãããªãããã·ã¥é¢æ°ã䜿çšããã®ã§ããïŒ ããã¯ãèŠçŽ ã®ç·æ°ã ãã§ãªããããŸããŸãªèŠçŽ ã®æ°ãèæ
®ããŠããããã§ãïŒãã®åé¡ã¯ã¯ããã«ç°¡åã§ããåã«ã«ãŠã³ã¿ãŒã䜿çšããã ãã§ãïŒã
åéããã®èšäºã¯åœ¹ã«ç«ã¡ãŸãããïŒ ã³ã¡ã³ããæžããŠã4æ25æ¥ã«éå¬ããã
äžè¬å
¬éæ¥ã«åå ããŠãã ããã